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Abstract

In this paper we propose a novel technique that addresses image renaissance
through a ”multi-level” graph-based matching process. To this end, numerous
image patches that do present similarities with the local content around the
missing part are considered. The selection of these patches is done through
a particle filter method to address the task of hypotheses evaluation. These
patches are positioned on top of missing segment, ordered depending on their
similarity weight, and form in some fashion a multi-layered graph over time.
Markov Random Fields are used to formalize inpainting as a labelling esti-
mation problem while a combinatorial approach is used to recover the opti-
mal combination of patches to complete the missing structure. The min-cut
max-flow algorithm within the α-expansion process is used to determine the
optimal cut that, in an implicit fashion, completes the missing image struc-
ture. Promising results in image and texture completion demonstrate the
potentials of the proposed method.





Résumé

Ce document propose une nouvelle technique effectuant la renaissance d’image
grâce à un procédé de comparaison par graphes successifs. Dans ce but, nous
considérons des régions de l’image qui ont des ressemblances avec les données
avoisinant les zones manquantes. La sélection de ces régions se fait grâce à la
méthode du filtre à particules pour calculer la mesure de ressemblance. Ces
régions sont positionnées par-dessus les parties manquantes, ordonnés selon
le poids de leur similarité, formant une sorte de graphe à plusieurs niveaux
dans le temps. Les ”Markov Random Fields” sont utilisés pour représenter
l’inpainting comme un problème d’estimation d’étiquetage tandis qu’une ap-
proche combinatoire est utilisée pour retrouver la combinaison optimale de
régions complétant la partie manquante. L’algorithme de min-cut/max-flow
dans le procédé d’α-expansion sert à déterminer la coupe optimale qui, de
façon implicite, complète la structure manquante de l’image. Des résultats
prometteurs dans la complétion d’image et de tectures démontrent le poten-
tiel de la méthode proposée.
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1 Introduction

Image inpainting [3], often called retouching, consists of completing missing
or damaged parts of an image. Such a demand was first addressed in painting
restoration and has spread in other domains of computational vision like
photos [25], films [23] and recently 3D volumes that consist of appearance
and structure [2]. Prior art to image completion consists of variational and
statistical methods.

Variational methods are mostly inspired by the Euler elastica model [27], a
mathematical formulation for recovering missing geometric planes according
to the principle of good continuation [22] given a start, an end point and their
normals. In [26] image inpainting was also called image disocclusion. Their
approach aim to decompose the image in isophotes of constant appearance
and then to complete these isophotes within the ”occluded” part according
to the elastica model [27]. Such a concept was explored in its geometric form
in [3] according to a PDE that was propagating information along the image
isophotes. Similar concept was considered in [9] where a curvature-driven
diffusion approach was used to complete missing image structure. Joint in-
terpolation of image and vector fields within a variational formulation was a
further attempt to explore the elastica formulation while relaxing the bound-
ary conditions [1] while several variants of the total variation minimization
algorithm were considered to address inpainting [8]. Last, but not least, a
variation of the Mumford-Shah framework was proposed in [14] to complete
the missing structure. While these methods are quite popular and have an
outstanding performance on filling micro-gaps, one can claim that dealing
with texture3 as well as with important missing image regions are their most
notable limitations.

Statistical methods were made popular in texture synthesis, a problem
that is somehow related with the inpainting one. The central idea is to re-
produce a pattern at a local scale (missing gaps) that is stationary [28]. This
concept was formulated in a mathematical fashion in [13] within Markov Ran-
dom Fields [16] and spread across the vision and graphics domain. One can
refer to methods that aim to reconstruct textures from sample images through
the selection of an appropriate set of filter operators [29], or techniques with
aim to replace the missing part with an ”artificial” texture like the ones in-
troduced in [21]. Last, but not least one can refer to recent approaches where
texture synthesis consists of stitching together blocks of existing sample tex-
ture a method that was explored in [12, 24] within graph-based combinatorial
optimization. Opposite to variational methods one can claim that statisti-

3That problem was addressed in some partial fashion in [4].
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cal methods can do a much better job when dealing with texture and have
a better performance when dealing with macro-gaps under the assumption
that the correct scale was considered.

(a) (b) (c)

Figure 1: Reconstruction of muppet PPD: (a) input image, (b) optimal par-
tition, (b) reconstructed image.

In this paper, we address the problem of image renaissance through a
graph-based approach, that aims to combine variational and statistical meth-
ods that is based on the concept of progressive stitching within a temporal
process as shown in [Fig. (1)].

To this end, we assume that one can find in the image portions of the miss-
ing information. Once candidates have been determined thanks to a selection
process of seeds indicating the origin of an image area similar to data at the
bounadry of the missing part, we reformulate image renaissance as a problem
of min-cut within the graph. To this end, a MRF-based cost function is pre-
sented that accounts for the similarity of the existing segments and the ones
to be added that is evolving upon the completion of the missing structure.
Furthermore, within a temporal process one can introduce metrics that do
account for the distance from the boundaries of the inpainted region and in
a non-explicit fashion we do propagate the information along the isophotes.
Towards addressing various scales and orientations, a multi-source approach
is considered where a substantial number of candidate image segments are
super-imposed to the one to be inpainted. The min-cut is recovered through
max flow problem principle according to the α-expansion algorithm.

The reminder of this paper is organized according to the following fash-
ion. In section 2 we introduce the theoretical concept of our approach. The
selection process for the candidate seeds is presented in section 3 while in sec-
tion 4 we present the considered graph-based optimization principles. while
discussion and experimental results are part of section 5.
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2 Image Completion

Let us consider an image I ′ : Ω → R, that is a replica of the original image
I : Ω → R with the exception of a mask S that refers to the image segments
that are not present. The task of inpainting consists of creating a new image
F such that

F(x) =

{
I ′(x),x ∈ Ω− S
I ′(x),x ∈ S

Figure 2: Concept of Image Completion through successive patch matching.

Without loss of generality - since the image I is not available - one can as-
sume that the missing part F(S) can be reconstructed through other present
image segments;

F(x) =

{
I ′(x), x ∈ Ω− S
I ′(x′), x ∈ S,x′ ∈ Ω− S : I ′(x′) = I(x)

that is the core assumption of our method. Let us consider n image segments

{L1,L2, ...,Ln} : Li ∈ Ω− S

randomly positioned over S. Then the problem of inpainting consists of
selecting for every pixel of S, the value among these n possible ones that
best approximates the original data. One can see such a task in the form of
a labelling problem, where to the pixel x the label ω(x) ∈ [1, n] is attributed
reflecting to: F(x) = Lω(x)(x).

However, in the absence of constraints within the inpainted region S one
can relax the constraint to account for the image properties on the borders
of S leading to a new inpainted region S ′ as shown in [Fig. (2)] where
constraints are present. Then, towards solving the labelling problem the
following objective function can be considered:

E(ω) =
∑

x∈S′−S

(
Lω(x)(x)− I ′(x)

)2
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where the distance between the new inpainted image and the existing ob-
servations is minimal. One can consider more advanced error metrics that
perform an evaluation at a local region/neighbourhood [N (x)] level rather
than at the pixel level, or

E(ω) =
∑

x∈S′−S

ρ
(
Lω(x)(N (x)), I ′(N (x))

)
where ρ(), often called the local potential function, can be for example the
correlation of intensities between the two image patches. Within our ap-
proach we assume a local normalized SSD score in the vertical and the hori-
zontal direction pointed by a Gaussian distribution:

ρ
(
Lω(x)(x), I ′(x)

)
=

1
Z

W∑
m=−W

1√
2πσ

exp
(
−|m|

2

2σ2

) ∣∣Lω(x)(x + m)− I ′(x + m)
∣∣

where Z is a normalization factor. However, visual discontinuities are quite
noticeable from biological vision systems while important sporadic changes
of small magnitude within uniform regions often do not attract the attention
of the humans.

The use of the image derivatives as well as the ones of the patch under
consideration could be a considered as support layers on this constraint. To
this end, in [24] a term that is inversely proportional to the norm of the
gradient was considered within the context of texture synthesis,

E(ω) =
∑

x∈S′−S

exp

{
ρ

(
Lω(x)(x), I ′(x)

)
|∇I ′(x)|2 + |∇Lω(x)(x)|2

}
that will make pixels with substantial derivatives more significant in the
reconstruction process.

Such a method will be able to reconstruct the image at the pixel level while
preserving discontinuities through an independent decision process according
to the similarity between the observed image and the candidate patches. Such
an independent process will form several discontinuities that will be quite
disrupting to the human eye and will violate the condition that images are
assumed to be consistent at a local scale.

Such a limitation is often addressed using local smoothness constraints on
the label domain, that consists of saying that neighbourhood pixels should
have about the same label;

E(ω) =
∑

x∈S′−S

 ∑
x∈N (x)

V(ω (x), ω(y)) dy
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where the function V in the most general case has the following form

V(ω(x), ω(y)) =

{
+αdiff , ω(x) 6= ω(y)

0, ω(x) = ω(y)

with αdiff > 0. It is important to note that such a term imposes smoothness
on the label space of the reconstructed image that is not equivalent with
smoothness in the image itself.

One can now consider the image potential and the smoothness term in
their discrete form - the most common MRF-based formulation - and use
them to address inpainting once the smoothness constraint has been relaxed
within the S ′ according to:

E(ω) =
∑

x∈S′−S
exp

{
ρ

(
Lω(x)(x), I ′(x)

)
|∇I ′(x)|2 + |∇Lω(x)(x)|2

}

+ β
∑
x∈S′

 ∑
x∈N (x)

V(ω (x), ω(y)) dy



where β is a constant, balancing the contribution of these two terms. Such
an objective function aims to create a partition on the labelling space such
that the existing part of the image remains mostly the same while for the
region to be inpainted is a smooth continuation on the labelling space of
the one of the image (that is conceptually different from the essence of vari-
ational methods). One can seek the lowest -sub-optimal- potential of the
discrete form of function using several techniques of various complexity like
the iterated conditional modes [5], the highest confidence first [10], the mean-
field and simulated annealing [16] and the min-cut max flow approach [7].
The most important limitation of this approach is that inpainting is done
through a stitching process on the boundaries of the inpainted region while
poorly smoothness constraints are used to fill in the missing information.

In order to overcome this limitation let us consider a temporal process
where ω is a function of time [ω0, ..., ωt] where the information is propagated
in a progressive fashion [I ′ = F0, ...,F t] and as t → ∞ the region to be
inpainted vanishes [S = S0 ⊃ ... ⊃ St = ∅]. Then one can consider a
procedure that optimizes the same cost function at various time instants
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that upon converge performs inpainting in an optimal fashion:

lim
t→∞

E(ωt) =

α
∑

x∈S′−S0

exp

{
ρ

(
Lω(x)(x), I ′(x)

)
|∇I ′(x)|2 + |∇Lω(x)(x)|2

}

+ β
∑

x∈S′−St−1

exp

{
ρ

(
Lω(x)(x),F t−1(x)

)
|∇I ′(x)|2 + |∇Lω(x)(x)|2

}

+ γ
∑
x∈S′

 ∑
x∈N (x)

V(ωt
(
x), ωt(y)

)
dy


with α � β > γ. One can interpret these terms in the following fashion. The
first term constraints the superimposed segments to match with the image
content on the borders of the region to be inpainted, a rather hard constraint
that is reflected on the selection of the α coefficient. The second term, up-
dates in a progressive fashion the content within the inpainted region while
the third term imposes smoothness on the label space of the reconstructing
image that is not equivalent with smoothness in the image itself.

Despite the theoretical advantages of such an approach, in practice it
cannot be considered. In order to complete the missing structure several
patches are to be considered in a random fashion. Consequently, the number
of labels is substantial > 1000. Therefore even the optimization of such a
cost function at a single scale is quite expensive unless efficient sub-optimal
techniques are considered.

One can relax the constraint of time and assume that the series

[S = S0 ⊃ ... ⊃ St = ∅]

can be constructed according to a linear function of the Euclidean distance
from borders of the inpainted region. In other words one can consider
isophotes in the Euclidean distance space and not in the image itself that
can be pre-computed in advance and simulate time according to this dis-
tance;

E(ω) = α
∑

x∈S′−S
exp

{
ρ

(
Lω(x)(x), I ′(x)

)
|∇I ′(x)|2 + |∇Lω(x)(x)|2

}

+β
∑
x∈S

exp

{
σ2

D2(x, ∂S)
ρ

(
Lω(x)(x),F(x)

)
|∇I ′(x)|2 + |∇Lω(x)(x)|2

}

+γ
∑
x∈S′

 ∑
x∈N (x)

V(ω (x), ω(y)) dy
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where D(x, ∂S) is the minimum Euclidean distance between the pixel x and
the interface that delineates the boundaries of the region to be inpainted, σ is
a constant parameter sampling the importance of progressive reconstruction
and as earlier explained α � β > γ.

The next issue to be addressed now is the selection and the position of
candidate seeds that has to be as small as possible, resulting to plausible
solution on the labelling process. Random selection of image patches is a
straightforward solution to the problem that will though make the approach
quite inefficient.

3 On the Selection of Candidate Seeds

We call seeds the positions in the image whom neighbourhood has good
similarities with the neighbourhood of a point in the boundary of the part to
be inpainted. One can consider the problem of seed extraction as a tracking
problem in the image where given a starting position, the objective is to
recover an image region that can be used to replace the missing segment.
The statistical interpretation of such an objective refers to the introduction
of a probability density function (pdf) that uses previous states to predict
possible new positions for the added seeds, while image features are used to
evaluate the quality of these predictions.

Let us consider a state vector ω = (x, lx, ly) that describes a rectangle
(lx, ly) that is centred at x. Particle filters [20] are sequential Monte-Carlo
techniques that can be used to estimate the Bayesian posterior probability
density function with a set of samples [18] ωt, conditional to observations
from time 1 to time t z1:t: p(ωt|z1:t).

In terms of a mathematical formulation, such a method approximates
the posterior pdf by M random measures {zm

t , m = 1, M} associated to M
weights {wm

t , m = 1, M}, such that

p(ωt|z1:t) ≈
M∑

m=1

wm
t δ(ωt − ωm

t ).

where each weight wm
t reflects the importance of the sample ωm

t in the pdf.

The samples ωm
t are drawn using the principle of Importance Density

[19], of pdf q(ωt|ωm
1:t, zt), and it is shown that their weights wm

t are updated
according to

wm
t ∝ wm

t−1

p(zt|ωm
t )p(ωm

t |ωm
t−1)

q(ωm
t |ωm

t−1, zt)
.
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Figure 3: Several steps of particule filter seeds selection (blue rectangles are
patches tested to overlap the green rectangles area around the boundary of the
missing part.

Once a set of samples has been drawn, p(ωm
t |ωm

t−1, zt) can be computed out
of the observation zt for each sample, and the estimation of the posteriori
pdf can be sequentially updated.

The Importance Density q(xt|xm
1:t, zt) is chosen to be equal to p(ωm

t |ωm
t−1),

which reduces the previous equation to

wm
t ∝ wm

t−1p(zt|ωm
t ).

This choice is not only the simplest to implement, but it has also been proved
[11] it minimizes the variance of true weights {wm} conditional to

{
ωm

t−1

}
{zt}

. After few time steps, all weights but few become nearly null. Therefore,
it is necessary to perform a re-sampling. We chose to use the Systematic
Importance Re-sampling algorithm [18], which draws new samples from the
posterior pdf p(ωt|z1:t).

The last issue to be dealt with is the definition of a measure between
a prediction and the actual observation, used to compute the conditional
probability p(zt|ωm

t ). Evaluation of hypotheses is a rather critical condition
in particle filters. To this end, given the origin of the filter (distribution
on the borders of the inpainted region), one would like to evaluate the fit
of the particle under consideration. Such a task is equivalent of measuring
dissimilarities between image patches, or distributions.

In practice, given the region to be inpainted and a uniform sampling
rule along its borders a number of regions are considered centred at the
boundary points. One then applies a random perturbation on the position of
the centre of the rectangles. Given a new position and the new characteristics
the quadratic distance between the new rectangle and the one of the origin is
computed and used to update the weight of the particle. These weights guide
the re-sampling process (more samples for particles with important weights)
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as well as the random perturbations (inversely proportional to these weights).
Upon certain number of iterations, a fraction of the particles having the best
weights is retained and superimposed to the region to be inpainted.

One now can consider the optimization of such a cost function to address
inpainting. Now that candidate seeds have been determined, we have to find
which pixel for each corresponding seed position will finally be pasted in the
output reconstructed area. The objective function will be minimized through
a combinatorial approach based on the graph-cut framework [7].

4 α-Expansion Combinatorial Optimization

Let us first introduce some basic graph terminology to facilitate the intro-
duction of the method.

Figure 4: Example of graph with a cut.

G=(ν, ε) is considered to be a graph that consists of a set of nodes ν and
a set of directed edges ε which connect the nodes to each other. Further-
more, one can assume by construction that such a graph contains two special
terminal nodes, the source, s, and the sink, t. All edges in the graph are as-
signed some non-negative weight or cost w(p,q). The cost of the directed edge
(p,q) may differ from its reverse edge (q,p). There are two types of edges: t-
links, which are edges connecting a non-terminal node with a terminal node,
and n-links, which are edges connecting two non-terminal nodes.

Figure 5: Graph construction and cut interpretation for a 3*3 pixels overlap-
ing area (figure from [24]).



10 Image Renaissance

Figure 6: Graph construction and cut interpretation over an old seam for a
3*3 pixels overlaping area (figure from [24]).

A s/t cut C, often just called cut, on a graph G is a partitioning of the
nodes in the graph into two subsets S and T with s in S and t in T as
shown in [Fig. (4)]. The cost of a cut C={S,T } is the sum of the costs of
the ”boundary” edges (p,q) such that p ∈ S and q ∈ T . The minimum cut
problem on a graph consists in finding the cut that has the minimum cost
among all possible cuts. It corresponds in finding the maximum flow going
from the source s to the sink t [15]. The min-cut/max flow principle states
that the maximum flow from s to t saturates a set of edges in the graph
creating a partition of the nodes {S,T } that corresponds to a minimum cut.
One can find in the literature [6] numerous polynomial time algorithms exist
solving the min-cut/max-flow problem. ”Augmenting path”methods like the
one considered in this paper [7] and ”push-relabel” methods [17] is the most
prominent categorization of these algorithms.

The α-expansion algorithm [7] consists of an iterative process that often
converges to a local minimum through successive bin cuts. Within each step,
among the n possible labels (which represent in fact copies oh the input im-
age with an offset corresponding to the one given in the seed selection), the
one corresponding to the seed having the best weight is selected and a cut
that is optimal between this label and the actual output is computed. To
this end, a graph is constructed in the following fashion (as shown in [Fig.
5]):
- one node is created for each pixel position in the overlaping area between
the shifted image and the actual output,
- two extra nodes, the terminals, representing respectively the shifted image
and the actual output
- for each couple of nodes which are neighbours in 4-connexity, an undirected
n-link (which is equivalent to two directed edges in opposite directions) is
added between the two nodes and weighted with the cost function ρ() intro-
duced in section 2 (where N (x) is a few pixels on the same line than the
couple considered)
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- undirected t-links are added for each pixel on the border of the overlap-
ing area, connecting the corresponding node to the terminal representing the
type of data next to the area
- extra nodes are inserted, with two n-links and one t-link at each ”old bound-
ary” edge of the partition, instead of the classical edge explained before, as
shown in [Fig. (6,7)]

Figure 7: Graph construction and cut interpretation over an already com-
puted image A (figure from [24]).

Once the graph is constructed, the graphcut algorithm is applied. The cut
give us the boundary which offers the best transition between the two patches.
So the result gives for each pixel if we have to copy the pixel corresponding
to the label we are trying to paste or if we keep the actual one. If the pixel
from the zone to be inpainted is still empty, the one from the label is directly
copied. Then, the output image is updated between successive cuts. Such a
sequential application of the method, is shown in [Fig. (8,9)].
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(1)

(2)

(3)
(a) (b) (c)

Figure 8: Reconstruction of (1) Monty, (2) Charete, (3) Japanese animation
image; (a) input image, (b) Optimal partition, (b) reconstructed image (the
images are courtecy [3]).

5 Discussion
In this paper we have introduced a graph-based combinatorial approach to
image renaissance. Such a method is based on the concept of stitching,
where multiple candidates patches are superimposed to the missing segment
forming a multi-source labelling problem solvable by graphs. Distances from
the borders of the inpainted region are considered to introduce the notion
of time where image completion is done in a progressive fashion. Segments
of the inpainted region to which image information is present in their lo-
cal neighbourhood are reconstructed first, moving gradually to areas where
the inference problem is completely ill-posed. Very promising experimental
results demonstrate the potentials of our approach as shown in [Fig. (8,9)].

Computational complexity is the main limitation of the proposed frame-
work. The cost is polynomial to the number of candidate seeds and therefore
particular attention is paid on the selection of seeds. Extended neighbour-
hood systems can also be considered to further impose continuity on the
reconstruction process while the use of Graphic Processing Units to acceler-
ate the process is also a promising direction.
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(1)

(2)
(a) (b) (c)

Figure 9: Reconstruction of (1) photo, (2) Micro; (a) input image, (b) Opti-
mal partition, (b) reconstructed image (the images are courtecy [3]).

References

[1] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera. Filling-in by
Joint Interpolation of Vector Fields and Grey Levels. IEEE Transactions on Image
Processing, 10:1200–1211, 2001.

[2] C. Ballester, V. Caselles, and J. Verdera. Disocclusion by Joint Interpolation of
Vector Fields and Gray Levels. Multiscale Modeling and Simulation, 2:80–123, 2003.

[3] M. Bertalmio, G. Sapiro, L.-T. Cheng, and S. Osher. Image Inpainting. In ACM
SIGGRAPH, pages 417–424, 2000.

[4] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure and texture
image inpainting. IEEE-TIP, 12(8):882–889, 2003.

[5] J. Besag. On the statistical analysis of dirty images. Journal of Royal Statistics
Society, 48:259–302, 1986.

[6] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-
Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26:1124–1137, 2004.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via
Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23:1222–1239, 2001.



14 Image Renaissance

[8] T. Chan and J. Shen. Mathematical Models of Local Non-texture Inpaintings. SIAM
Journal on Applied Mathematics, 62:1019–1043, 2001.

[9] T. Chan and J. Shen. Non-texture Inpaintings by Curvature-driven Diffusions (CDD).
Journal of Visual Communication and Image Representation, 12(4):436–449, 2001.

[10] P. Chou and C. Brown. The theory and practice of bayesian image labeling. Inter-
national Journal of Computer Vision, 4:185–210, 1990.

[11] A. Doucet, J. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

[12] A. Efros and W. Freeman. Image Quilting for Texture Synthesis and Transfer. In
Proc. SIGGRAPH, ACM Press, pages 341–346, 2001.

[13] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In IEEE
International Conference on Computer Vision, pages 1033–1038, 1999.

[14] S. Esedoglu and J. Shen. Digital Inpainting Based on the Mumford-Shah-Euler Image
Model. European J. Appl. Math., 13:353–370, 2002.

[15] L. Ford and D. Fulkerson. Flows in Networds. Princeton University Press, 1962.

[16] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6:721–741, 1984.

[17] A. Goldberg and R. Tarjan. A New Approach to the Maximum Flow Problem. Journal
of the Association for Computing Machinery, 35:921–940, 1988.

[18] N. Gordon. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.
IEE Proceedings, 140:107–113, 1993.

[19] N. Gordon. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering.
Statistics and Computing, 10:197–208, 2000.

[20] N. Gordon. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian
Bayesian Tracking. IEEE Transactions on Signal Processing, 50:174–188, 2002.

[21] D. Heeger and J. Bergen. Pyramid-Based Texture Analysis/Synthesis. In Proceedings
of ACM SIGGRAPH 95, ACM Press, pages 229–238, 1995.
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