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Abstract

In this report we propose a novel - assumption-free on the noise model - tech-
nique based on random walks for image enhancement. Our method explores mul-
tiple neighbors sets (or hypotheses) that can be used for pixel denoising, through a
particle filtering approach. This approach associates weights for each hypotheses
according to its relevance and its contribution in the denoising process. Toward
accounting for the image structure, we introduce perturbations based on local sta-
tistical properties of the image. In other words, particle evolution are controlled
by the image structure leading to a filtering window adapted to image contents.
Promising experimental results and comparison with the state-of-the-art methods
demonstrate the potential of such an approach





Résumé

Dans le présent rapport, nous proposons une nouvelle technique de restauration
d’images qui s’appuie sur les marches aléatoires et sans hypothèses sur le modèle
du bruit. Notre méthode examine différents ensembles de voisins (hypothèses)
qui pourront être utilisés pour le débruitage d’un pixel donnée, en utilisant les
filtres à particules. Cette approche associe des poids à chaque hypothèse suivant
sa pertinence et sa contribution dans le débruitage. Afin de prendre en compte les
structures de l’image, nous introduisons des perturbations qui s’appuient sur des
propriétés statistiques locales de l’image. En d’autres termes, l’évolution d’une
particule est régie par la structure de l’image pour aboutir à une fenêtre de fil-
trage adaptée au contenu de l’image. Des résultats expérimentaux prometteurs et
la comparaison avec l’état de l’art montrent le potentiel de notre approche.
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1 Introduction
In spite of the progress made in the field of image denoising, its still an open issue.
In fact, natural images are mixtures of various types of information such as tex-
ture, small details, noise, fine structure and homogeneous regions and this makes
image filtering a crucial and challenging task. Ideally, a denoising technique must
preserve all image element except noise.

Prior art in image denoising consists of methods of various complexity. Lo-
cal filter operators, image decomposition in orthogonal spaces, partial differential
equations as well as complex mathematical models with certain assumptions on
the noise model have been considered. The sigma filter method [15], the bilat-
eral [22] filter, morphological operators [25] and the mean shift algorithm [5] are
efficient local approaches to image denoising. The first two approaches compute
a weighted average of the pixel neighborhood where weights reflects the spatial
distance between pixels and also the difference between their intensities. Such
methods account to a minimal extend for the image structure and introduce strong
bias in process through the selection of the filter operator bandwidth.

Image decomposition in orthogonal spaces like wavelets [17], splines, fourier
descriptors and harmonic maps is alternative to local filtering. Images are repre-
sented through a class of invertible transformations based on an orthogonal basis.
Filtering consists of modifying the coefficients of the transformation space where
often the most important ones eliminated. Reconstruction of the image using the
new set of coefficients leads to natural denosing. In their origin such methods
failed to preserve boundaries a limitation that has been addressed through more
careful selection of the orthogonal basis driven from the image structure [6, 13].
Such techniques have good performance when dealing with edges but they fail to
preserve small details and texture.

Partial differential equations[1], higher order nonlinear operators [2], and func-
tional optimization [19, 21, 23] have been also considered to address image de-
noising. The anisotropic diffusion [20] was a first attempt to incorporate image
structure in the denosing process. Despite numerous advantages, theoretical jus-
tification [3] and numerous provisions of such a method one can claim that it
remains myopic and cannot deal with image textures. The mumford-shah frame-
work [19], the total variation minimization [21], the Beltrami flow [12], and other
cost functionals of higher order [2] make the assumption that the image consists of
a noise-free smooth component and the oscillatory pattern which corresponds to
the random noise. Within such a concept constraints at limited scale are also intro-
duced and image is reconstructed through the lowest potential cost function, that
is often recovered in an iterative fashion through the calculus of variations. In the
most general case such cost functions are not convex and therefore the obtained
solution could correspond to a local minimum. Such methods are also myopic and
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still fail to account for texture patterns despite recent advances [24].
In order to account for image structure [18] an effort to understand the behav-

ior of natural images when seen through a set of orientation and scale selective
band-pass operators was made [14, 16]. Central assumption on this effort was that
images exhibit differentially Laplacian statistics [16]. Such information is critical
to an image denoising approach since it suggests the right way to regularize the
problem and design the most efficient algorithm. Despite promising results, such
simplistic modeling often fails to capture dependencies in a larger scale as well as
account for the presence of repetitive patterns like texture.

To conclude, traditional/state-of-the art techniques are often based on restor-
ing image values based on local smoothness constraints within fixed bandwidth
windows where image structure is not considered. Consequently a common con-
cern for such methods is how to choose the most appropriate bandwidth and the
most suitable set of neighboring pixels to guide the reconstruction process. In this
context, the present work proposes a denoising technique based on multiple hy-
potheses testing. To this end, the reconstruction process is guided from multiple
random walks where we consider many possible neighboring sites in the image
and through a particle filtering process, we track the most suitable ones. Further-
more, image structure at a variable local scale is considered through a learning
stage that consists of recovering probabilistic densities capturing co-occurrences
of visual appearances at scale spaces. Kernels of fixed bandwidth are used to
approximate such individual complex models for the entire visual spectrum. Ran-
dom perturbations according to these densities guide the ”trajectories”of a discrete
number of walkers, while a weighted integration of the intensity through the ran-
dom walks leads to the image reconstruction. Such a method is presented in [Fig.
(1)].

The reminder of this document is organized in the following fashion; in sec-
tion 2 we discuss the co-occurrences of image structure learning. Random walks
and particle filters are presented in section 3, section 4 will be devoted to the ap-
plication of the particle filtering to denoising as well as some experimental results
and comparisons with the state of the art methods . Finally, we conclude in section
5.

2 Statistics of Natural Images
Understanding visual content has been a constant effort in computer vision with
applications to image segmentation, classification, retrieval and coding. Statistical
modeling of images aims to recover contextual information at a primitive stage of
visual processing chain. Co-occurrence matrices [11] have been a popular method
to classification and segmentation of texture images.
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Figure 1: Overview of Random Walks, Constrained Multiple hypotheses Testing
and Image Enhancement.

Such a matrix is defined by a distance and an angle, and aim to capture spatial
dependencies of intensities. The formal mathematical definition of an element
(m,n) for a pair (d, θ) is the joint probability on the image that a m-valued pixel
co-occurs with a n-valued pixel, with the two pixels are separated by a distance d
and an angle θ:

Cd,θ(m, n) = p(x,y)∈Ω(m,n)
(
I(x) = m, I(y) = n,y − x = deiθ

)

with I being the observed image and Ω its domain. In the case of image denoising,
the diagonal values of this matrix are of significant importance since implicitly
they provide information on the geometric structure of the image. Inspired by
such a concept, an intelligent denoising algorithm should be able to extract the
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most important correlations of local structure from the entire image domain, that
is an ill-posed problem. Let us assume the absence of knowledge on the noise
model. Then, in order to encode image structure we should seek for an estimate
of the posterior

p(d, θ,x) = pdf(
{
(d, θ,x), where x ∈ Ω, I(x) = I(x + deiθ);

}
)

that models cross-dependencies at the pixel level. The estimation of such posterior
at a local scale in particular when modeling noisy images is an ill-posed problem
with enormous complexity. If we assume that images often contain repetitive
structures, one can ignore the spatial parameter of such a pdf and seek for an
estimate of a global density that captures co-dependencies at global scale, or

pf (d, θ) = pdf(
{
(d, θ) where x ∈ Ω, I(x) = I(x + deiθ) = f

}
)

To account for pixel values corrupted by noise, the constraint of exact matching
could be relaxed , leading to:

pf,s(d, θ) = pdf(
{
(d, θ) where x ∈ Ω, I(x) = f,

[
δ(x,x + deiφ) < ε

]
and [d < s]

}
)

where s is the scale considered for the pdf computation and δ(; ) is a metric that
reflects similarity between to pixels in the image. This metric can be a simple
distance such as the L1 or the L2 norm or more complex measure like correlation,
histogram matching, mutual information, etc. In our experiments, we integrated
the local variance into the pdf expression. In fact local variance (noted σ(.)) is a
simple primitive capable of describing texture at small scales. The new formula-
tion of pdf is then as follows:

pf,σ,s(d, θ) =pdf({(d, θ) where x ∈ Ω, I(x) = f,[
δ(x,x + deiθ) < ε1

]
;
[
η(σ(x), σ(x + deiθ)) < ε2

]
and [d < s]

}
)

As far as scale is concerned, different methods can be used to self-determine the
scale like in the case of co-occurrence matrices. In the most general case we can
assume scales of variable length that are self-adapted to the image structure. One
can pre-estimate such pdf from the image using its empirical form.

However, pf,s(d, θ) aims to capture information of different structure, it de-
scribes spatial relation between similar patches in the image. Therefore, pf,s(d, θ)
is highly non-linear and its approximation using standard assumptions like mix-
ture of gaussians is highly unrealistic. Non-parametric kernel-based density ap-
proximation strategies [26] like parzen windows is an emerging technique to model
highly non-linear structures.
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(i)

(ii)

Figure 2: Two pdf distribution pf,σ(d, θ) for different values of f ans σ (top(f =
39, σ = 11.67), bottom(f = 96, σ = 3.55), and sample generation according to
these pdf (red pixel)for two different positions

Let {xi}M
i=1 denote a random sample with probability density function p. The

fixed bandwidth kernel density estimator consists of:

p̂(x) =
1

M

M∑
i=1

KH (x− xi) =
1

M

M∑
i=1

1

‖H‖1/2
K

(
H−1/2(x− xi)

)

where H is a symmetric definite positive - often called a bandwidth matrix - that
controls the width of the kernel around each sample point xi. Gaussian kernels are
the most common selection of such an approach and that is what was considered in
our case to approximate pf,s(d, θ). Once such pdf has been constructed from the
image, we are able for a given image position x and an observation (f = I(x),σ )
to generate a number of hypotheses for the most prominent position of the related
image structure ([Fig. 2)].

One can consider now the problem of image denoising for a given pixel as
a tracking problem in the image domain. Thus, given a starting position (pixel
itself), the objective is to consider a feature vector that upon its successful prop-
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agation along similar image structure, is able to remove and recover the original
image value. To this end, we define

• a feature vector, that defines the current state of the reconstruction process
st,

• an iterative process to update the density function, to predict the next state,

• a measure of quality of a given hypothesis (feature vector) with respect to
the image data.

with
[
st = (xt, Î(x)

]
being the state vector at a given time t. This state vector

corresponds to the candidate site than can be used in filtering process and the
reconstructed value induced by this site. The statistical interpretation of such an
objective refers to the introduction of a probability density function (pdf) that uses
previous states to predict possible new positions and image features to evaluate the
new position. The multiple hypotheses generation could be done in a number of
fashions. Sequential Monte Carlo is are well known techniques that associate
evolving densities to the different hypotheses, and maintains a number of them.
Particle filters are popular techniques used to implement such a strategy.

3 Bayesian Tracking, Particle Filters & Multiple hy-
potheses Testing

The Bayesian tracking problem can be simply formulated as the computation of
the present state st pdf of a system, based on observations from time 1 to time t
z1:t: p(st|z1:t). Assuming that one can have access to the priori pdf p(st−1|z1:t−1),
the posteriori pdf p(st|z1:t) can be computed from Bayes’ rule:

p(st|z1:t) =
p(zt|st)p(st|z1:t−1)

p(zt|z1:t−1)
,

where the prior pdf is computed via the Chapman-Kolmogorov equation

p(st|z1:t−1) =

∫
p(st|s1:t−1)p(st−1|z1:t−1)dst−1,

and
p(zt|z1:t−1) =

∫
p(zt|st)p(st|z1:t−1)dst−1

The recursive computation of the priori and the posteriori pdf leads to the exact
computation of the posterior density. Nevertheless, in practical cases, it is impos-
sible to compute exactly the posterior pdf p(st|z1:t), which must be approximated.
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Particle filters, which are sequential Monte-Carlo techniques, estimate the
Bayesian posterior probability density function (pdf) with a set of samples. Se-
quential Monte-Carlo methods have been first introduced in [9, 27]. For a more
complete review of particle filters, one can refer to [10, 7].

Particle filtering methods approximate the posterior pdf by M random state
sample {sm

t ,m = 1..M} associated to M weights {wm
t ,m = 1..M}, such that

p(st|z1:t) ≈
M∑

m=1

wm
t δ(st − sm

t ).

Thus, each weight wm
t reflects the importance of the sample sm

t in the pdf.
The samples sm

t are drawn using the principle of Importance Density [8], of
pdf q(st|sm

1:t, zt), and it is shown that their weights wm
t are updated according to

wm
t ∝ wm

t−1

p(zt|sm
t )p(sm

t |sm
t−1)

q(sm
t |sm

t−1, zt)
. (1)

This equation shows that particle weights are updated using two mainly informa-
tions : the observation pdf which reflects the likelihood of seeing an observation
zt knowing the state st and the transition model which control the evolution of a
particle state. The sampling importance resampling algorithm (SIR) consists in
choosing the prior density p(st|st−1) as importance density q(st|sm

1:t, zt). Doing
so, equation (1) becomes simply

wm
t ∝ wm

t−1p(zt|sm
t ), (2)

To sum up particle filtering consists of three main steps:

• particle drawing according the transition law p(sm
t |sm

t−1)

• computation of the likelihood of observations generated by the particle p(zm
t |sm

t )

• weight updating according to wm
t ∝ wm

t−1p(zt|sm
t )

After several steps a degeneracy issue occurs, such that all weights but few be-
come null. In order to keep as many samples as possible with respectful weights,
a resampling is necessary. Different resampling processes exist. The SIR algo-
rithm consists in selecting the most probable samples in a random way, potentially
selecting several times the same sample.

In a first step, the weights’ cumulative density function (cdf) {cj} would be
computed. Then, the selection step would consist in choosing a random number
0 < r < 1, and finding the smallest j such that cj < r. The selected state would
then be sj

t . This selection would be repeated N times, to select N samples. Finally,
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Figure 3: Two examples of random walks where the origin pixel is on the border
(left) or in an homogeneous region (right)

a random vector would be added to each one of these samples. The SIR algorithm
is the most widely used resampling method because of its simple formulation, its
easy implementation and the fact that fewer samples are required, and thus the
computational cost may be reduced with respect to other resampling algorithms.
An example of propagation of multiple hypotheses is shown in the figure 3 for
two different origin pixels.

4 Random Walks and Image Denoising

We now consider the application of such non linear model to image denoising.
Thus, given an origin pixel (x) reconstruction is equivalent to recovering a num-
ber of ”‘random”’ positions (x = x0,x1, ...,xτ ) with similar properties to x to
reconstruct the corrupted origin value (I(x)). The set of final trajectories of each
particle and their corresponding weights will represent the ”‘filtering window”’.
To this end, the use of ”‘constrained”’ multiple hypotheses will be considered.
This approach requires the definition of a perturbation model as well as a likeli-
hood measure that reflects the contribution of a trajectory to the denoising process.

4.1 Likelihood measure

Measuring similarities between image patches has been a well studied problem
in computer vision. In the case of denoising an ideal filtering approach should
consider pixels with the exact same value. Within the proposed approach filtering
is done in a progressive fashion and therefore a need exists to measure the con-
tribution of a new element in the filtering process. Parallel to that, each particle
corresponds to a random walk where a certain number of pixels have been selected
and contribute to the denoising process. Therefore, we define two metrics, one that



CERTIS R.R.05-18 9

accounts for the quality of potential additions and one for the intra-variability of
the trajectories.

• The L1 error-norm between local neighborhoods centered at the current po-
sition xt and at the origin pixel x.

Dsim(t) =
1

(2W + 1)2

∑

v∈[−W,W ]×[−W,W ]

|I(x + v)− I((xt + v)|

where W is the bandwidth which must be carefully selected to get a reliable
measure of similarity while being computationally efficient.

• In order to account for the intra-variability of the trajectories, we consider
the variance, centered at the origin value,

Dintra(t) =
1

t

t∑
τ=0

(I(xτ )− I(x))2

that measure the ”uniformity” of the trajectory and could also be determined
within a larger neighborhood (not at the pixel level). This terms insures
edges and fine structure enhancement since random walks with small intra-
variability are favored.

These two metrics are considered within an exponential function to determine the
importance/contribution of a new sample under consideration given the prior state
of the walk.

wt = e
−Dsim(t)+Dintra(t)

2σ2
w (3)

The next step consists of defining an appropriate strategy for samples perturbation.

4.2 Perturbation Model & Online Adaptation

Within the first stage of our approach we have introduced the notion of learning
image structure statistics pf,σ(; ). Such a distribution can be used to guide the
perturbation model at a given time t,

[
pI(xt),σ(I(xt)) (; )

]
.

During the construction of pf,σ(d, θ) information from different structural ori-
gins was used. Pixels, image regions or image structure with similar values (f, σ)
often correspond to different spatial-driven local structure. On the other hand,
upon completion of the filtering process and given the constraint of local pertur-
bations, more and more structural information are added to the ”‘random”’ walk.
It is adequate to use such information to update the non-parametric form of the
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pf,σ(d, θ). Simple forgetting mechanisms can be used to update such density ac-
cording to :

pt
f,σ(π) = α

1

Mp

Mp∑
i=1

KH (π − πi)

︸ ︷︷ ︸
prior density

+(1− α)
1

t

t∑
τ=0

KH(wt) (π − π̂τ )

︸ ︷︷ ︸
online local density

(4)

where Mp is the number of perturbation samples, π̂ = (d̂, θ̂) is the perturbation
that must be applied to a particle during the transition step, and wt is the weight
associated to it. This leads to a variable bandwidth kernels where perturbations
of limited interest do not contribute to the evolving density. In other words in
this transition pdf, the first term of the expression corresponds to prior density
introduced in section 2 while the second is an update term which learns the most
interesting perturbations and encodes them in the pdf formulation.

4.3 Implementation and Validation
In this section we will be concerned about the application of the particle filtering
process to denoising. To this end, for each pixel x of the image, we generate N
number of particles by applying N perturbations to the initial position x. Then,
each particle is propagated using a perturbation driven from the conditional distri-
bution of the image statistics described by equation (4). The process is repeated
for (T) iterations. In each step of the process, we associate to each random walk a
weight according to the likelihood measure defined in expression (3). We define
then the walk value Îm

t (x) as the average value along the walk. It corresponds to
the estimated value of the noisy pixel proposed by the ”random walk” m :

Îm
t (x) =

1

t

t∑
τ=0

I(xm
τ )

Linear combination of the hypotheses weights and the corresponding image de-
noised walk values is used to produce the current state of the process:

Ît(x) =
N∑

m=0

wm
t Îm

t (x)

In order to avoid degeneration of samples, as well as use with maximum efficiency
all hypotheses, a frequent resampling process is used to address such a demand. In
practice we use (N=30) particles, with (T=10) pixels contributing to each walk. To
illustrate the random walks filtering an overview of the hole process is presented
in figure 1
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Original Image Bilateral NLmean Random Walk
Canon 1Ds (ISO 1000) 13.55 13.16 13.32 12.9
Nikon D70 (ISO 1250) 22.60 22.44 22.6 22.42
Canon 1Ds (ISO 1250) 14.16 13.86 14.16 13.69
Nikon D70 (ISO 1600) 23.35 23.24 23.35 23.21
Canon 300D(ISO 1600) 17.94 17.7 17.94 17.54

Table 1: Method performance in noise reduction of calibration pattern relative
to different digitals cameras; values correspond to the reduction of the standard
deviation relative to a uniform patch.

Towards the validation of the method, we used images of unknown noise mod-
els and have compared our method with well known filtering techniques such as
the bilateral filter [22] and the Non Local Mean [4] approach. Some qualita-
tive results and comparisons are shown in [Fig. (4 and 5)]. As for quantitative
comparaison, number of methods have been used in the literature for such com-
parisons, given the absence of knowledge on the noise model we have considered
calibration patterns and studied the behavior of the tested approaches on these
patterns when observed from different digital cameras. We focus on the noise
reduction on these patterns which is equivalent to the reduction of the standard
deviation relative to a uniform patch. Table 4.3 shows the performance of each
filtering technique in terms of noise reduction for different digital camera mod-
els. Considering this criteria, results show that our method outperforms the other
techniques. This is explained by the fact that in absence of texture or structure
the Random walk acts as an isotropic filtering. The bilateral filter consider the
pixel location while denoising which limit the influence of distant pixel in the fil-
tering process. The non local mean,uses to compute neighborhood similarity the
L2 distance which is more sensitive to outliers then the L1 distance we use.

As for qualitative results,we selected for each method the most suitable param-
eters that gives the best compromise between noise reduction and detail preserv-
ing. If we consider the method noise images which corresponds to the difference
between the original and the filtered image (see fig 4), we notice that the random
walk filtering produces better results than the bilateral filtering in terms of texture
and small details preserving. This is explained by the fact that in our approach
we make a structure tracking and we integrate information about image statistics
in the model. The NL mean technique achieves the best results in term of small
detail preserving since its method noise contains less image information then the
two other techniques. This is due to the fact that the NLmean algorithm scans all
image pixels to select the best candidate while denoising a given pixel and this
make it very slow in terms of computation time.
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(a) (b)

(c) (d)

Figure 4: Original image (a) and method noise for Bilateral filtering (b) , Random
walk (c) , NLmean (d)

5 Conclusions

In this paper we have proposed a novel technique for image filtering. The core
contribution of our method is the selection of an appropriate walk in the image
domain towards optimal denoising. Such concept was implemented in a non-
exclusive fashion where multiple hypotheses are maintained. The use of monte-
carlo sampling and particle filters was considered to inherit such a property in
the method. Furthermore, inspired by co-occurrence matrices we have modeled
global image structure towards optimization on the selection of trajectories of the
multiple hypotheses concept. To further adapt the method to the image structure
such modeling was updated on line using local structure. Promising experimental
results demonstrate the potentials of our approach.
Computational complexity is a major limitation of the method. The use of smaller
number of hypotheses could substantially decrease the execution time. Improving
the learning stage and guiding the particles to the most appropriate directions is
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a short term research objective. To this end, we would like to provide techniques
capable of selecting the scales of each operator. Furthermore, we would like to
consider kernels of variable bandwidth when recovering the non-parametric form
of the learned distribution that are more efficient to capture image structure. More
long term research objectives refer a better propagation of information within tra-
jectories. Particle filters is a fairly simple approach that mostly propagates the
mean value and the weights. The propagation of distributions can better cap-
ture the importance of the trajectories as well as the effect of new additions. In
addition to that, geometric constraints on the ”‘walks”’ could also improve the
performance of the method in particular when texture is not present.
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Figure 5: Results of random walks filtering on natural images where texture is
corrupted by noise; (i) Input image, (ii) Denoised Image.
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