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Abstract

In this paper, we present a new variational method
for multi-view stereovision and non-rigid three-dimensional
motion estimation from multiple video sequences. Our
method minimizes the prediction error of the shape and mo-
tion estimates. Both problems then translate into a generic
image registration task. The latter is entrusted to a similar-
ity measure chosen depending on imaging conditions and
scene properties. In particular, our method can be made
robust to appearance changes due to non-Lambertian ma-
terials and illumination changes. It results in a simpler,
more flexible, and more efficient implementation than exist-
ing deformable surface approaches. The computation time
on large datasets does not exceed thirty minutes. Moreover,
our method is compliant with a hardware implementation
with graphics processor units. Our stereovision algorithm
yields very good results on a variety of datasets including
specularities and translucency. We have successfully tested
our scene flow algorithm on a very challenging multi-view
video sequence of a non-rigid scene.

1. Introduction

Recovering the geometry of a scene from several images
taken from different viewpoints, namely stereovision, is one
of the oldest problems in computer vision. More recently,
some authors have considered estimating the dense non-
rigid three-dimensional motion field of a scene, often called
scene flow [16], from multiple video sequences. Both prob-
lems require to match different images of the same scene.
This is a very difficult task because a scene patch generally
has different shapes and appearances when seen from dif-
ferent points of view and over time. To overcome this diffi-
culty, most existing stereovision and scene flow algorithms
rely on unrealistic simplifying assumptions that disregard
either/both shape/appearance changes.

The oldest and most naive assumption about the photo-
metric properties of the scene is brightness constancy. It

only applies to strictly Lambertian scenes and requires a
precise photometric calibration of the cameras. Yet it is
still popular in the stereovision literature. It motivates the
multi-view photo-consistency measure used in voxel color-
ing, space carving [7], and in the deformable mesh method
of [2]. Similarly, the variational formulation of [14] relies
on square intensity differences. In a later paper [13], the
same authors model the intensity deviations from brightness
constancy by a multivariate Gaussian. However, this does
not remove any of the severe limitations of this simplistic
assumption.

As regards scene flow estimation, many methods [18, 1,
8] use the spatio-temporal derivatives of the input images.
Due to the underlying brightness constancy assumption and
to the local relevance of spatio-temporal derivatives, these
differential methods apply mainly to slowly-moving scenes
under constant illumination.

For a better robustness to noise and to realistic imaging
conditions, similarity measures embedded in stereovision
and scene flow algorithms have to aggregate neighborhood
information. In return, they are confronted with geomet-
ric distortion between the different views and the different
time instants. Some stereovision methods disregard this
difficulty and use fixed matching windows. The underly-
ing assumption is the fronto parallel hypothesis: the cam-
era retinal planes are identical and the scene is an assembly
of planes parallel to them. Some methods go beyond this
hypothesis by taking into account the tangent plane to the
object [3, 6, 2, 4]. For example, [6] allows to estimate both
the shape and the non-Lambertian reflectance by minimiz-
ing the rank of a radiance tensor. The latter is computed by
sampling image intensities on a tessellation of the tangent
plane. In such approaches, the matching score depends not
only on the position of the surface but also on its orienta-
tion. Unfortunately, this first-order shape approximation re-
sults in a very complex minimizing flow involving second-
order derivatives of the matching score. The computation
of these terms is tricky, time-consuming and unstable, and,
to our knowledge, all authors have resigned to ignore them.

In Section 2, we propose a common variational frame-



work for stereovision and scene flow estimation which cor-
rectly handles projective distortion without any approxima-
tion of shape and motion and which can be made robust to
appearance changes. The metric used in our framework is
the ability to predict the other input views from one input
view and the estimated shape or motion. This is related to
the methodology proposed in [15] for evaluating the quality
of motion estimation and stereo correspondence algorithms.
But in our method, the prediction error is used for the esti-
mation itself rather than for evaluation purposes.

Our formulation is completely decoupled from the nature
of the image similarity measure used to assess the quality of
the prediction. It can be the normalized cross correlation,
some statistical measures such as the mutual information
[17], or any other application-specific measure. Through
this choice, we can make the estimation robust to camera
spectral sensitivity differences, non-Lambertian materials
and illumination changes. In Section 3, we detail two simi-
larity measures that can be used in our framework.

Our method processes entire images from which projec-
tive distortion has been removed, thereby avoiding the com-
plex machinery usually needed to match windows of differ-
ent shapes. Moreover, its minimizing flow is much simpler
than in [3, 6]. This results in elegant and efficient algo-
rithms. In Section 4, we describe our implementation and
we present our experimental results

2. Minimizing the Prediction Error

Our method consists in maximizing, with respect to
shape and motion, the similarity between each input view
and the predicted images coming from the other views. We
adequately warp the input images to compute the predicted
images, which simultaneously removes projective distor-
tion. Numerically, this can be done at a low computational
cost using texture-mapping graphics hardware (cf Section
4). For example, in the case of stereovision, we back-project
the image taken by one camera on the surface estimate, then
we project it to the other cameras to predict the appearance
of the other views. The closer the shape estimate is to the
actual geometry, the more similar the predicted images will
be to the corresponding input images, modulo noise, cali-
bration errors, appearance changes and semi-occluded ar-
eas. This is the core principle of our approach.

Interestingly, this can be formulated as a generic image
registration task. The latter is entrusted to a measure of im-
age similarity, chosen depending on imaging conditions and
scene properties. This measure is basically a function map-
ping two images to a scalar value. The more similar the
two images are, the lower the value of the measure is. We
incorporate this measure and a regularization term in an en-
ergy functional. Here we focus primarily on the design of
the matching term and we propose a basic regularization

term. To minimize our energy functionals, we use a gradi-
ent descent, embedded in a multi-resolution coarse-to-fine
strategy to decrease the probability of getting trapped in ir-
relevant local minima.

2.1. Stereovision

In the following, let a surface S ⊂ R
3 model the shape

of the scene. We note Ii : Ωi ⊂ R
2 → R

d the image
captured by camera i. The perspective projection performed
by the latter is denoted by Πi : R

3 → R
2. Our method

takes into account the visibility of the surface points. In the
sequel, we will refer to Si as the part of S visible in image i.
The reprojection from camera i onto the surface is denoted
by Π−1

i,S : Πi(S) → Si. With this notation in hand, the
reprojection of image j in camera i via the surface writes
Ij ◦ Πj ◦ Π−1

i,S : Πi(Sj) → R
d. We note M a generic

measure of similarity between two images.
The matching term M is the sum of the dissimilarity

between each input view and the predicted images coming
from all the other cameras. Thus, for each ordered pair of
cameras (i, j), we compute the similarity between Ii and
the reprojection of Ij in camera i via S, on the domain
where both are defined, i.e. Ωi ∩ Πi(Sj), in other words
after discarding semi-occluded regions:

M(S) =
∑

i

∑
j �=i

Mij(S) , (1)

Mij(S) = M |Ωi∩Πi(Sj)

(
Ii , Ij ◦ Πj ◦ Π−1

i,S

)
. (2)

Unlike several existing methods [3, 6, 2, 4], we do not fol-
low a minimal surface approach, i.e. our energy functional
is not an integral on the surface estimate. The minimal sur-
face approach mixes data fidelity and regularization, which
makes it difficult to tune the regularizing behavior, as dis-
cussed in [12]. In contrast, our energy functional is the sum
of a matching term computed in the images and of a user-
defined regularization term.

We now compute the variation of the matching term with
respect to an infinitesimal vector displacement δS of the
surface. Figure 1 displays the camera setup and our nota-
tions. Using the chain rule, we get

∂Mij(S + ε δS)

∂ε

∣∣∣∣
ε=0

=

∫
Ωi∩Πi(Sj)

∂2M(xi)︸ ︷︷ ︸
1×d

DIj(xj)︸ ︷︷ ︸
d×2

DΠj(x)︸ ︷︷ ︸
2×3

∂Π−1
i,S+ε δS(xi)

∂ε

∣∣∣∣∣
ε=0︸ ︷︷ ︸

3×1

dxi ,

where xi is the position in image i and D. denotes the Ja-
cobian matrix of a function.

When the surface moves, the predicted image changes.
Hence the variation of the matching term involves the
derivative of the similarity measure with respect to its sec-
ond argument, denoted by ∂2M . Its meaning is detailed in
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Figure 1. The camera setup and our notations.

Section 3. We then use a relation between the motion of
the surface and the displacement of the reprojected surface
point x = Π−1

i,S(xi):

∂Π−1
i,S+ε δS(xi)

∂ε

∣∣∣∣∣
ε=0

=
NT δS(x)

NT di
di ,

where di is the vector joining the center of camera i and x,
and N is the outward surface normal at this point. Finally,
we rewrite the integral in the image as an integral on the
surface by the change of variable dxi = −NT di dx/z3

i ,
where zi is the depth of x in camera i, and we obtain that
the gradient of the matching term is

∇Mij(S)(x) = −δSi∩Sj (x)

[
∂2M(xi)DIj(xj)DΠj(x)

di

z3
i

]
N ,

(3)
where δ. is the Kronecker symbol. As expected, the gradient
cancels in the regions not visible from both cameras. Note
that the term between square brackets is a scalar function.

The regularization term is typically the area of the sur-
face, and the associated minimizing flow is a mean curva-
ture motion. The evolution of the surface is then driven by

∂S

∂t
=


−λ H +

∑
i

∑
j �=i

δSi∩Sj ∂2M DIj DΠj
di

z3
i


 N , (4)

where H denotes the mean curvature of S, and λ is a posi-
tive weighting factor.

2.2. Scene flow

Two types of methods prevail in the scene flow litera-
ture. In the first family of methods [16, 18], scene flow is
constructed from previously computed optical flows in all
the input images. However, the latter may be noisy and/or
physically inconsistent through cameras. The heuristic spa-
tial smoothness constraints applied to optical flow may also
alter the recovered scene flow. The second family of meth-
ods [18, 1, 8] relies on spatio-temporal image derivatives.
These differential methods apply mainly to slowly-moving
Lambertian scenes under constant illumination.

Our method does not fall into any of these two cate-
gories. It directly evolves a 3D vector field to register the

input images captured at different times. It can recover large
displacements thanks to a multi-resolution strategy and can
be made robust to illumination changes through the design
of the similarity measure.

Let now St model the shape of the scene and It
i be the

image captured by camera i at time t. Let vt : St → R
3

be a 3D vector field representing the motion of the scene
between t and t + 1. The matching term F is the sum over
all cameras of the dissimilarity between the images taken at
time t and the corresponding images at t + 1 warped back
in time using the scene flow.

F(vt) =
∑

i

Fi(v
t) , (5)

Fi(v
t) = M

(
It

i , It+1
i ◦ Πi ◦ (Π−1

i,St + vt)
)

. (6)

Its gradient writes

∇TFi(v
t) = −δSt

i

NT di

z3
i

∂2M DIt+1
i DΠi . (7)

In this case, the regularization term is typically the har-
monic energy of the flow over the surface, and the cor-
responding minimizing flow is an intrinsic heat equation
based on the Laplace-Beltrami operator.

3. Some Similarity Measures

In this section, we present two similarity measures that
can be used in our framework: cross correlation and mu-
tual information [17]. Cross correlation assumes a local
affine dependency between the intensities of the two im-
ages, whereas mutual information can cope with general
statistical dependencies. We have picked these two mea-
sures among a broader family of statistical criteria proposed
in [5] for multimodal image registration. In the following,
we consider two scalar images I1, I2 : Ω ⊂ R

2 → R. The
measures below can be extended to vector (e.g. color) im-
ages by summing over the different components.

The minimizing flows given in Section 2 involve the
derivative of the similarity measure with respect to the sec-
ond image, denoted by ∂2M . The meaning of this deriva-
tive is the following: given two images I1, I2 : Ω → R

d,
we note ∂2M(I1, I2) the function mapping Ω to the row
vectors of R

d, verifying for any image variation δI:

∂M(I1, I2 + ε δI)

∂ε

∣∣∣∣
ε=0

=

∫
Ω

∂2M(I1, I2)(x) δI(x) dx . (8)

Cross correlation is still the most popular stereovision
matching measure. Most methods settle for fixed rectan-
gular correlation windows. In this case, the choice of the
window size is a difficult trade-off between match reliabil-
ity and oversmoothing of depth discontinuities due to pro-
jective distortion. In our method, we match distortion-free
images, so the size of the matching window is not related



to a shape approximation. The matter here is in how big a
neighborhood the assumption of affine dependency is valid.
Typically, non-Lambertian scenes require to reduce the size
of the correlation window, making the estimation less ro-
bust to noise and outliers. In our implementation, instead
of hard windows, we use smooth Gaussian windows. They
make the continuous formulation of our problem more ele-
gant and they can be implemented efficiently with fast re-
cursive filtering. Due to space limitations, we invite the
reader to refer to our technical report [10] for the full ex-
pressions of M and ∂2M in this case.

Mutual information is based on the joint probability dis-
tribution of the two images, estimated by the Parzen win-
dow method with a Gaussian of standard deviation β:

P (i1, i2) =
1

|Ω|

∫
Ω

Gβ (I1(x) − i1 , I2(x) − i2) dx . (9)

We note P1, P2 the marginals. Our measure is the opposite
of the mutual information of the two images:

MMI(I1, I2) = −
∫

R2
P (i1, i2) log

P (i1, i2)

P1(i1)P2(i2)
di1 di2 .

(10)
Its derivative with respect to the second image writes

∂2M
MI(I1, I2)(x) = ζ(I1(x), I2(x)) ,

ζ(i1, i2) =
1

|Ω| Gβ �

(
∂2P

P
− P ′

2

P2

)
(i1, i2) .

(11)

4. Experimental Results

We have implemented our method in the level set frame-
work [9], motivated by its numerical stability and its ability
to handle topological changes automatically. However, our
method is not specific to a particular surface model: an im-
plementation with meshes would be straightforward.

The predicted images can be computed very efficiently
thanks to graphics card hardware-accelerated rasterizing ca-
pabilities. In our implementation, we determine the visibil-
ity of surface points in all cameras using OpenGL depth
buffering, we compute the reprojection of an image to an-
other camera via the surface using projective texture map-
ping, and we discard semi-occluded areas using shadow-
mapping [11]. The bottleneck in our current implementa-
tion is the computation of the similarity measure. Since it
only involves homogeneous operations on entire images, we
could probably resort to a graphics processor unit based im-
plementation with fragment shaders.

4.1. Stereovision

Table 1 describes the stereovision datasets used in our
experiments. All are real images except “Buddha”. “Cac-
tus” and “Gargoyle” are courtesy of Pr. K. Kutulakos (Uni-
versity of Toronto). “Buddha” and “Bust” are publicly
available from the OpenLF software (LFM project, Intel).

Figure 2. Some images from the “Cactus”
dataset and our results.

Figure 3. Some images from the “Gargoyle”
dataset and our results.

We have used either cross correlation (CC) or mutual
information (MI). Both perform well on these complex
scenes. “Buddha” and “Bust” are probably the more chal-
lenging datasets: “Buddha” is a synthetic scene simulating
a translucent material and “Bust” includes strong speculari-
ties. However, cross correlation with a small matching win-
dow (variance of 4 pixels) yields very good results.

Using all possible camera pairs is not necessary since,
when two cameras are far apart, no or little part of the scene
is visible in both views. Consequently, in practice, we only
pick pairs of neighboring cameras. In all our experiments,
the initial surface is a coarse bounding box of the scene. We
show our results in Figures 2, 3, 4 and 5. For each dataset,
we display some of the input images, the ground truth when
available, then our results.

The overall shape of the objects is successfully recov-
ered, and a lot of details are captured: the stings of “Cac-
tus”, the ears and the pedestal of “Gargoyle”, the nose and
the collar of “Buddha”, the ears and the mustache of “Bust”.
A few defects are of course visible. Some of them can be
explained. The hole around the stick of “Gargoyle” is not
fully recovered. This may be due to the limited number of
images (16): some parts of the concavity are visible only
in one camera. The depression in the forehead of “Bust”
is related to a very strong specularity: intensity is almost



Name #Images Image size #Image pairs Measure Level set size Time (sec.)
Cactus 30 768 × 484 60 CC 1283 1670
Gargoyle 16 719 × 485 32 MI 1283 905
Buddha 25 500 × 500 50 CC 1283 530
Bust 24 300 × 600 48 CC 128 × 128 × 256 1831

Table 1. Description of the stereovision datasets used in our experiments.

Figure 4. Some images from the “Buddha”
dataset, ground truth and our results.

saturated in some images.
Finally, compared with the results of the non-Lambertian

stereovision method of [6] on the same datasets, our recon-
structions are significantly more detailed and above all our
computation time is considerably smaller. It does not ex-
ceed thirty minutes on a 2 GHz Pentium IV PC under Linux.

4.2. Stereovision + scene flow

We have tested our scene flow algorithm on a challeng-
ing multi-view video sequence of a non-rigid scene. The
“Yiannis” sequence is taken from a collection of datasets
that were made available to the community by P. Baker and
J. Neumann (University of Maryland) for benchmark pur-
poses. This sequence shows a character talking while rotat-
ing his head. It was captured by 22 cameras at 54 fps plus
8 high-resolution cameras at 6 fps. Here we focus on the 30
synchronized sequences at the lower frame rate to demon-
strate that our method can handle large displacements.

We have applied successively our stereovision and scene

Figure 5. Some images from the “Bust”
dataset, pseudo ground truth and our results.

flow algorithms: once we know the shape St, we compute
the 3D motion vt with our scene flow algorithm. Since St+
vt is a very good estimate of St+1, we use it as the initial
condition in our stereovision algorithm and we perform a
handful of iterations to refine it. This is mush faster than
restarting the optimization from scratch.

Figure 6 displays the first four frames of one of the in-
put sequence and our estimation of shape and 3D motion at
corresponding times. We successfully recover the opening
and closing of the mouth, followed by the rotation of the
head while the mouth opens again. Moreover, we capture
displacements of more than twenty pixels. Our results can
be used to generate time-interpolated 3D sequences of the
scene. See the Odyssée Lab web page for more results.



Figure 6. First images of one sequence of the
“Yiannis” dataset and our results.

5. Conclusion

We have presented a novel method for multi-view stere-
ovision and scene flow estimation which minimizes the pre-
diction error. Our method correctly handles projective dis-
tortion without any approximation of shape and motion, and
can be made robust to appearance changes. To achieve this,
we adequately warp the input views and we register the re-
sulting distortion-free images with a user-defined similarity
measure. We have implemented our stereovision method
in the level set framework and we have obtained results
comparing favorably with state-of-the-art methods, even on
complex non-Lambertian real-world images including spec-
ularities and translucency. Using our algorithm for motion
estimation, we have successfully recovered the 3D motion
of a non-rigid scene.
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