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Abstract

This paper tackles an important aspect of the variational
problems involving active contours, which has been largely
overlooked so far: the optimization by gradient flows. Clas-
sically, the definition of a gradient depends directly on the
choice of an inner product structure. This consideration is
largely absent from the active contours literature. Most au-
thors, overtly or covertly, assume that the space of admis-
sible deformations is ruled by the canonical L2 inner prod-
uct. The classical gradient flows reported in the literature
are relative to this particular choice. In this paper, we inves-
tigate the relevance of using other inner products, yielding
other gradient descents, and some other minimizing flows
not deriving from any inner product. In particular, we show
how to induce different degrees of spatial coherence into
the minimizing flow, in order to decrease the probability of
getting trapped into irrelevant local minima. We show with
some numerical experiments that the sensitivity of the ac-
tive contours method to initial conditions, which seriously
limits its applicability and its efficiency, is alleviated by our
application-specific spatially coherent minimizing flows.

1. Introduction

Many problems in computer vision can advantageously
be cast in a variational form, i.e. as a minimization of an en-
ergy functional. In this paper, we focus on variational meth-
ods dedicated to the recovery of contours. In this case, the
problem amounts to finding a contour which corresponds
to a global minimum of the energy. Unfortunately, in most
cases, the exact minimization of the energy functional is
computationally unfeasible due to the huge number of un-
knowns.

The graph cuts method is a powerful energy minimiza-
tion method which allows to find a global minimum or a
strong local minimum of an energy. In the last few years,

this method has been successfully applied to several prob-
lems in computer vision, including stereovision [10] and
image segmentation [2]. However, it has a severe limita-
tion: it cannot be applied to an arbitrary energy function
[11], and, when applicable, is computationally expensive.

Hence, in most cases, a suboptimal strategy must be
adopted. A common minimization procedure consists in
evolving an initial contour, positioned by the user, in the
direction of steepest descent of the energy. This approach,
known in the literature as active contours or deformable
models, was pioneered by Kass. et al. in [9] for the pur-
pose of image segmentation. Since, it has been applied in
many domains of computer vision and image analysis (im-
age segmentation [3], surface reconstruction [22], stereo re-
construction [6, 8, 18], etc.).

However, due to the highly non-convex nature of most
energy functionals, a gradient descent flow is very likely to
be trapped in a local minimum. Also, this local minimum
depends on the position of the initial contour. If the latter is
far from the expected final configuration, the evolution may
be trapped in a completely irrelevant state. This sensitiv-
ity to initial conditions seriously limits the applicability and
efficiency of the active contours method.

In the following we note Γ a codimension one contour
in R

n and E(Γ) the energy functional to be minimized. In
order to define the gradient of the energy functional, the first
step is to compute its Gâteaux derivatives in all directions,
i.e. for all admissible velocity fields v:

δE(Γ, v)
def
= lim

ε→0

E(Γ + εv) − E(Γ)
ε

. (1)

Then, we would like to pick the gradient as the direction
of steepest descent of the energy. However, it is not yet
possible at this stage: to be able to assess the steepness of
the energy, the deformation space needs additional struc-
ture, namely an inner product introducing the geometrical
notions of angles and lengths. This consideration is largely
absent from the active contours literature: most authors,
overtly or covertly, assume that the deformation space is



ruled by the canonical L2 inner product on Γ:

〈u, v〉L2 =
∫

Γ

u(x) · v(x)dx ,

where dx is the area element of the contour.
Here, for sake of generality, we model the space of ad-

missible deformations as an inner product space (F, 〈, 〉F ).
If there exists a vector u ∈ F such that

∀v ∈ F, δE(Γ, v) = 〈u, v〉F ,

then u is unique, we call it the gradient of E relative to the
inner product 〈, 〉F , and we note u = ∇F E(Γ). Clearly,
each choice of inner product yields its own gradient. This
is often neglected and most authors improperly refer to the
gradient of the energy. Thus, the classical gradient flows
reported in the literature (mean curvature flow, geodesic ac-
tive contours [3, 7, 19], etc.) are relative to the L2 inner
product.

A slightly different definition of the gradient, based on
a representation of the space of admissible surfaces as a
differential manifold, is proposed in [19]. However, this
definition requires the contours and the deformations to be
smooth, the energy functional to be differentiable, and the
deformation space to be a separable Hilbert space. Our def-
inition is more general since it only demands the existence
of the directional derivatives.

The gradient descent method consists in deforming an
initial contour Γ0 in the opposite direction of the gradient.{

Γ(0) = Γ0

dΓ
dt

= −∇F E(Γ)
(2)

The problem of the existence and the uniqueness of this
minimizing flow is out of the scope of this article. Indeed,
it is highly dependent on the properties of each particular
energy functional. If this evolution exists, it decreases the
energy:

dE(Γ)
dt

= −‖∇F E(Γ)‖2
F ≤ 0 .

The standard choice for F is the Hilbert space of
square integrable velocity fields L2(Γ, Rn) equipped with
its canonical inner product. Very few authors in the active
contours area have considered using other inner products,
whereas this is an established technique in image registra-
tion [20]. Very recently, in the context of shape represen-
tation and analysis, [12, 21] have shown that slightly mod-
ifying the L2 inner product allows to build well-behaved
metrics in the space of curves.

Minimizing flows not deriving from any inner product,
that is to say evolutions that decrease the energy, without
any gradient interpretation, have also been overlooked so
far. Note that any evolution fulfilling the condition

dE(Γ)
dt

=
〈
∇F E(Γ),

dΓ
dt

〉
F

≤ 0 (3)

is a candidate to solve the minimization problem. This idea,
proposed in [19], is applied by the same authors to the align-
ment of curve in images in [14]: a complicated term in the
gradient is safely neglected after checking that the evolution
still decreases the energy.

The spirit of our work is different. We do not focus either
on a specific inner product or on a particular energy func-
tional. We rather explore general procedures to build some
new inner products and to compute the associated gradi-
ents. We also address the design of non-gradient minimiz-
ing flows.

Our motivation is also different. Our primary concern in
this work is the sensitivity of the active contours method to
initial conditions. There are essentially two ways of deal-
ing with this problem: positioning the initial contour very
close to the expected final configuration, or using a mul-
tiresolution coarse-to-fine strategy, in other words running
the optimization on a series of smoothed and subsampled
contours and input data. In this paper, we pioneer a third
way to tackle the problem of unwanted local minima: the
careful design of the minimizing flow.

We do not modify the energy, hence the relief of the en-
ergy landscape and in particular the “number” of local min-
ima remains unchanged. But by using an evolution that fa-
vors certain types of directions, we expect to decrease the
probability of falling into unwanted energy basins.

Typically, in many applications, spatially coherent mo-
tions are to be preferred over erratic evolutions. For exam-
ple, in the tracking problem, the object of interest is likely to
have similar shapes in consecutive frames. So if we init the
contour with the result of the previous frame, it makes sense
to encourage the motions which preserve its overall appear-
ance. This way, it may be easier to dodge unexpected local
low-energy configurations. A traditional L2 gradient de-
scent definitely does not have this desirable property since
the L2 inner product completely disregards the spatial co-
herence of the velocity field.

The rest of this paper is organized as follows. In Sec-
tion 2, we carry out an abstract study of gradient and non-
gradient minimizing flows. In Section 3, we propose some
particular flows that yield different degrees of spatial co-
herence. Finally, in Section 4, we show with some numer-
ical experiments that the robustness of the active contours
method to local minima is improved by our application-
specific spatially coherent minimizing flows.

2. Abstract study

2.1. Designing new inner products

We suppose that the space F of admissible deformations
is initially equipped with the inner product 〈, 〉F . Then, for
any symmetric positive definite linear operator L : F → F ,



a new inner product can be defined by

〈u, v〉L = 〈Lu, v〉F . (4)

The following observation is central to our work: if
∇F E(Γ) exists and if L is invertible, then ∇LE(Γ) also
exists and we have

∇LE(Γ) = L−1∇F E(Γ) . (5)

The above procedure is of great practical interest because
it allows to upgrade any existing L2 gradient flow. However,
it is not completely general in the sense than all inner prod-
ucts cannot be expressed in this form. This construction
is illustrated in Subsections 3.1 and 3.2 by some particular
inner products yielding spatially coherent gradient flows.

2.2. Designing new minimizing flows

In this subsection, we follow the inverse approach. In-
stead of working on the inner product, we apply a linear
operator L : F → F to the gradient, and we study the prop-
erties of the resulting flow:

dΓ
dt

= −L ∇F E(Γ) . (6)

This naturally sets up a hierarchy among different types of
operators:

• if L is positive, the energy is non-increasing along the
flow (6). Indeed,

dE(Γ)
dt

= −〈∇F E(Γ), L∇F E(Γ)〉F ≤ 0 .

• if L is positive definite, the energy strictly decreases
along the flow (6) until a critical point of the original
gradient flow (2) is reached.

• if L is symmetric positive definite and invertible, the
flow (6) coincides with a gradient descent relative to
the inner product 〈, 〉L−1 , as defined in equation (4).

The third case is contained in Subsection 2.1. The second
case is illustrated in Subsection 3.3 by a Gaussian smooth-
ing of the gradient along the contour, in order to generate a
smoother minimizing flow.

3. Spatially coherent minimizing flows

In this section, we propose some minimizing flows yield-
ing different degrees of spatial coherence. We insist on the
fact that this spatial coherence has nothing to do with an
eventual regularity term in the energy functional. We do not

modify the energy, so the regularity constraint on the con-
tour remains unchanged. We modify the trajectory of the
minimizing flow, by favoring spatially coherent motions,
but this does not condition the regularity of the final con-
tour.

In the following, we make an intense use of differential
geometry. We refer the reader to [5] for the basic notions.

3.1. The H1 gradient flow

A first way to introduce a notion of spatial coherence is
to use an inner product that penalizes not only the length
of the velocity field, but also its variations along the con-
tour. To this end, we consider the canonical inner product
of the Sobolev space H1(Γ, Rn) of square integrable veloc-
ity fields with square integrable derivatives:

〈u, v〉H1 =
∫

Γ

u(x) · v(x)dx +
∫

Γ

∇Γu(x) · ∇Γv(x)dx ,

where ∇Γ denotes the intrinsic gradient on the contour. The
H1 inner product is related to the L2 inner product by equa-
tion (4) with L(u) = u − ∆Γu, where ∆Γ denotes the in-
trinsic Laplacian operator on the contour, often called the
Laplace-Beltrami operator.

As a result, ∇H1E is a smoothed version of ∇L2E
which can be obtained either by solving an intrinsic heat
equation with a data attachment term:

∆Γu = u −∇L2E , (7)

or by finding the optimum of:

arg min
u

∫
Γ

|∇Γu(x)|2dx +
∫

Γ

|u(x) −∇L2E(x)|2dx .

To sum up, using the H1 inner product instead of the L2

inner product leads to a smoother gradient flow.

3.2. Motion decomposition

Another simple and useful procedure to design new in-
ner products yielding spatially coherent flows, is to decom-
pose the deformation space into a sum of several mutually
orthogonal linear subspaces, and to apply different penalty
factors to the different types of motions. Typically, the
subspaces are chosen according to an application-specific
hierarchy of the motions. For example, rigid/non-rigid,
affine/non-affine, etc.

We suppose that such an orthogonal (with respect to
〈, 〉F ) decomposition of the deformation space F into N
closed linear subspaces is available:

F = F1 ⊥ · · · ⊥ FN .



Then a new inner product is derived from 〈, 〉F by applying
the procedure of Subsection 2.1 with

L =
N⊕

i=1

λi IdFi
,

where ∀i, λi > 0. The lower is λi, the shorter is the length
of the velocity fields of Fi, and the stronger will be this type
of motion in the new gradient flow.

Obviously, L is symmetric positive definite and invert-
ible. If ∇F E exists, so does ∇LE and

∇LE =
N∑

i=1

1
λi

ΠFi
∇F E , (8)

where ΠFi
denotes the orthogonal projection on the ith sub-

space. Of course, if all λi are equal to 1, ∇LE coincides
with ∇F E.

We apply this idea to two useful cases. In the first case,
we decompose the velocity field into a translation, an in-
stantaneous rotation, a rescaling motion and a non-rigid
residual. In the second case, we isolate the instantaneous
affine motion.

In the following, we note M(Γ) =
∫
Γ

dx the mass of
the contour (its length in 2D, its area in 3D, and so on) and
f =

(∫
Γ

f(x)dx
)
/M(Γ) the average of a scalar or vector

quantity on Γ. With this notation in hand, the centroid of
the contour writes x.

3.2.1 Translation, rotation and scaling

In this paragraph, we focus on the two-dimensional and
three-dimensional cases. The expressions below are for the
3D case, but can easily be adapted to 2D.

We note T , R and S the subspaces of the translations, the
instantaneous rotations around the centroid, and the scaling
motions centered on the centroid, respectively:

T =
{
u : x 
→ t | t ∈ R

3
}

,

R =
{
u : x 
→ (x − x) ∧ ω | ω ∈ R

3
}

,

S = {u : x 
→ s(x− x) | s ∈ R} .

These subspaces are mutually orthogonal for the L2 inner
product. We suppose that they are included in the space of
admissible deformations F , and that the latter is ruled by the
L2 inner product. We note G the orthogonal complement of
these subspaces: F = T ⊥ R ⊥ S ⊥ G. The orthogonal
projection of a velocity field u on T , R and S writes:

ΠT u(x) = u ,

ΠRu(x) = (x− x) ∧
∫
Γ

u(x) ∧ (x− x)∫
Γ
‖x− x‖2 ,

ΠSu(x) =

∫
Γ

u(x) · (x − x)∫
Γ
‖x − x‖2 (x− x) .

The new gradient is deduced from the L2 gradient by
equation (5) with

L−1 = Id+
(

1
λT

− 1
)

ΠT +
(

1
λR

− 1
)

ΠR+
(

1
λS

− 1
)

ΠS .

The weights λT , λR and λS are adapted to the user’s
needs in each particular application. For example:

• Boost rigid+scaling motions: λT , λR, λS � 1,

• Boost rigid motions: λT , λR � 1, λS = 1,

• Boost translations: λT � 1, λR = λS = 1.

3.2.2 Affine motion

We can apply this same idea to the subspace A of instanta-
neous affine motions:

A =
{
u : x 
→ Ax + b | A ∈ R

n×n, b ∈ R
n
}

.

The L2 orthogonal projection on this subspace writes:

ΠAu(x) = Ax + b ,

where

A =
[∫

Γ

u(x)(x− x)T

] [∫
Γ

(x− x)(x− x)T

]−1

,

b = u − Ax .

3.3. Intrinsic Gaussian smoothing

We apply the procedure of Subsection 2.2 to design a
smoothed version of the L2 gradient flow. To some extent,
it resembles the H1 gradient flow of Subsection 3.1. How-
ever, here, we apply an ad hoc procedure to the L2 gradient,
a Gaussian smoothing along the contour, without resorting
to an inner product.

We define a linear intrinsic smoothing operator which
may be seen as the counterpart on the contour of Gaussian
smoothing in R

n−1, by considering the solution ũ of the
intrinsic heat equation on Γ with initial condition u:{

ũ(., 0) = u
∂ũ

∂τ
= ∆Γ ũ

. (9)

We then note Lτ u its solution ũ(., τ) at time τ ≥ 0. We use
a flow (6) based on Lτ to drive the contour. In other words,
to get the new flow, we diffuse the L2 gradient isotropically
on the surface during a time τ . The larger is τ , the smoother
is the flow.

On the one hand, Lτ is symmetric positive. In particu-
lar, the new flow decreases the energy. But the other hand,
the inversion of Lτ for τ > 0 is an ill-posed anti-diffusive
process. So a gradient interpretation is not available.



4. Numerical experiments

The approach presented in this paper can be applied to
virtually any active contour evolution. Below, we show
some particular applications which demonstrate its interest.

The content of this paper is not specific to a particular
implementation of the contour evolution. In our experi-
ments, we have used the level set framework [13], motivated
by its numerical stability and its ability to handle topologi-
cal changes automatically. The implicit framework also of-
fers an elegant expression of the Laplace-Beltrami operator
[1] and of the average of a quantity along the contour [16].

The additional computational cost of our approach de-
pends on the type of minimizing flow we consider. The
extra time is barely noticeable for the rigid plus scaling and
affine flows of paragraphs 3.2.1 and 3.2.2. The latter only
require to compute a handful of integrals on the contour.
The smooth minimizing flows of Subsections 3.1 and 3.3
are more demanding. In 2D, the implicit diffusion equations
(7) and (9) are equivalent to some convolutions with respect
to the curvilinear coordinate on Γ. In 3D and more, they
must be solved with some iterative methods, for each time
step. Due to space limitations, no experiment with these
flows is presented in this paper.

4.1. Shape warping

We illustrate our approach in the problem of shape warp-
ing. In this context, the energy functional to be minimized is
a measure of dissimilarity between the evolving contour and
a target contour. The study of shape metrics is still an active
research area and there are many candidates for the dissimi-
larity measure. In this paper, we use a differentiable approx-
imation of the well-known Hausdorff distance, as proposed
in [4], to warp the contours of two different hands.

Figure 1 compares the evolution of the contour when us-
ing the L2 gradient descent (top row) and a modified gra-
dient descent favoring rigid plus scaling motions (bottom
row) as in paragraph 3.2.1. Both evolutions achieve a per-
fect warping. However, despite the similarity of the two in-
put shapes, the L2 gradient flow goes through some states of
completely different appearances. The trajectory followed
by this flow looks particularly inefficient and unnatural, be-
cause the notion of length contained in the L2 inner product
is very far from our intuition. In contrast, the behavior of
our gradient flow is natural and visually pleasing.

In Figure 2, we show a three-dimensional warping ex-
ample from a Teddy bear to Hayao Miyazaki’s character
Totoro. Once again, a modified gradient descent favoring
rigid plus scaling motions yields better results than the L2

gradient descent.
This suggests that our approach can infer relevant cor-

respondences between the two contours, as a byproduct of

Figure 1. Shape warping with the L2 gradient
descent (top) and with a modified gradient
descent favoring rigid plus scaling motions
(bottom): λT = λR = λS = 0.025.

Figure 2. 3D shape warping with the L2 gradi-
ent descent (top) and with a modified gradient
descent favoring rigid plus scaling motions
(bottom): λT = λR = λS = 0.025.

the warping process. This point-to-point matching is ob-
tained by tracking the points along the evolution. It does
not make much sense with a L2 gradient flow, because the
latter yields a strictly normal velocity field. But when using
our approach, the velocity field has a meaningful tangential
part. Maintaining point correspondences during the evolu-
tion is straightforward in an implementation with meshes.
It is also feasible in a level set implementation, with an ex-
tension proposed in [17].

4.2. Tracking

We now illustrate the better robustness of spatially co-
herent minimizing flows to local minima, in the problem
of tracking an object in a monocular video sequence. We
have used the contour-based energy of the original geodesic
active contours method [3], to track a moving hand. Note
that a region-based approach [15] would give better results
on our particular test sequence. However, our concern here
are not the results themselves but rather the improvements
brought by our approach.



Figure 3. Tracking a hand in a video sequence
with the L2 gradient descent (top) and with
a modified gradient descent favoring affine
motions (bottom): λA = 0.025.

Figure 3 compares the evolution of the contour when us-
ing the L2 gradient descent (top row) and a modified gra-
dient descent favoring affine motions (bottom row) as in
paragraph 3.2.2. Due to large displacements between con-
secutive frames, the L2 gradient flow fails and the contour
finally locks between two fingers, whereas our gradient flow
manages to dodge this unwanted low-energy configuration.

5. Conclusion

The impact of the inner product structure of the defor-
mation space on the behavior of the active contours method
has been overlooked so far. In this paper, we have explored
several families of inner products, as well as some minimiz-
ing flows not deriving from any inner product, which intro-
duce different degrees of spatial coherence in the evolution
of the contour. We have shown in some numerical exper-
iments that these evolutions, as they better fit our intuitive
notion of deformation cost, and as they mimic the behavior
of the objects of interest, are at the same time more pleasing
visually and more robust to local minima.
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