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ABSTRACT

In this paper, we propose a novel technique to repre-
sent and recover optical flow through free form deforma-
tions. Such a technique is based on representing the motion
field using regular connected grids according to higher order
polynomials, a compromise between dense motion estima-
tion and parametric motion models. Optical flow is deter-
mined through the deformation of the grid - derived from
the optimization of a cost function - and consequently of
the underlying image structures towards satisfying the con-
stant brightness constraint. Smoothness conditions are im-
plicity accounted for through the free form deformation ap-
proach. Promising results demonstrate the potentials of our
approach.

1. INTRODUCTION
Optical flow estimation is a fundamental component of mo-
tion analysis often used as a primitive cue in higher level
tasks of computational vision. Recognition, 3D reconstruc-
tion are some examples. Given two images that refer to the
same scene from different positions of the observer, 2D mo-
tion estimation consists of recovering a displacement field
that explains the real 3D motion of the scene patches in the
image domain. Constant brightness assumption is the most
common hypothesis to recover such estimates.

Scenes are assumed to be Lambertian and observations
intensity-wise in the 2D image plane assumed to remain
constant. Let us consider a 3D scene patchP and its projec-
tion (P1, P2) in two 2D imagesf andg within a sequence.
The constant brightness assumption refers to the following
condition:

f(P1) = g(P2)

where the motion vector(u,v) for the pixel(x) = P1 that
is to be estimated refers to(u(x),v(x)) = P2 − P1. Such
a condition is necessary but not sufficient and results in an
ill-posed problem. The number of constraints in the image
(one per pixel) is inferior to the number of unknowns to be
recovered.

Starting from the pioneering work of Horn and Schunck
[6] a variety of models have been proposed for optical flow
estimation [2] according to the intensity conservation law or
minimizing.

E(u,v) =
∫∫ (

f(x)− g(x + (u(x),v(x)))
)2

dx

In order to account for the ill-poseness of the motion esti-
mation problem, Lucas and Kanade [9] have proposed the
estimation of a motion field that is constant within blocks
while later on additional constrains were introduced refere-
ing to a smoothness assumption

E(u,v) = α

∫∫ (|∇u(x)|+ |∇v(x)|)dx+
∫∫ (

f(x)− g(x + (u(x),v(x)))
)2

dx

of the optical flow field that have led to piecewise smooth re-
sults [14]. Despite the use of smoothness constraints, dense
optical flow remained a challenging task mostly because of
the aperture problem. Robust statistical methods [7] were
considered to account for outliers. Parametric motion mod-
els [3, 10] was an alternative to dense motion estimation,
that consist of a small number of parameters applied either
to the entire image or to sizable image areas (motion de-
composition in layers [1, 13]). Examples of such models
(A) consist of rigid, similarity and affine transformations,
and are determined through the optimization of appropriate
cost functionals:

E(A) =
∫∫ (

f(x)− g(A(x))
)2

dx

One can claim that parametric motion models are efficient
representations of optical flow, a good compromise between
low complexity and reasonable flow estimates that suffer at
the object boundaries. Higher order local polynomials and
free form deformations is a more general class of parametric
models that can be used to describe motion. Such models
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Fig. 1. Car sequence (a) first imagef , (b) second imageg, (c) deformed grid, (d) deformed grid overlaid to second image.

can account for local/global motion, inherit smoothness and
are robust to the presence of noise. In this paper, we rep-
resent motion using regular connected grids, an excellent
alternative to dense estimation and parametric motion mod-
els.

This paper is organized as follows. In Section 2 the
essence of free form deformations is presented while in Sec-
tion 3 an FFD variational framework for motion estimation
is being described as well as its minimization process. The
multiresolution incremental variant of the approach follows
in Section 4, while discussion is part of Section 5.

2. FREE FORM DEFORMATIONS

Optical flow estimation is equivalent with recovering a
pixel-wise deformation fieldT (∆P;x,y) that creates vi-
sual correspondences between the imagesf and g at a
pixel level. Such deformation fieldT (∆P;x,y) can be
recovered either using standard optical flow constraints or
through the use of warping techniques like the free form de-
formations method [12], [11], which is a popular approach
in graphics, animation and rendering [5].

Opposite to optical flow techniques, FFD techniques sup-
port smoothness constraints, exhibit robustness to noise and
are suitable for modelling large and small non-rigid defor-
mations. Furthermore, under certain conditions, it can sup-
port a dense registration paradigm that is continuous and
guarantees a one-to-one mapping.

The essence of FFD is to deform an object by manipulat-
ing a regular control latticeP overlaid on its volumetric em-
bedding space (figure 1). We consider an Incremental Cubic
B-spline Free Form Deformation (FFD) to model the local
transformationT . To this end, dense registration is achieved
by evolving a control latticeP according to a deformation
improvement [δP ]. The inference problem is solved with
respect to - the parameters of FFD - the control lattice coor-
dinates.

Let us consider a regular lattice of control points

Pm,n = (P x
m,n, P y

m,n); m = 1, ..., M, n = 1, ..., N

overlaid to an imageI = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }
in the embedding space that encloses the source structure.
Let us denote the initial configuration of the control lattice
asP 0, and the deforming control lattice asP = P 0 + δP .

Under these assumptions, the incremental FFD parameters
are the deformations of the control points in both directions
(x, y):

∆P = {(δP x
m,n, δP y

m,n)}; (m,n) ∈ [1, M ]× [1, N ]

The motion of a pixel(x, y) given the deformation of the
control lattice fromP 0 to P , is defined in terms of a tensor
product of Cubic B-spline:

T (∆P; (x, y)) = ((x, y)) + δT (∆P; (x, y))

=

3X
k=0

3X
l=0

Bk(u)Bl(v)(P 0
i+k,j+l + δPi+k,j+l)

wherek = b x
X ·Mc − 1, l = b y

Y · Nc − 1. The terms of
the deformation component refer to (i)δPi+l,j+l, (k, l) ∈
[0, 3] × [0, 3] consists of the deformations of pixel(x, y)’s
(sixteen) adjacent control points, (ii)δT (∆P;x,y) is the
incremental deformation at pixel(x, y), and (iii) Bk(u) is
thekth basis function of a Cubic B-spline:

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6, B3(u) = u3/6

with u = x
X ·M − b x

X ·Mc (Bl(v) is defined in a similar
fashion withv = y

Y ·N − b y
Y ·Nc)

3. OPTICAL FLOW ESTIMATION

Optical flow estimation is now equivalent with finding the
best latticeP configuration such that the overlaid structures
(images) coincide. One can consider the Sum of Squared
Differences (SSD) as the data-driven term to recover the de-
formation fieldT (∆P; (x, y));

Edata(∆P) =
∫∫

Ω

ρ(r) dxdy

whereρ(r) = r2, r = f(x, y) − g(T (∆P; (x, y))). The
use of such a technique to represent motion introduces in
an implicit form some smoothness constraint that can deal
with a limited level of deformation. In order to account for
outliers and noise, one can replace the error-two norm with
more appropriate robust metrics [7]. In order to further pre-
serve the regularity of the recovered motion flow, one can
consider an additional smoothness term on the deformation
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Fig. 2. A binary test image with a global one pixel move-
ment to the left (a) grid’s flow overlaid to second imageg,
(b) FFD’s grid overlaid to second imageg, (c) reconstructed
from the final flow imagêf ≈ f .

field δP . We consider a computationally efficient smooth-
ness term:

Esm(∆P) =
∫∫ (∣∣∣∣

∣∣∣∣
∂δT (∆P; x, y)

∂x

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣
∂δT (∆P; x, y)

∂y

∣∣∣∣
∣∣∣∣
2
)

dxdy

Such smoothness term is based on a classic error norm that
has certain known limitations. Within the proposed frame-
work, an implicit smoothness constraint is also imposed by
the Spline FFD. Therefore there is no need for introduc-
ing complex and computationally expensive regularization
components (figures 2, 3).

4. INCREMENTAL, MULTI-SCALE FFD OPTICAL
FLOW

The data-driven term and the smoothness constraints term
can now be integrated to recover the motion field:

E(∆P) = Edata(∆P) + αEsm(∆P)

whereα is the constant balancing the contribution of the
two terms. The calculus of variations and a gradient descent
method can be used to optimize such objective function. A
minimiser must fulfill the Euler-Lagrange equation:

∂E(∆P)

∂∆P[x]
(m,n)

=
∂Edata(∆P)

∂∆P[x]
(m,n)

+ α
∂Esm(∆P)

∂∆P[x]
(m,n)

where∆P[x]
(m,n) refers to the horizontal motion component

and the∆P[y]
(m,n) to the vertical one. Similar flow like the

one earlier presented can be recovered for∆P[y]
(m,n). One

can further develop this flow:

∂Edata(∆P)

∂∆P[x]
(m,n)

=
∫∫

Ω

2r
∂r

∆P[x]
(m,n)

dxdy, where

∂r

∆P[x]
(m,n)

=
∂(T (∆P; x, y))

∂∆P[x]
(m,n)

∗ gx(T (∆P;x, y))
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Fig. 3. Zoom on the wheel of the car sequence: (a) first
framef , (b) second frameg, (c) reconstructed image from
grid’s flow, (d) deformed grid, (e) deformed grid overlaid to
second image (h)grid’s flow.

Similar approach can be considered for the smoothness term
(in the[x] direction):

∂Esm(∆P)

∂∆P
[x]

(m,n)

= 2

ZZ
∂δT (∆P; x, y)

∂x
∗

∂δT (∆P;x,y)
∂x

∂∆P
[x]

(m,n)

dxdy

+2

ZZ
∂δT (∆P; x, y)

∂y
∗

∂δT (∆P;x,y)
∂y

∂∆P
[x]

(m,n)

dxdy

The flow consists of a data-driven update component and
a diffusion term that constraints the parameters of the free
form deformation to be locally smooth. While such a model
can be quite efficient it still suffers from the aperture prob-
lem. One can consider additional constraints to the constant
brightness assumption similar to the one recently introduced
in [4]:

E(∆P) = α

ZZ
Ω

�
f(x, y)− g(T (∆P; x, y))

�2
dxdy

+β

ZZ
Ω

�����∇f(x, y)−∇g(T (∆P; x, y))
�����2dxdy

+γ

ZZ  ��������∂δT (∆P; x, y)

∂x

��������2 +

��������∂δT (∆P; x, y)

∂y

��������2! dxdy

like a gradient preservation assumption, a constraint that
improves the estimation of the optical flow on the object
boundaries where parametric motion models fail.

A straightforward application of the FFD manipulation
cannot always guarantee the successful motion estimation
between the two images. One reason for this is that
we limit the maximum displacement of a control point
to approximately a half of the spacing between control
points in order to make the deformation function one-to-one
[8]. Multilevel incremental free-form deformation (MIFFD)
technique overcomes the drawbacks of the straightforward
method, since it can handle both large and small non-rigid
deformations. The overall dense deformation field for mo-
tion estimation is defined by the incremental deformations
from all levels. LetP 1, ..., PK denote a hierarchy of control



Fig. 4. MIFFD (4 levels) for an IKONOS satellite stereo pair. From theg image (first from the left), the four reconstructed
images from the estimated flow at each level are shown, until the first imagef (last one) is approximated.

point meshes at different resolutions. Each control meshP k

and the associated spline-based FFD defines a transforma-
tion T k(∆P; x, y) at each level of resolution and the total
deformationδT (x, y) for a pixel(x, y) in a hierarchy ofK
levels is:δT (x, y) =

∑K
k=0 δT k(∆Pk;x, y).

The hierarchy of control lattices can have arbitrary num-
ber of levels, but typically 3-4 levels are sufficient to handle
both large and small deformations (figures 4, 5).

5. DISCUSSION - CONCLUSIONS

In this paper we have proposed a novel algorithm for mo-
tion estimation using local polynomial parametric models.
Such models close the gap between dense motion estima-
tion and global motion models, can guarantee a one-to-one
correspondence between images, encode in implicit fashion
smoothness constraints and support a multiresulotion im-
plementation. In addition we have considered a criterion
that also accounts for discontinuities by forcing motion es-
timates to be consistent on the gradient space too.

One can consider numerous extensions of the method.
The use of FFD that also encode the structure of the image
is a prominent one. The grid that was considered to rep-
resent motion has a fixed topology and the motion of each
image pixel is reproduced using the same number of neight-
bouring elements that are distributed according to the same
topology. Examples consist of modelling/connecting pixels
that are part of a line and forcing motion estimates to be con-
sistent along such a structure. Non-regular, image/content-
based grids according to higher order polynomials could en-
code the image structure and better account for the motion
field.

Last, but not least the use of a 3D deformation grid can
be considered to account for motion decomposition in lay-
ers. In the case of depth discontinuities, one can assume
that each layer can be represented using an FFD, introduce
costly connections between layers that heavily penalize pix-
els that belong to more than one layer and recover the geo-
metric structure of the scene as well its decomposition in
layers of constant depth.
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