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Abstract— Recovering electrical activity of the brain from
MEG/EEG measurements is known as the MEEG inverse prob-
lem. It is an ill-posed problem in several senses. One is that
there is further less data observed than data to recover. One
way to address this issue is to search for regular solutions. We
present here a framework for applying image processing filtering
techniques to the MEEG inverse problem. Exprimentations are
presented on synthetic dara and validation is carried out on one
real MEG data set.

I. I NTRODUCTION

The MEG/EEG inverse problem of reconstructing electrical
sources in human brain is an ill-posed and under-determined
problem. There are many classes of methods for solving
this problem, each one having its advantages and drawbacks.
The most used one is the moving dipole[7]. Among the
other ones, Imaging methods are sometimes addressed with a
Bayesian stochastic framework [4]. Minimum norm solutions
and Tikhonov regularization can also be seen as variational
regularization methods for removing this undetermination.
These methods tend to produce a well-know scaterring and
blurring effect on the reconstructed sources. We propose
a framework for applying more sophisticated regularization
techniques arrising from image processing field.

II. I MAGING METHODS AND VARIATIONAL PRIORS

A. Imaging Methods

The most measurable part of the electrical activity of the
brain is widely believed to arise from pyramidal cells lying at
the surface of the cortex. Hence, the electrical sources to be
reconstructed can be modeled as a dipolar current distribution
defined all over the cortex and normal to it at each point.
Solving the inverse problem (IP) is thus finding the intensity
of this source which we denotes. We denoteH the transfer
matrix of the linear function mapping a given source values
to the corresponding MEG/EEG measurementsm. Defining
the followong notations:

• JDATA(s) = ‖H.s−m‖2
• JSMOOTH(s) a non-negative (preferably convex) func-

tion of s penalizaing non smooth distributions.
• α a non negative smoothing parameter

The solution of the IP is given by:

smix = argmin
s

JDATA(s) + α.JSMOOTH(s) (1)

For instance, ifJSMOOTH(s) = ‖s‖2
2 , we get the well-known

Tikhonov regularization. There is an other way to constrain

the inverse problem. Indeed, if we take a look at the minimum
norm-solution, it can be written using the sameJSMOOTH but
with a different minimization problem:

scons = argmin
s∈JDAT A

−1({0})
JSMOOTH(s) (2)

This is a different approach because of the hard data constraint.
it can seem naive because of the existence of noise in real
measures, the under-determination of the IP lets a huge degree
of freedom for finding solutions. We think that using this
hard constraint does not affect the final solution. Moreover,
minimizing Eq.(2) exempts from choosing any smoothing pa-
rameterα. This is one major difference between our approach
and previous work in [2] and this new approach shows to be
more efficient and precise on synthetic tests. It is obvious using
Eq.(2) that the minimum norm can be generalized to any kind
of energy. In the following, we compare differents energies
arising from the image processing field.

B. Anisotropic Diffusion as a Prior

If one adopts the image processing point of view, reg-
ularizaton of the IP can be interpreted as the deletion of
an undetermination noise. It is then very natural to use
image filtering techniques for buildingJSMOOTH . Many of
these techniques are based upon Partial Differential Equations
(PDEs) implementing different kinds of diffusion processes.
Among all these techniques, we focus on the ones which
can be derived in a functional minimization framework. More
precisely, all the energies included in this study are of the
form:

JSMOOTH(u) =
∫

Ω

Φ(‖∇u‖)dΩ (3)

Whereu is a flat image andΩ its domain. Using Euler La-
grange equation of Eq.(3), we get the following minimization
PDE.

∂u

∂t
= Φ′′(‖∇u‖)uξξ +

Φ′(‖∇u‖)
‖∇u‖ uηη (4)

uξξ is the second directionnal derivative ofu with respect
to the direction of∇u (ξ = ∇u

‖∇u‖ ) and uηη is the second
directionnal derivative ofu with respect to the directionη
orthogonal to∇u. Further reading about these formulae is
found in [3]. By this rewriting, the diffusion process generated
by running Eq.(4) is decomposed into two components: one
along the isophot (curve of same intensity on the image)



direction and the other one perpendiculary to it. Here follow
some classicalΦ functions and their decomposition :

Author Φ(s) Φ′(s)/s Φ′′(s)

Tikhonov s2

2 1 1
Rudin[11] s 1

s 0

Perona[8] −k2

2 (e−(s/k)2−1) e−(s/k)2 (1−2 s
k

2)

e(s/k)2

Aubert[5]
√

1 + (s/k)2 − 1 1√
k2+s2

k2

k−2 |k|
(k2+s2)3/2

Tikhonov regularization gives raise to an isotropic diffusion (in
both directions diffusion strength equals 1). The corresponding
minimization equation is the well-known heat equation∂u

∂t =
∆u. Rudin’s function induces anisotropic smoothing in a
strong manner: it smoothes the image only along the isophot
direction. It permits an excellent preservation of the edges of
the image. The corresponding energy is, by definition, the total
variation (TV) of the image. The last two functions present
intermediate strategies, trying to combine Rudin’s strategy
near the edges and isotropic smoothing far from them. More
information can be found about these approaches and similar
ones in [3]
As is, all these regularization terms are defined for flat images.
They must be adapted to an image defined over a 2D manifold
embedded in 3D space, namely the cortex. We get passed
through this by just mentioning that one shoudl consider
a surface metric that we denote∇S instead of∇ (more
informations about implementing intrinsic gradient can be
found for example in [13]). In the following we will focus
on theJSMOOTH of the formJ i

SMOOTH =
∫
S

Φi(‖∇Ss‖)dS

for i ∈ {1, 2, 3, 4}, Φi is theith fonction of the previous table
andS is the surface of the cortex.

III. I MPLEMENTATION

Concerning the forward EEG/MEG problem, we use
the symmetric formulation of the Boudary Elements
Method (B.E.M) [6]. We use a mixed P1(piecewise lin-
ear)/P0(piecewise constant) discretization for respectively the
electric potential on each interface and its normal derivative[1].
The source distributions are discretized in a P1 basis.

A. Discretization

In order to implement theΦ-cost functions without lost
of precision we keep the initial disretization of the source
distribution i.e P1. In the following we discribe a way of
calculatingJ i

SMOOTH and its discrete gradient.
We denotenT ,nV the number of triangles and the number

of vertices of the source mesh. The P1 basis is denoted
(φS

i )i=1...nV such thatφS
i is piecewise linear, equals 1 at

vertex i and 0 at all other vertices. In each triangleTj

not containing vertexi, (φS
i ) = 0 and in each triangleTj

containing vertexi, we defineaj
i such that(φS

i )(x) = aj
i .x.

Moreover we denote1j the indicator function of trianglej.
∫

S

Φ(‖∇S s(x)‖)dS(x) =
nT∑

k=1

∫

Tk

Φ(‖
nV∑

i=1

si

nT∑

j=1

aj
i 1j(x)‖)dS(x)

=
nT∑

k=1

∫

Tk

Φ(‖
nV∑

i=1

si ak
i ‖)dS(x)

=
nT∑

k=1

Φ(‖
nV∑

i=1

si ak
i ‖)Ak

Note that one way to define∇S is to project the 3D gradient
onto S. But here, the gradient is already tangent to the trian-
gulated surface. We denoteQ the linear application mapping
the values of the source defined over the vertices ofS to its
gradient defined over the triangles ofS:

Q : X −→ (R3)nT




s1

...
snV


 7−→




nV∑
i=1

si ai
1

...
nV∑
i=1

si ai
nT




and forp = (p1, p2, ..., pnT
) ∈ (R3)nT , we set

‖p‖(Φ,Ai) =
nT∑

i=1

Φ(|pi|)Ai and [p]i = pi

where|.| is the Euclidian norm onR3 so that we get:
∫

S

Φ(‖∇S s(x)‖)dS(x) = ‖Qs‖(Φ,Ai)

Computing the gradient is straightforward and gives:

∇JSMOOTH(x) = Qt




[Qx]1
|[Qx]1|Φ

′(|[Qx]1|)A1

...
[Qx]nT

|[Qx]nT
|Φ
′(|[Qx]nT |)AnT


 (5)

B. Algorithms

Solving the minimization problem (2) was carried out by a
projected gradient algorithm:

Algorithm 1 (Projected Gradient Algorithm):
1. initialize the source reconstruction with the minimum norm

solution:s = pinv(m)
2. compute the gradient directiong using Eq.(5)
3. compute the projectiong′ of g onto the kernel ofH.
4. update the reconstructed sources = s− αg′

5. check stopping criterion and go to 2 if necessary
6. end

Several strategies were tested for the determination of an
optimal step sizeα: numerical methods for exact search
(gold section)[9], closed form solution with truncated series



expansion. Finally for efficiency reasons, we used a fixed step
algorithm, which gives similar results.

IV. EXPERIMENTATION AND RESULTS

All the algorithms were coded in C++. We used exclu-
sively realistic head models. These models were build from
anatomical MRI for each subject. These MRI were segmented
using Brainsuite (a free software from USC [12]) for scalp and
skull. The brain (more precisely the grey matter-white matter
interface) was segmented using Absolut (an internal software
from Odyssee Lab [10]).

A. Synthetic Benchmark

This first set of tests is based on a realistic head model
taken from an experimentation run at Lena MEG center at
Hôpital de la Pitíe Salp̂etri‘ere, Paris. The setup was 180
MEG sensors and 61 EEG patches. The source mesh had
34792 vertices. Appart from this, the head model was build
using 3 interfaces ( air-scalp, scalp-skull, skull-brain (including
CSF)) for 4 nested domains (air, scalp, skull, brain+CSF).
Each of the interfaces meshes was made of 700 vertices.
Before any run of the IP, pre-computation is needed. For our
given geometry, computing the transfer matrixH using our
symmetric BEM implementation took 12 hours running on a
Xeon 2.4GHz processor under linux. Once this precomputation
done, each minimum norm solution is obtain by a mere matrix
vector product. All other methods reach acceptable results at
2000 iterations in 200 seconds on the same machine for the
MEG case. Complexity of the algorithm being linear with
respect to number of measurements, EEG computations are
approximately 3 times faster. All the results shown below are
obtained with 10000 iterations in approximatvely 1000 sec-
onds. This is a synthetic test : MEG and EEG measurements
corresponding to a given source configuration are computed
and then recontructed using all regularization methods.
This test is subdivided in four parts:

• deep: a source patch going deeper and deeper (5 steps)
• discrim: two sources patches getting closer and closer (5

steps)
• number: 5 patches scattered over the cortex successively

appearing (5 steps)
• size: a growing source patch (5 step)

Illustrations of these test patches are available at:
http://cermics.enpc.fr/∼adde/MEEGbench.

At first glance, for the MEG benchmark (Fig. 1), the
minimum solution seems to always give the less correlated
reconstrcution whereas TV gives, most of the time, the best
one. More generally gradient based regularization method
seem to perform better than minimum norm. Inside this sub-
category, isotropic smoothing, as expected, blurs the source
patches. This drawback doesn’t affect the purely anisotropic
TV smoothing. Hybrid approach doesn’t improve TV’s re-
sults, maybe because of a fast numerical scheme. But EEG
benchmark (Fig. 2) results provide us with what we believe
to be a better explanation of the poor performances of hybrid

Fig. 1. MEG Synthetic Benchmark

smoothing methods. Indeed, for this benchmark all regular-
ization methods show a performance breakdown comparing to
the MEG benchmark. This phenomenon is due to the fewer
available data and to the diffusion of the electric potential
produced by the skull. This breakdown is significantly more
important for hybrid smoothing methods and we do believe
that these methods would benefit further than the other ones
from an increase in the number of sensors. Numerical exper-
imentations in this direction are in progress.

B. Real Data

In order to check the practical validity of the method, IP
were run on a finger motor somatotopy experimentation. This
set was given by Lena MEG center. A dipole fitting was
performed using moving dipole method[7]. A good match
between maxima of our reconstructions and fitting dipoles was
found (Fig.3). This is only a visual clue because this goodness
could not be quantified: : fitted dipoles are not constrained on
the cortical surface. Our method is currently further compared
to other distributed source methods on more real data sets.

V. CONCLUSION

We presented a framework that includes a class of image
processing diffusion filters as regularization methods for the
MEG/EEG inverse problem. In our approach no degree of free-
dom is left on the data driven part and the data constraint must



Fig. 2. EEG Synthetic Benchmark

be fullfilled. It permits to skip the selection of any smoothing
parameter and gives faster and better convergence. Among all
tested smoothing methods, Total Variation outperforms all the
others including the most classic ones: minimum-norm and
Tikhonov. Experimental validation is in progress and should
permit to evaluate the practical utility of such techniques.
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