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Abstract. In this paper we propose a novel variational technique for the knowl-
edge based segmentation of two dimensional objects. One of the elements of
our approach is the use of higher order implicit polynomials to represent shapes.
The most important contribution is the estimation of uncertainties on the regis-
tered shapes, which can be used with a variable bandwidth kernel-based non-
parametric density estimation process to model prior knowledge about the object
of interest. Such a non-linear model with uncertainty measures is integrated with
an adaptive visual-driven data term that aims to separate the object of interest
from the background. Promising results obtained for the segmentation of the cor-
pus callosum in MR mid-sagittal brain slices demonstrate the potential of such a
framework.

1 Introduction

Over the last decade, shape-based segmentation methods have become more and more
common. First introduced in 1995, active shape models (ASM) and active appearance
models (AAM) [3] have been very popular tools for the segmentation of anatomical
structures in medical images [2, 5, 1, 10]. More recently, principal component analy-
sis (PCA) has also been applied to distance transforms for an implicit representation
of shapes [9]. Shape-based segmentation is usually equivalent to recovering a geomet-
ric structure which is both highly probable in the model space and well aligned with
strong features in the image. The advantage of the shape based methods over classical
deformable templates [11] is that they allow the deformation process to be constrained
to remain within the space of allowable shapes. These methods have proven to be a
good compromise between complexity and shape generalization. However, since mod-
eling is performed after registration, errors in the registration can be propagated into the
model space. Furthermore, the assumption of Gaussian shape models might be a little
restrictive.

In this paper, shapes are represented implicitly using the distance transform. To
generate a model of the structure of interest, we register shape examples using a spline
based free form deformation. The main contribution of this paper is the derivation of



a measure representing the uncertainty of the registration at the zero iso-surface. Af-
ter dimensionality reduction, these measures are combined with a variable bandwidth
kernel-based approach to derive a density function that models the family of shapes
under consideration. Given a new image, the segmentation process is expressed in a
variational level set framework [14] where the energy function makes use of the un-
certainties of the registration between the deformed shape which aligns to the image
features and the model.

We apply our novel modeling and segmentation technique to the case of the corpus
callosum. The corpus callosum is a thick bundle of nerve fibers that connect the left and
right hemispheres in the brain. It is believed to be responsible for balancing the load of
learning tasks across each hemisphere, making each specialized in certain tasks. While
not learning, it is responsible for routing most of the communication between the two
hemispheres. This is the reason why a surgical procedure has been developed to cut the
corpus callosum in patients with severe epilepsy for which drug treatment is ineffective.
In addition, several studies indicate that the size and shape of the corpus callosum is re-
lated to various types of brain dysfunction such as dyslexia [4] or schizophrenia [6].
Therefore, neurologists are interested in looking at the corpus callosum and analyzing
its shape. Magnetic resonance imaging (MRI) is a safe and non-invasive tool to image
the corpus callosum. Since manual delineation can be very time consuming, we demon-
strate how our algorithm can be used to segment the corpus callosum on mid-sagittal
MR slices.

The remainder of this paper is organized as follows. In Section 2, we introduce reg-
istration with uncertainties and probabilistic modeling to describe the corpus callosum
structure. The segmentation component combining data and shape terms is described
in Section 3. Experimental results are presented in Section 4. Finally, conclusions and
future directions are discussed in Section 5.

2 Shape Representation through Implicit Polynomials

Let us consider a training set {C1, C2, ..., CN} of shapes representing the structure of
interest. The model building task consists of recovering a probabilistic representation
of this set. In order to remove all the pose variation from the training set, all shapes
have to be registered to a common pose with respect to an affine transformation. Then
a reference model CM is locally registered to every sample of the training set Ci using
implicit polynomials. We will first describe the registration process and the calculation
of uncertainties on the registered model. The uncertainty measures represent the allow-
able range of variations in the deformations of the model that still match Ci. Then we
describe the way these uncertainties are used in the estimation of probability density
function of the deformations.

2.1 Registration through implicit polynomials

In the classical ASM the initial step is used to recover explicit correspondence between
the discretized contour of the model shape and the training examples. In the present



framework, the model shape is non rigidly registered to every sample from the train-
ing, and the statistical shape model is actually built on the parameters of the recovered
transformation.

Shapes Ci are represented in an implicit fashion using the Euclidean distance trans-
form [9, 15] . In the 2D case, we consider the function defined on the image domain
Ω :

φCi(x) =

 0, x ∈ Ci

+D(x, Ci), x ∈ RCi

−D(x, Ci), x 6∈ RCi

where RCi is the region enclosed by Ci. Such a space is invariant to translation, rota-
tion and can also be modified to account for scale variations. This representation has
already been used along with simple criteria like sum of squared differences to address
similarity registration [15] or mutual information for affine transformations [7].

The retained framework for density estimation does not put any constraint on the
reference model used for registration. In practice we choose a shape characteristic of
the object to segment. Without loss of generality, we can choose for CM a smoothed
version of C1. All contours of the training set are now registered to CM with respect to
an affine transform and from now on, we will denote {C1, C2, ..., CN} as the globally
registered training set.

Local registration is crucial to model building. To this end one would like to recover
an invertible transformation (diffeomorphism) LΘi parameterized by a vector Θi that
creates a one to one mapping between each contour of the training set Ci and the model
CM:

LΘi
: R2 → R2 and LΘi(CM) ≈ Ci

When LΘ is chosen as a 2D polynomial with coefficients Θ in an appropriate basis,
the expression φ ◦ LΘ inherits the invariance properties of implicit polynomials, i.e.
linear transformations applied to Θ are related to linear transformations applied to the
data space. In the present paper, we used a simple polynomial warping technique to
address the demand of local registration: the free form deformations method (FFD)
[16]. The essence of FFD is to deform an object by manipulating a regular control
lattice overlaid on its embedding space. We use a cubic B-spline FFD to model the
local transformationL. Consider the M×N square lattice of points, [{P0

m,n}; (m,n) ∈
[1;M ]× [1;N ]]. In this case the vector of parameters Θ defining the transformation L
is the displacement coordinates of the control lattice. Θ has size 2MN :

Θ = {δPx
m,n, δPy

m,n}; (m,n) ∈ [1;M ]× [1;N ]

The motion of a pixel x given the deformation of the control lattice, is defined in terms
of a tensor product of Cubic B-splines [17]. As FFD is linear in the parameter Θ = δP,
it can be expressed in a compact form by introducing X (x) a [2× 2MN ] matrix:

L(Θ;x) =
XX

Bi(u)Bj(v)(P0
i,j + δPi,j) = x + X (x)Θ

where (u, v) are the coordinates of x, and (Bi, Bj) the cubic B-spline basis functions.
Local registration now is equivalent to finding the best lattice configuration such

that the overlaid structures coincide. Since structures correspond to distance transforms



of globally aligned shapes, the sum of squared differences (SSD) can be considered
as the data-driven term to recover the deformation field L(Θ;x) between the element
Ci of the training set and the model CM (corresponding respectively to the distance
transform φi and φM)

Edata(Θ) =
∫∫

Ω

χα(φi(x)) [φi(L(Θ;x))− φM(x)]2 dx (1)

with χα(φi(x)) being an indicator function that defines a band of width α around the
contour. In order to further preserve the regularity of the recovered registration, one
can consider an additional smoothness term on the deformation field δL. We consider a
computationally efficient smoothness term :

Esmooth(Θ) =
∫∫

Ω

(
|Lxx(Θ;x)|2 + 2 |Lxy(Θ;x)|2 + |Lyy(Θ;x)|2

)
dx.

The data-driven term and the smoothness constraint component can now be integrated to
recover the local deformation component through the calculus of variations. We denote
as Θi the reached minimum.

However, one can claim that the local deformation field is not sufficient to charac-
terize the registration between two shapes. Data is often corrupted by noise so that the
registration retrieved using a deformable model may be imprecise. Therefore, recov-
ering uncertainty measurements [8] that do allow the characterization of an allowable
range of variation for the registration process is an eminent condition of accurate shape
modeling.

2.2 Uncertainty estimation on registered shapes

We aim to recover uncertainties on the vector Θ in the form of a [2MN × 2MN ]
covariance matrix by adapting a method initially introduced in [18]. We are considering
the quality of the local registration on shapes, that is the zero levelset of the distance
transform. Therefore, Edata is formulated in the limit case where α the size of the
limited band around the model shape tends to 0. The data term of the energy function
(1) can now be expressed as:

Edata(Θ) =
∮
CM

φ2
i (L(Θ;x))dx =

∮
CM

φ2
i (x

′)dx,

where we denote x′ = L(Θi;x). Let us consider q to be the closest point from x′

located on Ci. As φi is assumed to be a Euclidean distance transform, it also satisfies
the condition ‖∇φi(x′)‖ = 1. Therefore one can express the values of φi at the first
order in the neighborhood of x′ in the following manner :

φi(x′ + δx′) = φi(x′) + δx′ · ∇φi(x′) + ◦(δx′)
= (x′ + δx′ − q) · ∇φi(x′) + ◦(δx′)

This local expression of φi with a dot product reflects the condition that a point to curve
distance was adopted. Under the assumption that Edata is small when reaching the



Fig. 1. Implicit higher order polynomials and registration of corpus callosum with uncertainty
estimates (this figure should be seen in color).

optimum, we can write the classical second order approximation of quadratic energy in
the form:

Edata(Θ) =
∮
CM

[(x′ − q) · ∇φi(x′)]
2 =

∮
CM

[(x + X (x)Θ− q) · ∇φi(x′)]
2

Localizing the global minimum of an objective function E is equivalent to find-
ing the major mode of a random variable with density exp(−E/β). The coefficient β
corresponds to the allowable variation in the energy value around the minimum. In the
present case of a quadratic energy (and therefore Gaussian random variable), the co-
variance and the Hessian of the energy are directly related by Σ−1

Θi
= HΘi

/β. This
leads to the following expression for the covariance :

Σ−1
Θi

=
1
β

∮
CM

X (x)T .∇φi(x′).∇φi(x′)T .X (x)dx

In the most general case one can claim that the matrix HΘ is not invertible because
the registration problem is under-constrained. Then, additional constraints have to be
introduced towards the estimation of the covariance matrix of Θi through the use of an
arbitrarily small positive parameter γ :

E(Θ) =

I
CM

�
(x + X (x)Θ− q) · ∇φi(x

′)
�2

dx + γ ΘT Θ

This leads to the covariance matrix for the parameter estimate :

ΣΘi = β

�I
CM

X (x)T .∇φi(x
′)∇φi(x

′)TX (x)dx + γI

�−1

(2)



2.3 Hybrid kernel based density function and kernel selection

Now that all shapes of the training set have been aligned, standard statistical techniques
like PCA or ICA could be applied to recover linear Gaussian models. But in the most
general case shapes that refer to objects of particular interest vary non-linearly and
therefore the assumption of simple parametric models likes Gaussian is rather unrealis-
tic. Therefore within our approach we propose a non-parametric form of the probability
density function.

Let {Θ1...ΘN} be the N vectors of parameters associated with the registration of
the N sample of the training set. Considering that this set of vectors is a random sample
drawn from the density function f describing the shapes, the fixed bandwidth kernel
density estimator consists of:

f̂(Θ) =
1
N

N∑
i=1

1
‖H‖1/2

K
(
H−1/2(Θ−Θi)

)
where H is a symmetric definite positive (bandwidth matrix) and K denote the centered
Gaussian kernel with identity covariance. Fixed bandwidth approaches often produce
under-smoothing in areas with sparse observations and over-smoothing in the opposite
case.

Kernels of variable bandwidth can be used to encode such a condition and provide a
structured way for utilizing the variable uncertainties associated with the sample points.
In the literature, kernel density estimation methods that do rely on varying bandwidths
are generally referred to as adaptive kernels. Density estimation is performed with ker-
nels whose bandwidth adapts to the sparseness of the data [19].

In the present case, the vectors {Θi} come along with associated uncertainties
{Σi}. Furthermore, the point Θ where the density function is evaluated corresponds
to a deformed model, and therefore is also associated to a measure of uncertainty Σ. In
order to account for the uncertainty estimates both on the sample points themselves as
well as on the estimation point, we adopt a hybrid estimator [12].

f̂H(Θ, Σ) =
1

N

NX
i=1

K(Θ, Σ,Θi, Σi)

=
1

N

NX
i=1

1

‖H(ΣΘ, ΣΘi)‖1/2
K(H(ΣΘ, ΣΘi)

−1/2(Θ−Θi)

where we choose for the bandwidth function: H(ΣΘ, ΣΘi) = ΣΘ +ΣΘi as proposed
in [12]. Using this estimator, the density decreases more slowly in directions of large
uncertainties when compared to the other directions.

This metric can now be used to assess the probability of a new sample being part
of the training set and account for the non-parametric form of the observed density.
However, the computation is time consuming because it leads to the calculation of large
matrix inverses. Since the cost is linear in the number of samples in the training set,
there is an eminent need to decrease its cardinality by selecting the most representative
kernels.



Fig. 2. Histograms of the corpus callosum and the background area. The of a use gaussian mixture
to model the corpus callosum and background intensity distribution in MR is appropriate (this
figure should be seen in color).

The maximum likelihood criterion expresses the quality of approximation from the
model to the data. We use a recursive sub-optimal algorithm to select kernels and there-
fore build a compact model that maximizes the likelihood of the whole training set.

Consider a set ZK = {X1, X2, . . . , XK} of K kernels extracted from the training
set with mean and uncertainties estimates {Xi = (ΘiΣi)}K

i=1. The log likelihood of
the entire training set according to this model is:

CK =

NX
i=1

log

0
@ 1

K

X
(Θj ,σj)∈ZK

K(Θj , Σi,Θi, Σi)

1
A

A new kernel XK+1 is extracted from the training set as the one maximizing the quan-
tity CK+1 associated with ZK+1 = ZK

⋃
XK+1. The same kernel may be chosen

several times in order to preserve a increasing sequence CK . Consequently the selected
kernels Xi in ZK are also associated with a weight factor wi. Once such a selection has
been completed, the hybrid estimator is evaluated over ZK :

f̂H(Θ, Σ) =
1
N

∑
(Θi,σi,wi)∈ZK

wiK(Θ, Σ,Θi, Σi) (3)

3 Shape based Segmentation applied to the Corpus Callosum

Let us consider an image I where the corpus callosum structure is present and is to be
recovered. Recall that we now have a model of the corpus callosum: a shape that can be
transformed using an affine transformation and a FFD, and a measure of how well the
deformed shape belongs to the family of trained shapes.

Let φM be the distance transform of the reference model. Segmentation consists of
globally and locally deforming φM towards delineating the corpus callosum in I. Let
A be an affine transformation of the model and L(Θ) its local deformation using FFD
as previously introduced.

For now, we assume that the visual properties of the corpus callosum πcor() as well
as the ones of the local surrounding area πbck() are known. Then segmentation of the



corpus callosum is equivalent to the minimization of the following energy with respect
to the parameters Θ and A:

Eimage(A,Θ) = −
ZZ

RM
log [πcor (I (A(L(Θ;x)))] dx

−
ZZ

Ω−RM
log [πbkg (I (A(L(Θ;x)))] dx

where RM denotes the inside of CM. However, the direct calculation of varia-
tions involves image gradient and often converges to erroneous solutions due to the dis-
cretization of the model domain. In that case, we change the integration domain to the
image by implicitly introducing the inverse transformation (see Appendix). A bimodal
partition in the image space is now to be recovered. The definition of this domain Rcor

depends upon the parameters of the transformation [A,Θ] as :

Rcor = A(L(Θ,RM)) and y = A(L(Θ,x))

The actual image term of the energy to be minimized then becomes:

Eimage(A,Θ) =−
ZZ

Rcor

log [πcor (I (y))] dy

−
ZZ

Ω−Rcor

log [πbkg (I (y))] dy

(4)

where statistical independence is considered at the pixel as well as hypotheses level. In
practice the distributions of the corpus callosum as well as the ones of the surrounding
region [πcor, πbkg] can be recovered in an incremental fashion using the Mumford-Shah
principle [13]. In the present case, each distribution is estimated by fitting a mixture of
Gaussians to the image histogram using an Expectation-Maximization algorithm (Fig.
2).

The shape based energy term, making use of the non parametric framework intro-
duced earlier is also locally influenced by a covariance matrix of uncertainty calculated
on the transformed model. This covariance matrix is computed in a fashion similar to
(2) with the difference that it may only account for the linear structure of the trans-
formed model and therefore allow variations of Θ that creates tangential displacements
of the contour:

Σ−1
Θ =

1
β

∮
CM

X (x)T∇φ̃M(x′)∇φ̃M(x′)TX (x)dx

where φ̃M is the transformation of φM under the deformation A(L(Θ)). Direct com-
putation leads to:

∇φ̃M(x′) = com
[

d

dx
(L(Θ,x))

]
.∇φM(x)

where ‘com’ denotes the matrix of cofactors. Then we introduce the shape based energy
term using the same notations as in (3) as:

Eshape(Θ, ΣΘ) = −log(f̂H(Θ, Σ))



(a) (b) (c)

Fig. 3. Segmentation with uncertainties estimates of the corpus callosum; (a) Automatic rough
positioning of the model, (b) segmentation through affine transformation of the model (c) seg-
mentation using the local deformation of the FFD grid and uncertainties estimates on the regis-
tration/segmentation process (this figure should be seen in color).

The global energy is minimized with respect to the parameters of A and Θ through the
computation of variations on E = Eimage + Eshape and implemented using a standard
gradient descent.

4 Experimental Results

We have applied our method to the segmentation of the corpus callosum in MR mid-
sagittal brain slices.

The first step was to build a model of the corpus callosum. Minimization of the reg-
istration energy is performed using gradient descent. In parallel, we successively refine
the size of the band α around the contour (from .3 to .05 times the size of the shape),
while we increase the complexity of the diffeomorphism (from an affine transformation
to an FFD with a regular [7× 12] lattice).

Fig. 1 shows examples of FFD deformations along with uncertainty ellipses. These
ellipses are the representation of the 2D conic obtained when projecting the covariance
matrix ΣΘ (of size 168 × 168) on the control points. It therefore does not allow us to
represent the correlations between control points.

The segmentation process is initialized by positioning the initial contour according
to the method proposed in [10]. Energy minimization is performed through gradient de-
scent, while the PDF πcor and πbkg are estimated by mixtures of Gaussians. Fig. 2 shows
the histogram of a typical image of the corpus callosum. The figure illustrates how well
mixtures of two Gaussian distributions can represent the individual histograms for the
corpus callosum and the background, respectively. Segmentation results are presented
in (Fig. 3 and Fig. 4) along with the associated uncertainties. In Fig. 3, we demonstrate
the individual steps of the segmentation process: the left most image shows the auto-
matic initialization of the contour, the middle image shows the contour after the affine
transformation has been recovered, and the right image shows the local deformations.
Fig. 4 shows additional results and illustrates that our method can handle a wide variety



Fig. 4. Additional segmentation results with uncertainty measures.

of shapes for the corpus callosum as well as large variations in image contrast. It can
be seen that the results in the bottom left image is not perfect. In general, failures may
be due to the fact that the shape constraint is not strong enough and the contrast in the
image dominates the deformation. Also, it might be that the shape of this particular
corpus callosum cannot be captured with the current PDF because it has been reduced
to only 10 kernels.

5 Conclusions

In this paper we have introduced a novel method to account for prior knowledge in the
segmentation process using non-parametric variable bandwidth kernels that are able to
account for errors in the registration and the segmentation process. We have shown that
the method can generate a very good model of the object of interest and produce very
good segmentation results.

However the method of kernel selection presented in Section 3 has shown some lim-
itation in practice. Therefore there is a strong need to build more efficient and compact
estimators of the shape variation PDF which account for these uncertainty measures. It
is also important to note that this method can be extended to higher dimensions. Build-
ing models in 3D and segmenting objects of large variability is the next step of our
research work.

The covariance matrices of uncertainty ΣΘ are very sparse. Indeed, while using
regular FFD, the influence of every grid point is local and therefore many cross corre-
lation coefficients are null. Different types of B-spline deformations using an irregular
positioning of control points (but dependent on the model) will be tried to address this
issue and therefore reduce the dimensionality of the problem.

Last, but not least, introduction of uncertainties directly measured in the image as
part of the segmentation process will provide local measures of confidence and could be
considered as a major breakthrough in the area of knowledge-based object extraction.



Appendix

In this section we give some further exploration of the calculus of the derivative on
the energy term Eimage. We need first to introduce the Heaviside distribution which
we note H and the inverse diffeomorphism of A ◦ L(Θ) which we note G(Θ). This
diffeomorphism therefore verifies:

A(L(Θ,G(Θ,y))) = y (5)

For simpler notation purpose we also pose:

D(x,y) = −H(φM(x))log(πcor(I(y)))− (1−H(φM(x)))log(πbkg(I(y)))

Then the image term of the energy (eq. 4) can be rewritten as:

Eimage(Θ) =
∫

Ω

D(G(Θ,y),y)dy

When differentiating Eq. (5) with respect to Θ and substituting the expression obtained
for dG/dΘ into the expression of dEimage(Θ)/dΘ, we get the following:

dEimage(Θ)

dΘ
=

−
Z

Ω

∂D

∂xT
(G(Θ,y),y)

�
∂(A ◦ L)

∂xT
(G(Θ,y),Θ)

�−1
∂(A ◦ L)

∂ΘT
(G(Θ,y),Θ)dy

Now changing the integration variable according to the diffeomorphism x = G(Θ,y)

dEimage(Θ)

dΘ
= −

Z
Ω

∂D

∂xT
(x,A(L(Θ,x)))com

�
∂(A ◦ L)

∂xT
(x,Θ)

�T
∂(A ◦ L)

∂ΘT
(x,Θ)dx

where ‘com’ denotes the matrix of cofactors. When calculating explicitly the partial
derivative of D with respect to its first variable, this integral further simplifies into a
curve integral along the reference model:

dEimage(Θ)

dΘ
=

−
I

CM

D̃(A(L(Θ,x)))

�
com

�
∂(A ◦ L)

∂xT
(x,Θ)

�
.∇φM(x)

�T
∂(A ◦ L)

∂ΘT
(x,Θ)dx

with D̃ defined as:

D̃(y) = − log(πcor(I(y))) + log(πbkg(I(y)))

This expression of the derivative refers only to the contour in the model space. Therefore
there is no need to parse the entire image domain at every iteration of the gradient
descent used in our implementation. Instead, we only scan the model contour at every
iterations. Parsing of the images is only necessary when we reevaluate the parameters
of the gaussian mixtures for πcor and πbkg (every 20 iteration).
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