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Abstract. Given an image, digital matting consists in extracting a fore-
ground element from the background. Standard methods are initialized
with a trimap, a partition of the image into three regions: a definite
foreground, a definite background, and a blended region where pixels
are considered as a mixture of foreground and background colors. Re-
covering these colors and the proportion of mixture between both is an
under-constrained inverse problem, sensitive to its initialization: one has
to specify an accurate trimap, leaving undetermined as few pixels as
possible.
First, we propose a new segmentation scheme to extract an accurate
trimap from just a coarse indication of some background and/or fore-
ground pixels. Standard statistical models are used for the foreground
and the background, while a specific one is designed for the blended re-
gion. The segmentation of the three regions is conducted simultaneously
by an iterative Graph Cut based optimization scheme. This user-friendly
trimap is similar to carefully hand specified ones.
As a second step, we take advantage of our blended region model to
design an improved matting method coherent. Based on global statistics
rather than on local ones, our method is much faster than standard
Bayesian matting, without quality loss, and also usable with manual
trimaps.

1 Introduction

The commonly used model of digital or alpha matting is the following. An image
I is considered as a mixture between a foreground IF and a background IB ,
mixture quantified by an alpha mask α ∈ [0, 1]. For each pixel x, this writes

I(x) = α(x)IF (x) + (1 − α(x))IB(x) (1)

Such a blending has multiple reasons: transparent objects, aliasing, blur or mo-
tion blur. The problem is to recover IF , IB and α from I.

This inverse problem is under-constrained and can not be solved without
priors. Historically, a solution was proposed in the case of a known constant
background, e.g. a blue screen [1]. Recently, inspired by computer vision tech-
niques, methods based on a model of the foreground and of the background were



proposed that greatly improve the matte quality, even without a blue screen.
Since the pioneering work of Ruzon and Tomasi [2], several methods have been
proposed [3–6].

As a prerequisite of any method, the user has to specify a so-called trimap,
partitioning the image into three regions: a set ΩF of definitely foreground pixels
(where α will always be 1), a set ΩB of definitely background pixels (α = 0),
and a blended region ΩM where α, IF and IB are unknown. ΩM has to be
an intermediate region, separating ΩF from ΩB. Matting methods suffer from
sensitivity to this initial condition and one has to specify it accurately, leaving
undetermined as few pixels as possible. Moreover, when too small ΩF and ΩB

are given, the matting process generally does not work at all.
Digital matting was primitively developed for movie production. For a spe-

cialist, carefully specifying a trimap is a long but feasible process (actually faster
and easier than alpha masking). Today, extracting a subject from a picture for
editing purpose becomes a standard in a non professional context. Speed be-
comes also an issue, particularly with the ever increasing resolution of digital
cameras.

This paper addresses both user-friendly trimap design and speed. First, we
propose a trimap segmentation scheme from just a small subset of the back-
ground and/or foreground, that can be for instance specified by the user with a
brush-like tool. Standard Gaussian Mixture Models (GMMs) are used for fore-
ground and background modeling, while a specific statistical model is proposed
for the blended region. To save the user from specifying some obscure number of
components, the GMMs parameters are determined with a coupled Expectation
Maximization (EM) / Minimum Description Length (MDL) scheme. For the sake
of speed, the segmentation of the three regions is conducted simultaneously by
an iterative Graph Cut based optimization. The resulting trimap proves to be
similar to carefully hand specified ones.

As a second step, we take advantage of our blended region model to design
an improved matting method. Based on global statistics rather than on local
ones, our method is much faster than the original Bayesian matting, although
without quality loss. It can also be used with manually designed trimaps.

2 Related work

The original work of Ruzon and Tomasi [2] laid the foundations of most of the
actual methods, for which the key point consist in modeling the background and
the foreground with some statistical model. In their famous Bayesian Matting,
Chuang et al. [3] improved both the statistical model and the way to use it
to recover the alpha mask and the original background and foreground colors.
Since then, Rother et al. proposed GrabCut [7, 8], a method inspired by Boykov
and Jolly work [9], where the image is actually segmented into two regions using
an iterated Graph Cuts [10] scheme. A smooth alpha mask is then modeled
as a ramp of variable width to be estimated. As a result, it is unadapted to
non smooth objects like hairs or trees. The GrabCut method does not need



a trimap. It can be seen more as a two regions segmentation with a smooth
transition between the two regions, than as a strictly speaking digital matting
method. However, as another member of iterated Graph Cuts methods [9], our
trimap segmentation has similarities with the segmentation step of GrabCut.

In their Poisson Matting, Sun et al. propose another prior on α, based on its
gradient and Poisson equations, already used in image editing [5]. Their method
supply different modes, refinements and filters, manually invoked by the user.
Again, priors on α or its gradient can be questionable as the blending might have
different origins and the blended objects different scales with respect to pixels
size. Moreover, manual decisions might limit the usability of this technique for
non specialists. In conclusion, Bayesian matting can be considered as the less
ad-hoc method so far. Its weak points are the need of an accurate trimap (a
problem common with other matting techniques) and its slowness due to many
local statistics estimations. Figure 1 demonstrates how a coarse trimap affects
digital matting.

To our knowledge, the only works addressing trimap design are video ori-
ented. Following the original work by Mitsunaga et al. [11], one can specify
trimaps for some key frames and interpolate them in the intermediate frames.
In their recent work, Xiao and Shah [12] proposed an occlusion based trimap
extraction couple with motion layer segmentation. However, it is unusable not
only for still pictures but also in real film production where motion is often fast
and/or heavily blurred.

This paper is organized as follows. First, section 3 exposes the background-
foreground model and our parameters estimation method. Then, section 4 in-
troduces the trimap segmentation, details its implementation, and compares it
with manual segmentations. Finally, section 5 proposes an improved fast, global
and accurate matting method, and shows results.

Fig. 1. Sensitivity of Bayesian matting [3] to the trimap. First row: the original image,
an accurate trimap and its corresponding alpha. Second row: a coarse trimap and its
alpha. Third row: same as rows 1 and 2 for another image.



3 Unsupervised Two-Regions Segmentation

As a first step toward our trimap segmentation, we first focus on segmenting
an image into two regions, each of them having its own characteristics, a-priori
unknown. This often called Unsupervised Segmentation has recently received a
lot of attention from the Computer Vision community. Many approaches have
been proposed, among which some Level Set [13, 14] based methods (e.g. [15,
16]). More recently, using the Graph Cuts framework, Boykov and Jolly initiated
an iterated method [9], further developed by Rother et al. in [7] and in their
GrabCut scheme [8].

In this section, we briefly describe the segmentation part of the GrabCut
scheme. Already known to the GrabCut aware reader, the content of this section
introduces definitions and notations. The slight difference with the original work
is that we plead for a more sophisticated parameter estimation method, EM
+ MDL based, mathematically more justified, more user-friendly, and yielding
somehow better results.

Let I be a color image defined over a domain Ω. For all x ∈ Ω, I(x) is a pixel
defined in a color space (e.g. RGB or CieLab). Let ΩU be a part of Ω specified
by the user. Our goal here is to segment Ω into two ”coherent” regions that
we will abusively still call the background and the foreground, respectively still
denoted by ΩB ΩF , such that ΩU ⊂ ΩB.

3.1 Region Modeling

Following previous work and using a statistical approach, each region ΩX (X =
F or B) is modeled by a Probability Density Function (PDF) approximated by
a Gaussian Mixture Model (GMM):

pX(I) =
NX∑
i=1

πX
i GμX

i
,ΣX

i
(I) with

NX∑
i=1

πX
i = 1 and πX

i ∈ [0, 1]

Each component is represented by a Gaussian of mean μX
i and covariance ΣX

i :
Gμ,Σ(I) = |Σ|1/2

(2π)3/2 e−(I−μ)T Σ−1(I−μ)/2 and πX
i is the prior of the ith component

with respect to all components, i.e. its proportion in the mixture.
Estimating the parameters ΘX = {NX , (πX

i , μX
i , ΣX

i )i=1..NX} is a widely
studied problem. For a given NX , one can use the K-Means algorithm (see [17]), a
fast but approximate method. This method is widely sensitive to its initialization.
Moreover it does not provide a likelihood maximum, which is not appropriate
for a segmentation based on likelihood maximization. Indeed the K-Means just
solves:

(μX
i , ΣX

i ) = argmin
(μi,Σi)

∑
x∈ΩX

∥∥I(x) − μk(I(x))

∥∥2

Σk(I(x))

with k(I) = argmink ‖I − μk‖2
Σk

, ‖I − μ‖Σ being the Mahalanobis distance be-
tween I and μ with respect to Σ. Note that [7] suggests [18] as a variant and
that [3] uses the method in [19]. We prefer the EM algorithm [20, 21]. It is much



more robust with respect to the initial parameters and provides a likelihood
maximum, solving:

(πX
i , μX

i , ΣX
i ) = argmin

(πi,μi,Σi)

∑
x∈ΩX

p(I(x))

Finally, we combine the EM algorithm with a MDL [22] estimation of NX ,
saving the user from manually adjusting the number of Gaussian components.
Note that we have also tested more recent algorithms like Split and Merge EM
[23], without any significant improvement.

3.2 Energy Design

Let γ be the partition function of Ω into ΩF and ΩB: γ (x) = F if x ∈ ΩF ,
γ (x) = B otherwise. Under the hypothesis that regions are independent with
respect to their color distribution, it is natural to use the posterior probability
of the pixels as a segmentation criterion, thus stating the problem as minimizing
an energy:

Edata(γ) =
∫

Ω

−log pγ(x) (I (x)) dx (2)

An extra control term should be added to constrain the smoothness of the so-
lution which is often addressed as a local smoothness constrain: neighbor pixels
should belong to the same region. This yields an additional smoothness energy:

Esmooth(γ) =
∫

Ω

(∫
y∈N (x)

V (x, y) dy

)
dx (3)

where N (x) is a local neighborhood of x and V (x, y) = V0 (x, y) if γ (x) �=
γ (y) with V (x, y) = 0 otherwise.

Under the assumption that the frontier between the two regions corresponds
to high image gradients, a frequent choice is V0 (x, y) = κ exp(− ‖I(x)−I(y)‖2

2σ2 )
where κ is some positive constant controlling the degree of smoothness and σ is
set as in [9]. The global energy to minimize ends to:

E (γ) = Edata (γ) + Esmooth (γ) (4)

3.3 Implementation and Comparison

When minimizing E either with a Level Sets Method approach [24, 25] or with a
Graph Cuts one [9], one should be aware of the dependency of the PDFs upon γ.
This leads to an iterated process that is usual in the Level Sets gradient descent,
but is not in the case of Graph Cuts. As we do not need sub-pixel accuracy, we
opt for a Graph Cuts approach, mainly for speed reasons. Using EM instead of K-
means is theoretically important: the algorithm consists in alternately updating
the PDFs according to the segmentation and in segmenting according to the
PDFs. At each step, the energy decreases:



– Updating the PDF using EM ensures that Edata decreases, Esmooth being
fixed.

– The Graph Cuts step ensures that E decreases.

Let us just recall useful notations [26]. We consider a graph G = 〈V , E〉 that
is a set of nodes V and directed edges E connecting them. Two special terminal
nodes are present: the source s and the sink t. Each edge (p, q) connecting a
node p to a node q is assigned a weight tp,q. Edges are broken in two groups:
n-links and t-links. A n-link is an edge connecting two non-terminal nodes. A
t-link connects a non-terminal node to a terminal node. A cut C is a partitioning
of the nodes of the graph into two disjoint subsets S et T such that the source
s ∈ S and the sink t ∈ T . Its cost is the sum of the weights of all edges (p, q)
such that p ∈ S and q ∈ T . A minimum cut is a cut with minimal cost and one
minimum cut can be determined in polynomial time with a max-flow extraction
algorithm.

Here, each pixel of the image is associated to a node and to edges for each
of its neighbors. Each node is also connected to the sink and the source. The
weights on the t-links deal with data constrain and those on the n-links account
for smoothness. For a pixel x associated to node p, let DX be the negative
logarithm of the probability density function associated to region ΩX : DX(p) =
− log pX (I (x)). The Graph is built according to table 3.3. After the cut, the
nodes that are still connected to the source, are assigned to ΩF , the others to ΩB.
Figure 2 shows the result of this segmentation process on some test image using
both the method in [7] and a method using an EM/MDL estimation. Note that
some details misclassified by the original method are correctly handled by the
EM/MDL approach. Yet, these improvements are not decisive. More important
is the fact that the MDL based estimation of NX proves to be reliable and masks
one annoying parameter from the user.

Table 1. Weights associ-
ated to node p

link weight for

ts,p 0 p ∈ ΩU

tp,t ∞ p ∈ ΩU

ts,p DB(p) p �∈ ΩU

tp,t DF (p) p �∈ ΩU

tp,q V(p, q) q ∈ N (p)

Fig. 2. Importance of then EM estimation and reliability
of the MDL criterion. Original image with background
specification in red (left) and the corresponding segmen-
tations using the method in [7] with fixed NF = NB = 5
(middle) and our EM/MDL approach (right)

4 Trimap segmentation

With these notations in hand, let us go back to our main goal of segmenting a
trimap. Assuming that the blended region will also be modeled by a PDF pM (I),



still to be modeled, the data driven part of the energy is unchanged and given
by equation (2) with a new partition function that reflects the 3 regions.

However, keeping the same smoothing term is a nonsense. A high image
gradient does not indicate a frontier between two regions anymore. Instead, we
use the length of the frontiers separating the regions as a smoothing energy.
Classical in the Level Set framework and inducing mean curvature motion, this
can also be handled rigorously in an Markov Random Field framework (see
[27]). Here, we will restrict ourselves to an approximation, just replacing the
previous V0(x, y) to a decreasing function of the distance between x and y (e.g.
V0(x, y) = κ/(1 + d(x, y))).

Keeping the same GMM models for pB and pF , we still have to design a
model for pM in order to define the energy to minimize.

4.1 A PDF for ΩM

A straightforward solution would be to take a third GMM for pM and to esti-
mate its parameters ΘM = {NM , (πM

i , μM
i , ΣM

i )i=1..NM } via the same EM/MDL
scheme as for pB and pF . It would be a mistake. Indeed, pM is not independent
from pB and pF : in ΩM , I, IF and IB are related by equation (1). Despite this,
one could willingly ignore this dependency and try to segment (ΩB , ΩM , ΩF )
as three regions with each one its own independent GMM. Unfortunately, it is
not obvious that the resulting iterated minimizing process will converge to the
desired regions without a very accurate initialization, specifying pixels of the
three regions. On the contrary, making pM depend on pB and pF will turn out
to be sufficient to keep a coarse initialization ΩU .

Let us examine equation (1). We will assume for simplicity that both IF and
IB come from one single Gaussian of the respective GMMs pF and pB. In their
Bayesian estimation of layers from multiple images, Wexler et al. [4] assume that
α follows a Beta law. Yet, they choose the parameters of the Beta distribution
by estimating them on some reference image. Thus, although Kitamoto gives
in [28, 29] a Gaussian approximation of a mixture of two Gaussian distributions
when the mixture coefficient follows a Beta Law, we prefer to simply consider
that α follows a uniform law. In that case, if IF comes from GμF

i
,ΣF

i
and IB

from GμB
j

,ΣB
j
, the distribution of I can be approximated by another Gaussian

GμM
ij

,ΣM
ij

, given also by Kitamoto in [28, 29] as:

μM
ij =

μF
i + μB

j

2
and ΣM

ij =
1
3
(
ΣF

i + ΣB
j

)
+

1
12
(
μB

j − μF
i

) (
μB

j − μF
i

)T
(5)

Note that this is, again, an approximation and that more sophisticated models
could be investigated. Actually, our simple assumption of a uniform α, and of
a Gaussian approximation for I, will turn out to give good results. With this
choice, it is natural to model pM with another GMM, whose NM = NF NB

components are now fixed and dependent on pF and pB:

pM (I) =
NF∑
i=1

NB∑
j=1

πM
ij GμM

ij
,ΣM

ij
(I) (6)



where
∑

ij πM
ij = 1 and where the (μM

ij , ΣM
ij ) are given by equation (5). The only

free parameters are the (πM
ij ), and we estimate them with an EM algorithm on

ΩM .

4.2 Graph Cuts Implementation

As we assume that the blended region ΩM separates ΩF from ΩB, we can use
the Graph Cuts implementation described in [30] which is simpler than the usual
α-expansion based algorithm and provides a global minimum. Each pixel x is
represented by two nodes p0 and p1. The graph is built according to figure 3.
After the cut, each node is labeled according to the following rule:

– If the link between {s, p0} is cut, the node is assigned to the foreground.
– If the link between {p0, p1} is cut, the node is assigned to the blended region.
– If the link between {p1, t} is cut, the node is assigned to the background.

Here we use the method described by Kolmogorov and Zabih in [10] to force
the algorithm to cut one and only one of the three links {s, p0}, {p0, p1} and
{p1, t}. It consists in adding infinite reverse edges on the graph (see red links on
figure 3). Like in the two regions case, we use an iterative scheme. However we
found that using the two regions segmentation as a first step gives good initial
estimates for pB and pF and speeds up the convergence.

link weight for

ts,p0 ∞ p ∈ ΩU

tp0,p1 ∞ p ∈ ΩU

tp1,t 0 p ∈ ΩU

ts,p0 DF (p) p �∈ ΩU

tp0,p1 DM (p) p �∈ ΩU

tp1,t DB(p) p �∈ ΩU

tpi,qi V(p, q) q ∈ N (p)

Fig. 3. Trimap segmentation. Graph representation for two nodes p and q and associ-
ated weights.

4.3 Results

Figure 4 shows the trimap obtained for the reference image in [3] from just
a coarse indication of the background. It is similar to the hand designed one
used in the original work. For comparison purposes, we show also the trimap
obtained when naively modeling the blended region with an independent GMM,
even when starting from a more accurate initialization. Figure 6a and 6b in next
section show many other automatic trimaps. Table 4.3 gives the running times of
the trimap extraction (and of the first step of two regions segmentation) for some



of our test images, on a standard 2.4GHz PC without any specific optimization.
These are the times for a complete convergence and the process might be stopped
before. A multi-scale approach would also improve speed significantly. Anyway,
these are to be compared with the times needed for a cautious manual segmen-
tation, depending on the user’s ability and/or equipment. Note that the more
complex a manual segmentation would be, the more the automatic segmentation
seems to require time to converge (see images on figures 6a and 6b).

Table 2. Running times for
trimap segmentation on some test
images.

Image First step Total time

Teddy Bear 36s 94s

Butterfly 14s 28s

Light 48s 133s

Fig. 4. Automatic trimaps. First column: the original image and the hand designed
trimap used in [3]. Second column: background/foreground initialization (in red/white)
and the obtained trimap, naively considering pM as an independent GMM. Third col-
umn: background only initialization (in red) and the trimap obtained with our method

5 An improved matting method

In this section, we propose a new matting algorithm taking advantage of our
blended region model. Based on global statistics rather than on local ones, it is
faster than the original Bayesian matting, although without quality loss.

Chuang et al.’s Bayesian matting algorithm is based on estimating local
statistics of the foreground and of the background. For each pixel in the blended
region, a neighborhood is considered, where the foreground and the background
are respectively modeled by two Gaussian distributions GμF

loc
,ΣF

loc
and GμB

loc
,ΣB

loc
.

Estimating a local mean and covariance for each pixel is inefficient from a
computational point of view. Moreover, limiting the distribution of the neighbor-
hood of a pixel to one single Gaussian may sometimes be a too coarse approxima-
tion. We propose to take advantage of our global GMM analysis of the foreground
and the background carried out during the segmentation process. Keeping the
assumption that IF and IB come from one Gaussian each, we choose these two
Gaussian distributions respectively among the components of pF and pB. We use
πM

ij GμM
ij

,ΣM
ij

(I) to measure which Gaussian distributions most probably explain
I. Thus, we simply:

1. choose the pair (i0, j0) that maximizes πM
ij GμM

ij
,ΣM

ij
(I)

2. use Chuang et al.’s solving scheme with GμF
i0

,ΣF
i0

and GμB
j0

,ΣB
j0

as priors for
IF and IB instead of the local estimations GμF

loc
,ΣF

loc
and GμB

loc
,ΣB

loc
.



The resulting process turns out to be faster than the original method and the
results are similar. Note that it is essential that the GMMs have enough com-
ponents to explain all the colors/textures locally present in the image. Our
EM/MDL estimation ensures this.

6 Results

In their original work on Bayesian matting, Chuang et al. proposed a real bench
image, supplying a ground truth for the alpha mask (see [3]). Figure 5 shows
this true mask, compared those obtained with their and our matting algorithm,
using our automatic trimap in both cases. The result are similar and the relative
errors, in L2 norm in region ΩM , respectively gives 1.5% and 1.4% errors.

As expected, the main advantage of our method is its computational effi-
ciency. Table 6 gives the running times of both methods for some of our test
images, under the same conditions as previously (standard 2.4GHz PC, no spe-
cific optimization). We observed a speedup of about 100. Please note that this
would also stand when starting from a manual trimap. The only overhead for
our matting would be to estimate the global statistics from this trimap before
running, which is actually negligible with respect to the matting process.

Finally, figures 6a and 6b show the complete process of our method on several
test images: the original images (figure 6a only), the user’s initialization, the
segmented trimap, the mask obtained with Bayesian matting (fig. 6a only),
the one obtained with our method, and a recompositing from our (α, IF , IB)
estimation. It demonstrates how a simple initialization without any additional
parameter (e.g. number of Gaussian distributions) is enough to get accurate
trimaps, and how our fast matting method gives results similar to the ones
obtained with the original but slower Bayesian matting.

Table 3. Running times for
the standard Bayesian mat-
ting and for our method on
some test images.

Image Bayesian Our
matting matting

Teddy Bear 47s 0.36s

Butterfly 2.7s 0.027s

Light 37s 0.27s

Fig. 5. From top to bottom, left to right: three alpha masks (ground truth, Bayesian
matting using our trimap, our method using our trimap), a recompositing using our
mask and foreground estimations



Fig. 6. a. For each image, in reading order: original image, user’s initialization, au-
tomatic trimap, Bayesian matting, our matting, recompositing. b. On each line, from
left to right: user’s initialization, automatic trimap, our matting, recompositing.

7 Conclusion

In this paper, we propose a segmentation method aimed at extracting an accu-
rate trimap for the digital matting problem. A statistical model is specifically
designed for the blended region and an iterative Graph Cut based optimization
scheme allows this trimap segmentation from just a coarse specification of some
background and/or foreground pixels. This trimap is similar with those obtained
by a meticulous hand drawing. Finally, taking advantage of this blended region
model, we describe a improved digital matting method, based on global statis-
tics, much faster than the original Bayesian matting, although without quality
loss. This method is also usable starting from a manual trimap.
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