
Fast Level Set Multi-View Stereo on Graphics Hardware

Patrick Labatut1
1 Département d’Informatique

École normale supérieure
45, rue d’Ulm, 75005 Paris, France

patrick.labatut@ens.fr

Renaud Keriven1,2 Jean-Philippe Pons2

2 CERTIS
École Nationale des Ponts et Chaussées

6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France
{keriven,pons}@certis.enpc.fr

Abstract

In this paper, we show the importance and feasibility of
much faster multi-view stereo reconstruction algorithms re-
lying almost exclusively on graphics hardware. Reconstruc-
tion algorithms have been steadily improving in the last
few years and several state-of-the-art methods are nowa-
days reaching a very impressive level of quality. However
all these modern techniques share a very lengthy computa-
tional time that completely forbids their more widespread
use in practical setups: the typical running time of such
algorithms range from one to several hours. One possible
solution to this problem seems to lie in the use of graphics
hardware: more and more computer vision techniques are
taking advantage of the availability of cheap computational
horsepower and divert graphics hardware from its original
purpose to accelerate the early stages of some algorithms.
We present here an almost full implementation on graph-
ics hardware of a multi-view stereo algorithm based on sur-
face deformation by a PDE: this algorithm tries to minimize
the error between input images and predicted ones by re-
projection via the surface. As it mainly works on whole im-
ages, it is well suited for graphics hardware. We show how
we succeeded to bring the whole reconstruction time within
minutes. Results for synthetic and real data sets are pre-
sented with computational times and compared with those
of other state-of-the-art algorithms.

1. Introduction

Three-dimensional shape reconstruction from a set of
pictures is one of the oldest problems in computer vision
and find its roots back in robotics. However, even if in a
few years the quality of shape reconstruction has greatly im-
proved, it is nowadays far from real-time: the current best
algorithms for reconstruction from multiple views are typi-
cally very slow, taking one to several hours to run and thus
hindering a more common use of such a tool.

A quite recent idea to improve the running time of many
computer vision algorithms consists in using commodity
graphics cards not for rendering fancy graphics but for
general-purpose computations. Allowing portions of algo-
rithms to run on GPU is not always possible and requires
specific knowledge but when possible, the performance gain
is often worth the efforts. We show how this approach
was successful for us, allowing quality shape reconstruction
within minutes.

The first section of this paper gives some background
about GPUs and modern multi-view algorithms. The fol-
lowing section presents the shape reconstruction algorithm
we used, the next section describes its implementation on
graphics hardware and the last section shows some results
with the corresponding running times on different data sets
and comparison with other current methods on the exact
same data sets.

2. Background and Previous Work

2.1. Multi-View Stereo Algorithms

Given n (≥ 2) images of the same scene (and the intrin-
sic/extrinsic parameters of the corresponding cameras), the
goal is to build a 3D model of the scene as close as possi-
ble to the original. This goal is difficult to reach because
occluded parts and lighting can substantially change the ap-
pearance of a scene from different viewpoints.

Currently state-of-the-art multi-view stereo algorithms
can be very roughly divided into several classes: first, dis-
crete methods à la space carving [16] which work on an
initially whole discrete volume and compute a cost func-
tion to extract a surface from this volume [24, 25] (interest-
ingly, the ancestor of space carving, voxel coloring [23] has
a very low running time but can not be considered as a gen-
eral and modern shape reconstruction algorithm). Then we
find several variational methods [13, 5, 14, 20] based on the
deformation of a surface under a PDE: these method are in-
spired from the initial work of [7]. And finally, there exists

1



methods computing and fusing together depth maps [15],
and other methods that enforce visual hull hard constraints
[24, 8] using graph-cuts to optimize the consistency of the
recovered shape with the input images.

2.2. General-Purpose Computation on
GPUs

In just a few years graphics cards have become heavily
parallel processing machines with increased programming
capabilities making their use possible for other purposes
than standard real-time rendering [19]. A simplistic way to
understand what a GPU actually does is to consider it as a
stream processor [2] which executes a computational kernel
over all the elements of an input stream (possibly accessing
other streams) and puts the corresponding results into an
output stream.

However we will need a more precise idea of the way a
GPU accelerates the rendering process (see Fig. 1) in order
to present our method: the graphical primitives (triangles)
that constitute the objects to be rendered are downloaded to
the graphic card as a list of vertices with several attributes
(position, color, texture coordinates, . . . ). Then, these ver-
tices and their attributes undergo (programmable) transfor-
mations before being projected to the screen (a 2D grid).
The interior of the triangles defined by three consecutive
projected vertices is then iterated over the screen and at ev-
ery pixel location, a fragment is generated: it combines the
coordinates of the current pixel and the attributes interpo-
lated from the vertices attributes. This fragment undergoes
a series of (programmable) transformations and if in partic-
ular its depth attribute allows it (i.e. is lower than the value
stored in the depth buffer), the current pixel is colored with
the fragment color (and the depth buffer is updated accord-
ingly).

Using a graphics card as parallel computer is thus quite
simple: a large quad it drawn to cover the whole screen,
ensuring its depth is correct and a program that will execute
on every generated fragment is loaded. Then the result is
read back from video memory. If a loop is needed, e.g. for
an iterative algorithm, lighter render-to-texture techniques
can be used instead: the framebuffer is replaced by a texture
that is first rendered to and which can later be read as an
input texture by fragment programs.

2.3. Computer Vision Using Graphics
Hardware

Computer vision algorithms are nowadays often GPU-
accelerated, as they work on the same kind of data as ren-
dering. Recovering the disparity map of two images has
already been thoroughly studied: from simple block match-
ing strategy with a multi-scale approach [26], to mixed

=

1 V2V V3

RGBA

Z

XYZW

Textures

Vertex Arrays

Framebuffer

RGBA

Rasterization

Program
Vertex

Program

Fragment

Figure 1. The graphics pipeline: how modern
graphics cards accelerate 3D rendering from
object triangles to framebuffer pixels

CPU/GPU approach initializing a graph-cut optimization
with crude depth maps computed on GPU [9], and parallel
dynamic programming on GPU [11]. Numerical schemes
for 2D level sets have also been implemented by brute force
[21] and more recently, 3D level sets for segmentation [17]
introduced a GPU to CPU message passing system.

In the case of multi-view algorithm, the GPU is becom-
ing a tool of choice, enabling hardware-accelerated rasteri-
zation and re-projection, but often only as a powerful pre-
processing tool for the very first stages of the algorithm: for
instance, [16] is one of the early promoter of graphics hard-
ware, using it to project the input images back into a voxel
volume. More recent methods, such as [24], even when
not using GPUs suggest improvements to reduce running



IjIi

xj

iS

di

ix

jPiP

zi

jS

x
N

Figure 2. Notations

time using graphics hardware. However, to our knowledge,
no multi-view stereo algorithm for full shape reconstruction
has been thoroughly adapted to run on GPU.

What we present in this paper is an almost full GPU im-
plementation of a modern reconstruction method which was
actually designed with GPU in mind.

3. Shape Reconstruction Algorithm

The variational method of [20] borrows from [7] but re-
formulates the problem of shape reconstruction as an image
registration problem. It is thus simpler, more robust than
most other methods and more suitable for a GPU imple-
mentation. It is also worth noting that in opposition to most
other algorithms, it does not rely on background-segmented
input images (but can use these silhouettes if they are avail-
able).

3.1. Notations

A surface S ⊂ R3 models the shape of the scene being
reconstructed. We note Pi : P3 → P2 the perspective pro-
jection of the ith camera and Ii : Ωi ⊂ R2 → Rc the corre-
sponding images with c channels (as usual, we assume that
the camera can be described by the pinhole camera model
and that distortions in the images have already been cor-
rected). As the method we use take into account the visi-
bility of the surface points, Si will refer to the part of the
surface S visible in the image Ii. Then P−1

i,S : Pi(S) → Si

is the re-projection from the camera Pi onto the surface S.
Finally Ij ◦Pj ◦P−1

i,S : Pi(Sj) → Rc is the re-projection of
the image Ij in the camera Pi via the surface S.

3.2. Energy to Minimize

The energy we wish minimize is mainly a matching term
i.e. a sum of dissimilarity terms between oriented pairs of
images: each pair is composed of one of the input images
and some predicted image obtained by re-projecting another
input image into the camera corresponding to the former
image. This leads to the following energy (M is the dissim-
ilarity measure between two areas of image):

M(S) =
∑

i

∑
j 6=i

M(Ii, Ij)(S)

=
∑

i

∑
j 6=i

M |Ωi∩Pi(Sj)
(Ii, Ij ◦ Pj ◦ P−1

i,S )

One must notice that this approach does not mix regu-
larization and data fidelity together and is hence making the
tuning of the regularization much easier. A user defined
smoothing term is simply added. Computing the variation
of the matching w.r.t. to an infinitesimal vector displace-
ment of the surface δS, we get (D· is the Jacobian matrix of
a function):

∂M(S + εδS)
∂ε

∣∣∣∣
ε=0

=
∫

Ωi∩Pi(Sj)

∂2M(xi)︸ ︷︷ ︸
1×c

DIj(xj)︸ ︷︷ ︸
c×2

DPj(x)︸ ︷︷ ︸
2×3

∂P−1
i,S+εδS(xi)

∂ε

∣∣∣∣∣
ε=0︸ ︷︷ ︸

3×1

dxi

As the surface moves the predicted images change ac-
cordingly. The variation of the matching term thus involves
the derivative of the similarity measure w.r.t. its second ar-
gument which we will note ∂2M . After some additional
steps, the previous expression leads to the equation giving
the evolution of the surface S along its outward normal N:

∂S

∂t
=

−λH +
∑

i

∑
j 6=i

δSi∩Sj
∂2M DIj DPj

di

z3
i

N

where H is the mean curvature of S (which corresponds to
a smoothing term added to the energy), δ· is the Kronecker
symbol, di the vector from the camera Pi to the considered
point, zi its depth and λ a smoothing coefficient (λ > 0).

3.3. Similarity Measure

The described method allows the use of whatever sim-
ilarity measure we want: cross-correlation, correlation ra-
tio, mutual information, etc. . . [12]. We limit ourselves to



the local normalized cross-correlation cc(Ii, Ij), which as-
sumes a local affine relation between the intensities of the
two image areas: however experiments have shown that it
can even cope with non-lambertian surfaces provided the
window size is small enough (albeit making the estimation
less robust to noise and outliers). We also choose to use
smooth Gaussian correlation windows instead of hard ones.
We detail here the expression of M and ∂2M as they are
needed to later explain the GPU implementation:

µ(Ii) =
Gσ ∗ Ii

ω

v(Ii) =
Gσ ∗ I2

i

ω
− µ2(Ii) + τ2

v(Ii, Ij) =
Gσ ∗ IiIj

ω
− µ(Ii) µ(Ij)

cc(Ii, Ij) =
v(Ii, Ij)√
v(Ii) v(Ij)

where ω(x0) =
∫
Ω

Gσ(x0−x) dx is the spatial normaliza-
tion to account for the shape of the correlation window, and
Gσ is a Gaussian kernel.

The dissimilarity measure M cc(Ii, Ij) between images
Ii and Ij is simply the sum of the normalized cross-
correlation over the whole domain:

M cc(Ii, Ij) = −
∫

Ω

cc(Ii, Ij)(x) dx

Its partial derivative ∂2M(Ii, Ij) required for the com-
putation of the minimizing flow given above is defined as
the function which for any image variation δI verifies:

∂M(Ii, Ij + εδI)
∂ε

∣∣∣∣
ε=0

=
∫

Ω

∂2M(Ii, Ij)(x)δI(x) dx

In the case of the normalized cross-correlation, we get:

∂2M
cc(Ii, Ij) = α(Ii, Ij) Ii + β(Ii, Ij) Ij + γ(Ii, Ij)

where:

α(Ii, Ij) = Gσ ∗ −1

ω
√

v(Ii) v(Ij)

β(Ii, Ij) = Gσ ∗ cc(Ii,Ij)
ω v(Ij)

γ(Ii, Ij) = Gσ ∗
(

µ(Ii)

ω
√

v(Ii) v(Ij)
− µ(Ij) cc(Ii,Ij)

ω v(Ij)

)
(1)

3.4. Energy Minimization

The minimization of the energy by gradient descent is
implemented within the level set framework (introduced by
[4] and developed by [18]) which gives numerical stabil-
ity and automatic handling of surface topological changes.
However this comes at a cost and to reduce the compu-
tational burden, the narrow band algorithm [1] is used to
evolve the level sets.

As the energy is optimized through a simple steepest gra-
dient descent, it can easily get stuck in a local minimum.
The algorithm therefore adopts a multi-scale approach by
using the result of the optimization at a coarser scale to ini-
tialize the optimization at a finer level.

4. Graphics Hardware Implementation

Whereas other variational methods for multi-view stereo
are CPU-only, [20] was designed with classical GPU accel-
eration in mind. We extend this approach further by using
GPGPU techniques.

4.1. Analysis

We evaluated the bottlenecks of a the original partially
GPU-accelerated implementation of [20] in order to convert
it almost completely to GPU.

The main loop driving the evolution of the surface and
executed at each time step can be decomposed as shown in
Tab. 1. As all the surface points visible in image Ii should
be points from the narrow band, the M cc derivative is com-
puted over the common domain of image Ii and image Ij

re-projection, allowing for stream computation. Items 6 and
7 actually spend most of the time doing bilinear interpo-
lations in either the input images pixels or the similarity
measure derivative pixels. The depth computations and re-
projections were already running on GPU. Finally the level
sets computations cover only a fraction of the running time.
We thus chose to concentrate our efforts on items 5.2, 6 and
7.

4.2. Re-projection and Visibility Masks

The depth computation is simply done by rendering the
surface and updating the depth buffer. The visibility masks
Ωi∩Pi(Sj) and the image re-projections are computed with
the shadow mapping technique which consists in using the
contents of the depth buffer we got from the Pj camera as a
texture and rendering the surface in the camera Pi. Access-
ing texture elements in this special texture triggers a com-
parison between the depth of the current fragment and the
depth stored in the texture and returns a boolean value. The



0 % 1 mesh update

10 % 2 distance function update

5 % 3 mesh download to the GPU

5 % 4 depth computation in every camera
5 similarity measure derivative update

for each camera couple (i, j)

0 % 5.1 re-projection of the image Ij in the camera Pi

20 % 5.2 computation of the similarity measure derivative

20 % 6 computation of band points attributes
for each band point / for each camera

position / visibility / intensity computation

40 % 7 normal speed computation
for each band point / for each camera pair

if the point is visible in the two cameras
7.1 corresponding normal speed computation

0 % 8 CFL condition

0 % 9 level sets update

Table 1. Main loop with typical running time
distribution

surface points are used as texture coordinates and the tex-
ture matrix (which is applied to the texture coordinates be-
fore accessing texels) is replaced by the Pj camera matrix.
We can hence generate a depth mask using the Pj camera
depth buffer as a texture. Then the Ij image re-projection is
obtained by applying this image as a texture (see Fig. 3).

4.3. Similarity Measure Derivative

The smoothing Gaussian windows were at first imple-
mented with a fast recursive filter [3]. IIR filters do not fit
very well in the GPU computational model constraints so
it was replaced by an equivalent simple separable convolu-
tion much more suited to the SIMD-CREW hardware of the
fragment unit. In order to mask away some of the pixels
in the texture, we take advantage of the efficient Z-Culling
technique, well-known to help resolving static branching: a
mask is loaded in the depth buffer that allows masked frag-
ments to completely skip the execution of the fragment pro-
gram thus saving time. Using this masking technique, the
computation of α, β and γ from (1) easily maps to succes-
sive fragment programs:

• put 1, Ii, Ij , I2
i , Ii Ij , I2

j into textures

• convolve the previous textures with Gσ

• compute ω, µ(Ii), µ(Ii), v(Ii), v(Ij), v(Ii, Ij),
cc(Ii, Ij)

• convolve the previous pass results with Gσ and com-
bine the results to get α, β and γ.

Pj

Pi

iI

Ij
S

Figure 3. The shadow mapping technique en-
ables fast computation of visibility masks us-
ing previously computed depth maps

4.4. Points Attributes

At the finest scale, the band typically contains many
dozens of thousand of points. An input texture containing
the coordinates of the band points is first created (as shown
in Fig. 4). Fragment programs are iteratively executed over
the cameras on all the band points, to compute the position,
visibility and intensity attributes from this input texture, and
output corresponding attribute textures. Z-Culling is once
again used to mask away some parts of the input stream
where no computation needs to be done.

For the normal speed we combine the visibility textures
and the masks to generate a mask for Z-Culling. We then
iterate over the camera pairs while accumulating the normal
speeds computed for each points in the narrow band. The
normal speed texture just computed is then read back into
system RAM and used to finally update the level sets.

5. Results and Comparison with Other Meth-
ods

The OpenGL API and its extensions (mostly render-to-
texture and fragment program extensions) were used to pro-
gram the graphics hardware. Prototyping was done thanks
to the Cg programming language. All the presented results
(Fig. 5, Fig. 6 and Fig. 7) were obtained on a PC with an In-
tel Xeon 2.8 GHz CPU and 1 GB of system RAM equipped
with an NVIDIA GeForce 7800 GTX graphics card with
256 MB of video RAM.



(x, y, z) texture element

unused texture element

level sets grid

Figure 4. The narrow band is straightfor-
wardly mapped to a 2D texture of 3D coordi-
nates

The “buddha” data set comes from the Intel OpenLF
Mapping project and the “dino” and “temple” data sets
come from a recent multi-view stereo algorithms evaluation
[22].

These results are the same as those we got with the orig-
inal implementation from [20].

The overall speed factor is almost about 4 when com-
pared to the already partially GPU-accelerated implemen-
tation from [20]. . However the sections of the algorithms
that were heavily using bilinear interpolations observe an
eleven-fold improvement in general, and the computation
of the measure derivative gets a ninefold decrease of its run-
ning time.

A recent survey on multi-view stereo algorithms [22]
compared several state-of-the-art reconstruction techniques
(see Tab. 21) and mainly focused on quality of shape recon-
struction using several metrics.

The respective running times of these methods were also
reported. Given the diversity of hardware, all these running
times are actually very difficult to compare (especially be-
tween CPUs and GPUs), however we will use exactly the
same “normalization” as the authors: the times were cor-
rected taking into account the frequency of the CPU (and
for GPU-based algorithms, using the typical frequency of
machine using such GPU). If clearly not flawless, this cor-
rection is supposed to give at least an idea of the relative
performance of the different algorithms: even after this cor-
rection, our almost full GPU-accelerated method is accord-
ingly the fastest method by far among those whose running
times were reported. As we can see in Tab. 2, it is the only

1excerpt from the 2006-04-03 results.

#Images 25
Resolution 256× 256× 3

#Pairs 50
Level set volume 128× 128× 128

Running time (CPU/GPU) ∼ 780 s
Running time (GPU) ∼ 210 s

Figure 5. “buddha” data set (25 views):
first row: some input images, second row:
ground truth, third row: result

algorithm which took a few minutes to complete a full re-
construction. Most others are taking several hours long (of
course, with the notable exception of [20] from which ours
is derived).

6. Conclusion and Future Work

We based our work on the algorithm from [20]. We have
evaluated the original mixed GPU/CPU-implementation to
focus only on its bottlenecks. We reformulated the cor-
responding parts of the algorithms to run efficiently on
graphics hardware. We get a significant decrease of the
total running time which now allows shape reconstruction
within minutes and makes our shape reconstruction the
fastest among its class to our knowledge. If we were to
compare this result with the original CPU-only method [7]
from which [20] borrowed, we would get an even more im-



Algorithm Hardware Time
Reported Corrected

Furukawa [8] 3.0 GHz Pentium 4 6:00 6:00
Goesele [10] 3.4 GHz Pentium 4 12:24 14:03

Hernandez [6] 3.0 GHz Pentium 4 1:46 1:46

Pons [20] 2.8 GHz Xeon 0:11 0:11
430 MHz GeForce 7800

Pons/Labatut 430 MHz GeForce 7800 0:03 0:03
Vogiatzis [25] 2.3 GHz Pentium 4 0:52 0:40

Table 2. Some of the results from a recent review of multi-view stereo reconstruction algorithms [22]
(“dino” data set, 16 views): times were corrected in minutes at 3 GHz to allow easier comparison

pressive picture: the hypothetical overall performance gain
would be about 200.

Currently, some parts of the algorithm are still not run-
ning on GPU: the level set related back and forth conver-
sion to mesh and the update of the level sets within the
narrow-band. The whole level set framework could actu-
ally be completely replaced by a simple dynamically refin-
able mesh deformation more suitable for GPU. Of course,
this would come at the expense of easy topological changes
handling but the whole algorithm would become even more
appropriate for graphics hardware. Moreover one can argue
that such a change is currently questionable given the cur-
rent programming constraints in graphics hardware, but the
steady increase in programmability of graphics hardware let
us hope that the next generation of graphics hardware may
be able to handle more smoothly such problems.

References

[1] D. Adalsteinsson and J. A. Sethian. A Fast Level Set
Method for Propagating Interfaces. Journal of Computa-
tional Physics, 118(2):269–277, 1995.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
Computing on Graphics Hardware. ACM Transactions on
Graphics, 23(3):777–786, Aug. 2004.

[3] R. Deriche. Fast Algorithms for Low-Level Vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
1(12):78–88, Jan. 1990.

[4] A. Dervieux and F. Thomasset. A Finite Element Method
for the Simulation of Rayleigh-Taylor Instability. Lecture
Notes in Mathematics, 771:145–159, 1979.

[5] Y. Duan, L. Yang, H. Qin, and D. Samaras. Shape Re-
construction from 3D and 2D Data Using PDE-based De-
formable Surfaces. In European Conference on Computer
Vision, volume 3, pages 238–251, 2004.

[6] C. H. Esteban and F. Schmitt. Silhouette and Stereo Fu-
sion for 3D Object Modeling. Computer Vision and Image

Understanding, special issue on ’Model-based and image-
based 3D Scene Representation for Interactive Visualiza-
tion’, 96(3):367–392, Dec. 2004.

[7] O. Faugeras and R. Keriven. Complete Dense Stereovision
using Level Set Methods. In European Conference on Com-
puter Vision, volume 1406, pages 379–393, 1998.

[8] Y. Furukawa and J. Ponce. Carved Visual Hulls for Image-
based Modeling. In European Conference on Computer Vi-
sion, May 2006.

[9] I. Geys, T. P. Koninckx, and L. J. V. Gool. Fast Interpolated
Cameras by Combining a GPU-based Plane Sweep with a
Max-Flow Regularisation Algorithm. In International Sym-
posium on 3D Data Processing, Visualization and Transmis-
sion, pages 534–541, 2004.

[10] M. Goesele, S. M. Seitz, and B. Curless. Multi-View Stereo
Revisited. In Computer Vision and Pattern Recognition,
June 2006.

[11] M. Gong and Y.-H. Yang. Near Real-Time Reliable Stereo
Matching Using Programmable Graphics Hardware. In
IEEE International Conference on Computer Vision and
Pattern Recognition, 2005.

[12] G. Hermosillo, C. Chefd’hotel, and O. Faugeras. Variational
Methods for Multimodal Image Matching. International
Journal of Computer Vision, 50(3):329–343, 2002.

[13] H. Jin, S. Soatto, and A. J. Yezzi. Multi-View Stereo beyond
Lambert. In Computer Vision and Pattern Recognition, vol-
ume 1, pages 171–?, 2003.

[14] H. Jin, S. Soatto, and A. J. Yezzi. Multi-View Stereo Recon-
struction of Dense Shape and Complex Apperarance. Inter-
national Journal of Computer Vision, 63(3):175–189, 2005.

[15] V. Kolmogorov and R. Zabih. Multi-Camera Scene Recon-
struction via Graph Cuts. In European Conference on Com-
puter Vision, volume 2352, May 2002.

[16] K. Kutulakos and S. Seitz. A Theory of Shape by
Space Carving. International Journal of Computer Vision,
38(3):199–218, 2000.

[17] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker.
A Streaming Narrow-Band Algorithm: Interactive Defor-
mation and Visualization of Level Sets. IEEE Transactions
on Visualization and Computer Graphics, 10(40):422–433,
July 2004.



#Images 16
Resolution 256× 256× 3

#Pairs 32
Level set volume 192× 192× 192

Running time (CPU/GPU) ∼ 860 s
Running time (GPU) ∼ 240 s

Figure 6. “dino” data set (16 views): first row:
some input images, second row: result, third
row: evolution (first time step of each scale
but the last)

[18] S. Osher and J. A. Sethian. Fronts Propagating
with Curvature-Dependent Speed: Algorithms Based on
Hamilton-Jacobi Formulations. Journal of Computational
Physics, 79(1):12–49, 1988.

[19] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A Survey of
General-Purpose Computation on Graphics Hardware. In
Eurographics 2005, State of the Art Reports, pages 21–51,
Aug. 2005.

[20] J.-P. Pons, R. Keriven, and O. Faugeras. Modelling Dy-
namic Scenes by Registering Multi-View Image Sequences.
International Conference on Computer Vision and Pattern
Recognition, 2:822–827, 2005.

[21] M. Rumpf and R. Strzodka. Level Set Segmentation in
Graphics Hardware. In IEEE International Conference on
Image Processing, volume 3, pages 1103–1106, 2001.

#Images 24
Resolution 256× 256× 3

#Pairs 48
Level set volume 128× 192× 96

Running time (CPU/GPU) ∼ 1130 s
Running time (GPU) ∼ 320 s

Figure 7. “temple” data set (24 views): first
row: some input images, second row: result

[22] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A Comparison and Evaluation of Multi-View Stereo Re-
construction Algorithms. In Computer Vision and Pattern
Recognition, June 2006.

[23] S. M. Seitz and C. R. Dyer. Photorealistic Scene Reconstruc-
tion by Voxel Coloring. International Journal of Computer
Vision, 35(2):151 – 173, Nov. 1999.

[24] S. Sinha and M. Pollefeys. Multi-View Reconstruction us-
ing Photo-consistency and Exact Silhouette Constraints: A
Maximum-Flow Formulation. In International Conference
on Computer Vision, Oct. 2005.

[25] G. Vogiatzis, P. H. S. Torr, and R. Cipolla. Multi-View
Stereo via Volumetric Graph-Cuts. In Computer Vision and
Pattern Recognition, pages 391–398, 2005.

[26] R. Yang and M. Pollefeys. Multi-Resolution Real-Time
Stereo on Commodity Graphics Hardware. In IEEE Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 1, pages 211–218, 2003.


	. Introduction
	. Background and Previous Work
	. Multi-View Stereo Algorithms
	. General-Purpose Computation on GPUs
	. Computer Vision Using Graphics Hardware

	. Shape Reconstruction Algorithm
	. Notations
	. Energy to Minimize
	. Similarity Measure
	. Energy Minimization

	. Graphics Hardware Implementation
	. Analysis
	. Re-projection and Visibility Masks
	. Similarity Measure Derivative
	. Points Attributes

	. Results and Comparison with Other Methods
	. Conclusion and Future Work

