
Fast and efficient dense variational stereo on GPU

Julien Mairal, Renaud Keriven and Alexandre Chariot
CERTIS
ENPC

77455 Marne-la-Vallee cedex 2 France
julien.mairal@m4x.org, keriven@certis.enpc.fr, chariot@certis.enpc.fr

Abstract

Thanks to their high performance and programmabil-
ity, the latest graphics cards can now be used for scien-
tific purpose. They are indeed very efficient parallel Sin-
gle Instruction Multiple Data (SIMD) machines. This new
trend is called General Purpose computation on Graphics
Processing Unit (GPGPU [4]). Regarding the stereo prob-
lem, variational methods based on deformable models pro-
vide dense, smooth and accurate results. Nevertheless, they
prove to be slower than usual disparity-based approaches.
In this paper, we present a dense stereo algorithm, handling
occlusions, using three cameras as inputs and entirely im-
plemented on a Graphics Processing Unit (GPU). Exper-
imental speedups prove that our approach is efficient and
perfectly adapted to the GPU, leading to nearly video frame
rate reconstruction.

1. Introduction

For the last ten years graphics cards have grown signifi-
cantly in terms of performance, functionalities and relative
importance in a computer.

Compared to Central Processing Units (CPUs), the
growth rate has been far more higher and the GPUs do not
obviously follow Moore’s law. The newest NVIDIA/ATI
cards confirm this trend in terms of pipelines numbers
(24/48), memory amounts (512MB), clock frequencies
(650MHz), memory bandwidth (50GB/sec), etc.

The idea of using them for something else than three-
dimensional rendering emerged when GPU designers made
them programmable, in order to provide more expressive-
ness to software developers who wanted to design their own
effects.

Nevertheless, being provided with a “programmable”
GPU does not mean having any generic parallel machine.
A graphics card is mainly designed to render a scene and
display it. Therefore, very tight constraints remain. In a

simplified view, data structures in video memory are either
a set of vertices or a texture. A vertex is a set of coordinates
in the three-dimensional space, augmented with attributes,
such as texture coordinates or colors. A texture is an array
of pixel color values, each usually composed of four chan-
nels when using the RGBA mode. Moreover, because of
the programming paradigm, namely the Concurrent Read
Exclusive Write Single Instruction Multiple Data (CREW
SIMD) programming model, only specific algorithms can
be adapted and efficiently implemented on a GPU.

In this paper, we present an implementation of a dense
stereo algorithm which runs entirely on a GPU. It is based
on the variational framework of deformable models pro-
posed by the pioneering work of [5]. In this work, the au-
thors consider the n-view stereovision problem and recover
the entire surface of an object, minimizing some energy that
incorporates both photometric consistency and regularizing
constraints. Here, for speed reasons, we restrict ourselves to
the case of two or three cameras, and model the surface as a
depth map from one reference camera. Although providing
smooth and accurate results for three-dimensional shape re-
construction, such approaches are usually neglected in ev-
eryday stereo-vision applications because of their relative
lack of efficiency. This is what motivated our work. In-
deed, most of the efforts that have been made toward ef-
ficient stereo, are disparity-based. Instead of recovering
three-dimensional information directly, the process is a two
stages one: first, estimating the correspondences (dispar-
ity) between two rectified images; second reconstructing
the three-dimensional object. In this context, the authors of
[6, 12, 7, 15, 11, 14, 13] have developed real-time or near
real-time stereo algorithms on GPUs. For example, the al-
gorithm designed by Yang and Pollefeys in [13] can reach
up 289 million disparity evaluations per second on a (now
old!) ATI Radeon 9800.

Exactly like the state of the art methods classified on
the reference “Middlebury Stereo Vision Page” [10], this
impressive result is not focused toward accurate three-
dimensional shape reconstruction. Our goal here is differ-

ent: it consists in obtaining as fast as possible a coherent
and accurate surface, from two or three images or video
streams. A first attempt to use GPUs for the same prob-
lem has been made by the authors of [16]. Yet, although
they present visibly good results, they use a non-robust dif-
ference of gray levels as a photometric consistency criterion
where we use instead normalized cross-correlation. Above
all, the main difference between our work and theirs is that
we use a mathematically founded gradient descent where
they let their surface move at constant speed, just looking
for a decrease of energy.

Finally, note that, although correlation based, we do nei-
ther require any image rectification nor need the images
be oriented the same way: the images are back-projected
on the surface and correlated directly on it. To improve
convergence and cope with local minima, our algorithm is
multi-scale. Camera selection and occlusion are taken into
account through considerations based on the normal to the
surface.

2. GPU programming

2.1. Overview of GPU architecture

We describe here in a simplified manner the graph-
ics “pipeline”. For more details, we refer the reader to
[8, 1, 4, 2]. Figure 1 presents a view of a graphics card:

1. Vertices are sent to the card with directives indicating
their topology (full or wireframe polygons, triangles or
quads, etc.).

2. The vertex units, which are Multiple Instructions Mul-
tiple Data (MIMD) processors on the latest cards, com-
pute, for each vertex, a position on the screen (or on an
off-screen buffer), as well as some new attributes (see
[8]). This first step is now programmable. Vertex pro-
grams are also called vertex shaders.

3. Some operations are then performed, such as culling
(discarding vertices which are out of a previously de-
fined bounding box) or stencil testing (discarding ver-
tices which are on a previously defined area).

4. The so-called rasterizer converts then the vertices and
their topology into sets of pixels on the screen. It links
the output registers of the vertex units to the input reg-
isters of the pixel units so that each pixel receives in-
terpolated values from the three vertices of the triangle
it belongs to.

5. The pixel units, which are Single Instruction Multi-
ple Data (SIMD) processors compute the color of each
pixel. This step is programmable, pixels programs be-
ing also called fragment shaders, and is usually the

Figure 1. A simplified view of a recent
graphics pipeline

one considered for GPGPU, although the increasing
programmability of vertex shaders now turns then into
good GPGPU candidates in some cases.

6. The graphics card memory is mainly organized into
textures that can be seen as two-dimensional arrays.
Textures are used to communicate between the CPU
and the GPU or between two different successive com-
putations (called rendering for obvious reasons). Pix-
els programs have a full random read access to textures
and exclusive write access to one location in one1 tex-
ture (the previously mentioned CREW model). Ver-
tex programs can access textures too, but this access is
very slow.

2.2. Iterative mesh deformation

To take advantage of the efficiency of GPUs, it is essen-
tial to avoid as much as possible data transfers between the
GPU and the CPU: they are very slow compared to the inter-
nal GPU video memory access. In the context of an iterative
process like the one we will have to deal with, there are two
GPU/CPU transfer issues:

1Actually, up to four textures using so-called Multiple Rendering Tar-
get (MRT)

1. An iteration should be able to process some input data
into output data available for the next iteration with-
out transmitting output back to the CPU. When us-
ing the pixels units only, data inputs and output are
stored into so-called Render Textures (or more recently
Frame Buffer Objects (FBO)), allowing the card to ren-
der into an off-screen buffer, that can be linked after-
ward to an input texture register. This is the usually
adopted solution. When using also the vertex units,
data inputs must be stored into Vertex Buffer Objects
(VBO), that are actually a set of vertices data into the
video memory. It is possible to transfer data from pixel
textures to a VBO. This is the solution we adopted: our
surface is handled through a so-called Vertex Array,
vertices attributes being stored in a VBO.

2. One needs a way to test some stopping criterion, de-
spite the fact that the pixels do not communicate, with-
out transmitting data back to the CPU. This is hope-
fully possible thanks to a mechanism called occlusion
query, which counts the number of rendered pixels. It
is then easy to have every single pixel artificially not
rendered is some test is true, and being instantaneously
warned if this test is true for all the pixels.

3. Two cameras

3.1. Model

Let us consider the case where two cameras are used.
Dealing with a third camera is similar and will be de-
tailed further. Considering two fully-calibrated cameras and
choosing camera 1 as a reference, we model the object as
a regular triangulated deformable surface S (see figure 2)
where each vertex M lie on a fixed ray issued from the op-
tical center O of camera 1. Although asymmetrical, this
representation spares a lot of computation. Let dM be the
distance between point O and point M . We will design
some energy E(S) that is actually a function of the dM s
and minimize it by means of a gradient descent.

3.2. Energy

The simplest energy could be the sum of the differences
between the gray levels:

E(S) =
∫

S

(I2 ◦Π2(m)− I1 ◦Π1(m))2dS(m)

where the Ii are the images, Πi the projections associated
to the cameras and ◦ denotes the function composition. Be-
cause the sum is done all over the surface, one could think
this measure is robust enough, like mentioned in [16]. We
have tried it without success on real images. Following [5],

O z

x

y

deformable
surface S

image 1

deformation direction

main camera

secondary camera

O2
image 2

M

d_M =||OM||

triangle T

Figure 2. Framework of the cameras.

we use a more robust energy, based on normalized cross-
correlation, where the images are back-projected onto the
surface (or the plane tangent to S around m) and correlated
on some neighborhood of m:

E(S) =
∫

S

(1− ρ(I1 ◦Π1, I2 ◦Π2,m))dS(m) (1)

We choose a discrete version of E(S), computing the cor-
relations on each triangle only. Denoting by T the triangles
of S, we thus take:

E(S) =
∑

T

ET =
∑

T

(1− ρT (I1 ◦Π1, I2 ◦Π2)) (2)

with (omitting dependencies in T in the notations):

ρT =
< I1, I2 >

|I1|.|I2| (3)

< I1, I2 > =
1

AT

∫

T

(I1 ◦Π1(m)− I1 ◦Π1)

(I2 ◦Π2(m)− I2 ◦Π2)dm

Ii ◦Πi =
1

AT

∫

T

Ii ◦Πi(m)dm

|Ii| =
√

< Ii, Ii >

AT denoting the surface of triangle T . Note that we do not
use any surface metric anymore. Multiplying the correla-
tion by the area of the triangle would lead to the smallest
possible surface (i.e. converging toward point O). This be-
havior is common to all active contour based methods and
is usually solved with some balloon force. We could have
done this here but we got better results with above formula-
tion added with some regularization term (see further).

3.3. Gradient

We minimize the energy by means of a gradient descent,
using a multi-resolution scheme, in terms of both mesh and

image sizes, in order to cope with local minima as much as
possible. E(S) being actually a function of the distances
dM s, we have to compute its gradient with respect to these
distances. Let V (M) be the set of triangles to which a ver-
tex M belongs, we write:

∂E(S)
∂dM

=
∑

T∈V (M)

∂ET

∂dM
(4)

Computing these quantities from equations (2) and (3) when
M is one of the vertices of T is straightforward but gives
rather long expressions we will not detail here. We refer
the reader to [9] for their complete writing. To discuss their
GPU implementation, the important fact is that they boil
down to double sums (the mean values being encapsulated
inside the main sum) depending on the following quantities:

∂Ii ◦Πi(m)
∂dM

(5)

where point m is a point of T and M one of its vertices.

3.4. GPU discretization

Implementing the above quantities on a GPU, the
continuous sums

∫
T

F (m)dm involved in equation (2)
for some F will indeed be replaced by discrete sums∑

p F (p)dm(p) where p is determined by the rasterizer
and each pixel shader will compute f(p). Let T be the
triangle (M1,M2,M3), p will be some barycenter p =
α1M1 +α2M2 +α3M3 with αi ≥ 0 and α1 +α2 +α3 = 1.
We then need to compute the quantities of equation (5), i.e.

Di,k(α1, α2, α3) =
∂Ii ◦Πi(p)

∂dMk

for k = 1, 2, 3 and every (α1, α2, α3) chosen by the ras-
terizer. A direct computation involving camera projections
gives:

Di,k(α1, α2, α3) = gi(αkfi(Mk), Πi(p), (∇Ii) ◦Πi(p))

where fi and gi are simple geometric function given in [9].
Note that, when a pixel shader is called for a point p, the
value αk is not known. Yet, it is possible to get the required
αkfi(Mk): adding a virtual attribute to the vertices and set-
ting it to fi(Mk) for Mk and to 0 for Mj(j 6= k), automat-
ically provides the interpolated quantity αkfi(Mk) when
processing p. Moreover, the rasterizer can compute Πi(p)
because Πi(p) = α1Πi(M1) + α2Πi(M2) + α3Πi(M3).
An advantage of this is that the quantities depending on the
vertices Mk are computed once only by the vertex units and
not for each point p.

Note also that, when rendering a given triangle T =
(M1,M2,M3), the three values Di,1, Di,2 and Di,3 can be

computed simultaneously for each p thanks to vectorial ca-
pacities of the GPU. Now, choosing to render the surface
from camera 1 point of view, we get that, for a given p ∈ T ,
the value of I1 ◦Π1(p) does not depend on the positions of
the vertices of T , i.e:

D1,k(α1, α2, α3) = 0

3.5. Summations

Each F (p) being computed for some F by pixel shaders
for each p ∈ T , we still need to recover

∑
p∈T F (p)dm(p).

Such a reduction is a classical problem on SIMD ma-
chines and logarithmic complexity algorithms are usually
designed. Here, our triangles have a small number of pix-
els thanks to our multi-scale approach adapting mesh size
to image dimensions. Thus a simple pass where each pixel
shader deals with one triangle and performs a loop2 over it
points is much more efficient.

We also have to sum, for each vertex, quantities over its
related triangles (equation (2)). Again, vertices are now as-
signed to pixel shaders that perform a loop over their re-
spective triangles.

3.6. Regularization

As we mentioned previously, we left any surface metric
apart and should add manually a regularization term to the
energy. Mean curvature motion could be used here (or in
an equivalent manner adding the area of the surface to the
energy). Actually, we got better results directly smoothing
dM , adding the following term to the gradient:

K
(
(

1
|N(M)|

∑

M ′∈N(M)

dM ′)− dM

)

where N(M) is the set of the neighbors of M and K some
constant adapted to the considered level of detail.

3.7. Stopping criterion

An obvious stopping term based on the maximum value
of the gradient gives good results. In fact, a fixed number of
iterations for each level of detail gives faster convergence,
yet keeping similar results.

3.8. Complete scheme

As depicted figure 3, one complete iteration is finally:

1. Assign the surface vertices to the GPU vertices and
render, computing D2,k(p), (k = 1, 2, 3) for every
point p.

2available on recent GPUs

2. Assign the surface triangles to pixel shaders and per-
form the double summation yielding ∂ET

∂dM
.

3. Assign the surface vertices to pixel shaders and per-
form the neighborhood summation leading to the gra-
dient ∂E(S)

∂dM
. Update the vertices position dM accord-

ing to this gradient.

4. Update the VBO containing the vertices positions and
optionnaly compute a stopping criterion.

3.9. Results

Our experiments were done on a standard 3GHz PC with
a (now outdated!) NVIDIA Geforce 7800 GTX 256 graph-
ics card. The OpenGL library and the Cg language were
used. I2, I1 and ∇I2 at the different resolutions were pre-
processed in a first step. The textures were in a 16 bits mode
(yielding 40% faster programs). We obtained a fast conver-
gence with an average 10 iterations per level of detail. Our
multi-resolution approach proved to prevent from converg-
ing toward a local minimum.

As a reference, we developed a CPU version minimiz-
ing the same energy than the GPU version. This version
was cautiously written and compiled with the latest compil-
ers with all of the optimizations turned on. Table 1 shows
the speedups between CPU and GPU versions. For each
level of detail, the image and mesh resolutions are given.
We observed a mean speedup of 10 times to 15 times. This
shows that our implementation makes the most of the graph-
ics pipeline.

Some results and total running times are given on figures
7, 8, 9 and 10.

For each presented result, we ran about 8 iterations for
each level of detail mentioned table 1 except for the two
last level of detail that are run respectively 4 and 2 times.
A total running time of about 250ms is observed for global
convergence. As expected, our algorithm is not as fast as
those dealing with disparity maps. Again, we insist that our
targeted applications are different.

A drawback so far is that we do not handle occlusions.
We could easily prevent the algorithm taking occluded tri-
angles into account. We will do it show in the next section
when using a third camera.

4. Three cameras - Occlusions

Our model can easily be extended to three cameras. Let
us denote them C, R and L, respectively a ”center”, a
”right” and a ”left” cameras. C will be the reference camera
(the role played previously by camera 1) and the correlation
will be computed between cameras C and R or between
cameras C and L. Note that the cameras do not have to be

Pixel processing :
(one pixel per triangle)
Calculation of the new
derivatives of the
energy for each
triangle using results
of step 1 in a texture.

(note : A MRT is used.)

Pixel processing :
one pixel per true
surface vertex.

The regularization
term is added, the
gradient descent
is performed.
A new position for
each vertex is
calculated.

Step 4
The vertex Array is updated. Data from
the pixel texture is copied to the VBO.

Step 4 bis (optional)
A Stop test is performed
thanks to an Occlusion Query

True surface
rasterization.

Pixel processing.
for each pixel m of
image 2, equation (5)
is calculated (except
 for diagonals)

Step 1

Step 2

Step 3

Pixel texture

Pixel texture

Pixel texture

Figure 3. Example of one iteration for a mesh
of 3x3 vertices and an image of 8x8 pixels.
Actually, our implementation begins with a
3x3 mesh and a 32x32 image. On this fig-
ure, a red quad in dotted line represents one
rendered pixel. The plain lines represent the
mesh.

Image Mesh GPU CPU Speedup
642 52 1.60 kHz 555 Hz 2.9
1282 92 1.33 kHz 116 Hz 11.5
2562 172 464 Hz 28.6 Hz 16.2
5122 332 102 Hz 7.5 Hz 14.1
5122 652 89.4 Hz 7.3 Hz 12.2
5122 1292 67.9 Hz 7.2 Hz 9.0

Table 1. Iterations per seconds for each level
of detail.

Figure 4. First and second data sets.

Figure 5. Third and fourth data sets (cour-
tesy of Pr. Kyros Kutulakos (University of
Toronto)).

Figure 6. A data set for three cameras from
[3].

Figure 7. 240ms, two cameras.

Figure 8. 250ms, two cameras.

Figure 9. 230ms, two cameras.

Figure 10. 220ms, two cameras.

disposed in a (left, center, right) way. The only criteria to
assign the cameras are that: (i) the surface is modeled from
the optical center of C, and (ii) correlation between L and
R is not taken into account.

This choice being done, we divide at each iteration the
triangles into two sets SR and SL, SR (respectively SL) be-
ing the set of the triangles that will be correlated between
camera C and camera R (respectively camera L). The as-
sociated energy is indeed similar to the one given equation
(2):

E(S) =
∑

T∈SR
(1− ρT (IC ◦ΠC , IR ◦ΠR))

+
∑

T∈SL
(1− ρT (IC ◦ΠC , IL ◦ΠL))

In our tests, we simply use the normal to the triangles to
choose the best secondary camera, R or L. Moreover, oc-
clusions can easily be taken into account. Rendering the
surface from secondary cameras viewpoints, we determine
whether a triangle is seen or not from them. When a trian-
gle is not seen by any secondary camera, we just assign it
neither to SR nor to SL. Then, keeping the energy given
by equation (6), a triangle that is not seen by at least C and
another camera does not contribute to the energy. Actually,
we ignore also triangles that are not enough ”in front of” the
cameras in a certain sense. This yields a first way to handle
discontinuities, an important point that our model does not
take into account so far.

We have implemented this algorithm on both CPU and
GPU. The CPU version does not take occlusions into ac-
count (a CPU visibility test would be too slow) and runs
only 9% slower than its two cameras version.

Figure 11. Two cameras with occluded areas

To implement the GPU version, we use a so-called Sten-
cil Buffer to classify the triangles into two groups, being
then able to work on one group only at a time. This func-
tionality consist in discarding the rendering of a pixel p
when the value of the stencil buffer at p is below, equal
to or greater than some reference value. The solution is
thus to memorize in the stencil buffer whether a pixel (or
a triangle) belongs to SR, to SL or to none of them. This

Figure 12. Three cameras.

test is hardware implemented and is therefore very fast. An
overview of the algorithm for the GPU version is given fig-
ure 13. Note that rendering pixels in two passes (first SR

and then SL) could lead to memory cache inefficiency if
the pixels were randomly distributed between SR and SL.
Hopefully, this is not the case here! Our first results show
a 30% overhead between the two and three cameras GPU
versions. We are still in the process of designing a more
optimized three cameras GPU version.

A first result is presented figures 11 and 12. Thanks to
occlusion handling, but also thanks to more precision where
the three cameras are available, the three cameras recon-
struction (fig. 12) is more correct and more accurate than
the two cameras one (fig. 11).

5. Videos

We have tested our algorithm on video sequences. Con-
vergence on the first frame takes about 250ms. Yet, tak-
ing advantage of temporal continuity, we just take the sur-
face recovered at time t as an initial value for convergence
at time t + 1. Some preliminary tests, essentially consist-
ing in adjusting choices of levels of detail and number of
iterations, showed promising results at a rate of 8 frames
per second for the two cameras algorithm. With the re-
cently available graphics cards a 12 frames/sec rate should
already be possible. Moreover, it should be noted that our
approach could easily be turned into a parallel version us-
ing two graphics cards with a minimum of communication
at each iteration, yielding full video rate for a very afford-
able price.

6. Conclusion

In this paper, we have presented a fast dense stereo algo-
rithm based on variational principles. Handling occlusions,
it takes two or three cameras as inputs and is entirely imple-
mented on Graphics Processing Units. Experiments show
that it is efficient and well adapted to the GPU: speedup of
about 10 to 15 times are coherent with the graphics card we

The vertex Array is updated
after some iterations, the level of detail is changed.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Classification of
the triangles.

Results are written
in the stencil buffer.

The Stencil Buffer for
the steps 3 and 4 is
written.

A Stencil test is used
to handle one group
of triangles.
equation (5) is
computed for each
pixel.

A Stencil test is used
to handle the other
group.
equation (5) is
computed for each
pixel.

The derivative of the
energy is computed
for one group of
triangles using a
Stencil test.

The derivative of the
energy is computed
for the other group of
triangles using a
Stencil test.

Regularization and
gradient descent.
The new positions
of the vertices are
calculated.

Figure 13. The GPU implementation with
three cameras.

used. The reconstructed surface is accurate. This fully jus-
tifies considering this approach instead of usual disparity-
based algorithms for certain applications. Taking advan-
tage of temporal continuity, we achieved reconstruction at
a video rate of about 8 frames/sec. Future work includes
taking discontinuities into account, dealing with more than
one GPU, and investigating the reconstruction of a complete
object several such systems.

References

[1] Opengl specifications.
[2] http://developer.nvidia.com.
[3] http://www.cs.ust.hk/∼quan/WebPami/

pami.html.
[4] http://www.gpgpu.org.
[5] O. D. Faugeras and R. Keriven. Variational principles, sur-

face evolution, pdes, level set methods, and the stereo prob-
lem. IEEE Transactions on Image Processing, 7(3):336–
344, 1998.

[6] I. Geys, T. P. Koninckx, and L. V. Gool. Fast interpolated
cameras by combining a gpu based plane sweep with a max-
flow regularisation algorithm. In 3DPVT ’04: Proceedings
of the 3D Data Processing, Visualization, and Transmission,
2nd International Symposium on (3DPVT’04), pages 534–
541, Washington, DC, USA, 2004. IEEE Computer Society.

[7] M. Gong and Y.-H. Yang. Near real-time reliable stereo
matching using programmable graphics hardware. In CVPR
’05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1, pages 924–931, Washington, DC,
USA, 2005. IEEE Computer Society.

[8] E. Kilgariff and R. Fernando. The GeForce 6 Series GPU
Architecture, volume GPU Gems 2, chapter Chap. 30. 2005.

[9] J. Mairal and R. Keriven. A gpu implementation of varia-
tional stereo. Technical Report O5-13, CERTIS, November
2005.

[10] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int.
J. Comput. Vision, 47(1-3):7–42, 2002.

[11] J. Woetzel and R. Koch. Multi-camera real-time depth esti-
mation with discontinuity handling on pc graphics hardware,
August 2004.

[12] J. Woetzel and R. Koch. Real-time multi-stereo depth es-
timation on gpu with approximative discontinuity handling,
March 2004.

[13] R. Yang and M. Pollefeys. A versatile stereo implementa-
tion on commodity graphics hardware. Real-Time Imaging,
11(1):7–18, 2005.

[14] R. Yang, M. Pollefeys, H. Yang, and G. Welch. A unified ap-
proach to real-time, multi-resolution, multi-baseline 2d view
synthesis and 3d depth estimation using commodity graph-
ics hardware.

[15] C. Zach, K. Karner, and H. Bischof. Hierarchical disparity
estimation with programmable 3d hardware, 2004.

[16] C. Zach, A. Klaus, M. Hadwiger, and K. Karner. Accurate
dense stereo reconstruction using graphics hardware, 2003.

