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Abstract

In this paper, we propose a novel and robust method for extracting motion lay-
ers in video sequences. Taking advantage of temporal continuity, our framework
considers both the visible and the hidden parts of each layer in order to increase ro-
bustness. Moreover, the hidden parts of the layers are recovered, which could be
of great help in many high level vision tasks. Modeling the problem as a labeling
task, we state it in a MRF-optimization framework and solve it with a graph-cut
algorithm. Both synthetic and real video sequences show a visible layers extrac-
tion comparable to the one usually performed by state of the art methods, as well
as a novel and successful segmentation of hidden layers.





Résumé

Dans ce papier, on propose une nouvelle et robuste méthode pour extraire les
couches de même mouvement dans les séquences vidéos. En prenant profit de
la continuité temporelle, notre cadre considère aussi bien les parties visibles et
cachées de chaque couche dans le but d’améliorer la robustesse. D’autre part,
les parties cachées sont extraites, permettant de nombreuses applications dans
le domaine de la vision (opérations de haut niveaux notamment). Modélisant le
problème en tant que problème de classification, on le formule dans un cadre
d’optimisation MRF et nous le résolvons avec l’algorithme des Graph Cuts. Des
séquences vidéos à la fois réelles et synthétiques montrent une extraction avec
succès des couches visibles similaire aux méthodes de l’état de l’art, de même
pour les couches cachées.





Contents
1 Introduction 1

2 Classification 3
2.1 Motion energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Spatial regularization . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Temporal constraints . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Overall energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Energy minimization 5
3.1 About the submodularities of the temporal constraints . . . . . . . 6
3.2 Minimization process . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 First minimization method . . . . . . . . . . . . . . . . . 9
3.2.2 Second minimization method . . . . . . . . . . . . . . . 10

4 Results 11
4.1 Synthetic sequence . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Real sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Conclusion and discussion 12





CERTIS R.R. 06-21 1

1 Introduction
We consider the extraction of the layers composing a video sequence, each of
them being approximated by a planar set of objects having the same parametric
motion. This well studied representation (see [1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14])
offers a good trade-off between low- and high-level of information for numerous
applications, such as robust motion segmentation, efficient video compression, 3D
reconstruction of urban scenes, etc. The main issues addressed in this context are
the estimation of the motion of the layers, the outliers and occlusion detection, the
determination of the number of layers, the choice of regularization criteria and the
accuracy and robustness of the segmentation.

In [15], Xiao and Shah present a method based on temporal constraints be-
tween a frame and its successors (1 7→ 2, 1 7→ 3, 1 7→ 4, ...) that takes into
account what they call occlusions (actually, point modeling two distinct phenom-
enons: (i) objects becoming hidden and (ii) noisy point with impossible tracking).
Their method does not intrinsically give smooth segmentations from one frame to
the other as frames are processed independently.

On the contrary, our method takes advantage of temporal information for the
whole sequence. Indeed, it simultaneously processes all the sequence considering
temporal constraints between successive frames 1 7→ 2 7→ 3 7→ 4 7→ ..., guaran-
teeing a smooth labeling. Furthermore, it explicitly recovers the hidden parts of
the layers, that can disappear behind an another one and re-appear a few frames
later: a disappearing point is not only detected like in [15] but also tracked while
being hidden until it re-appears! Finally, tracking both visible and hidden parts of
layers reduces segmentation ambiguities, namely the number of undefined points
(see further).

Hidden layers. For each pixel, we consider its corresponding visible layer
and all hidden layers if any. Given n, the number of layers, we associate each
pixel x with its label lx = (vx,hx) ∈ L, with L = (V ×H) \ F , where V =
[1, n] ∪ {∅V} is the visible space, H = {false, true}n is the hidden one and F
refers to forbidden combinations (see further). The special label ∅V corresponds
to an indetermination on the visible layer choice (undefined pixels or "outliers").
The ith coordinate hi

x of vector hx indicates the hidden state of the ith layer (true
if hidden, false if visible or non present). For a given pixel, a layer cannot be both
visible and hidden, i.e. h

vx
x 6= true: F is the set of such forbidden cases. Figure 1

illustrates such a labeling.
The reminder of this paper is organized in the following way. Section 2

presents the energy used for classification. Section 3 provides some important
information about the implementation and shows results on both synthetic and
real data. The last section gives some conclusion and future directions.

Motion model. We note T t
v the parametric motion of layer v between frames t
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Layer ∅V

Visible : vx = i

Hidden : hi
x = true and vx 6= i

Nothing : hi
x = false and vx 6= i

Undef : vx = ∅V

Caption for layer i
Layer 2

Layer 0 Layer 1

Figure 1: Example of labeling. Note that these images are not the results obtained by
our algorithm but an example of what could be a reasonable segmentation.

and t+1. No motion is associated to layer∅V . Our experiments use classical pro-
jective motions, thus approximates the scene by three-dimensional plane objects,
although any other model could be used (e.g. affine). Motion estimation follows
our previous work [6] and will not be detailed here, though any other equivalent
method could be used.

Initialization. Our method is initialized with n pre-computed layers (accurate
or not), obtained through pre-existent methods like the ones in [6, 15]. When the
correspondences between the layers of successive frames is not explicitly given
by this initial segmentation, we recover it easily, associating a layer v at time t to
the one at time t + 1 that most overlaps its image through T tt + 1v.

Overall process. Our method consists in alternating, until some stabilization:
(i) layer segmentation and (ii) refinement of the motion parameters from the visi-
ble part of the layers (which, again, will not be detailed here).
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2 Classification
Given T frames, n layers, and T t

v (v ∈ [1, n], t ∈ [1, T ]) their motion models 2, we
consider the labeling problem consisting in determining a function L : (x, t) 7→
ltx = (vt

x,h
t
x) ∈ L. We plug the problem into a variational framework and will

design in the sequel an energy that L should minimize. Note that we consider a
constant number of layers throughout the sequence. Such a limitation could be
relaxed through appropriate methods.

2.1 Motion energy
The motion energy is based on visible parts of the layers and is indeed related to
the images ("data term"). The forward motion residual rv(x) for the pixel x under
motion Tv is defined by:

rt
v(x) =

∥∥I t(x)− I t+1(T t
v (x))

∥∥ (1)

where I t is the image at time t. To reduce the influence of high motion residuals,
we apply a smoothed Heaviside operator ψ (Fig. 2) given by:

ψ(rv) = tan−1
(
r2
v − τ

)
+ π/2 (2)

We define a labeling cost function dI by:

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
0,

0,5

1,

1,5

2,

2,5

3,

3,5

Figure 2: Smoothed Heaviside operator ψ shape (with τ = 50).

dI(lx,x) =

{
ψ

(
rvx (x)

)
if vx ∈ [1, n]

ψundef if vx = ∅V
(3)

where the parameter ψundef adjusts the classification of pixels as undefined. The
forward motion energy Et

FM is then, for a given frame t:

Et
FM(L) =

∫

Ω

dI(l
t
x,x)dx (4)

2when explicitly needed, the frame number t will be indicated by a superscript
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where Ω is the image domain. To increase robustness, we also consider the back-
ward motion residual (as in [11]) and its associated energy noted Et

BM(L). It is
defined similarly, considering frame t − 1 instead of frame t + 1 and the reverse
motion (T t

v )
−1 instead of T t

v . Moreover, we embed this criterion into a temporal-
multiscale framework, considering also the motion residuals between frame t and
frames t + 1, t + 2, t + 3, · · · , t− 1, t− 2, t− 3, · · · to handle small motion cases.

2.2 Spatial regularization
As in every noisy and under-constrained problem, spatial regularization has to be
introduced. Both visible and hidden parts of the layers are regularized through the
following energy:

Et
S(L) =

∫∫

Ω2

φ(||x− y||)dt
S

(
ltx, l

t
y

)
dydx (5)

where φ is some kernel (e.g Gaussian) and dt
S(., .) is a dissimilarity measure be-

tween two labels. Discontinuous labels for both visible and hidden layers must
be penalized. We encourage also the frontier of the layer to belong to pixels with
high image gradient. This gives the following function:

dt
S(lx, ly) = µV I

(
vx 6= vy

)
exp

(
−‖I

t(x)− I t(y)‖2

2σ2

)

+ µH

n∑
i=1

I (
hi

x 6= hi
y

) (6)

where I(i) equals 1 if i is true, 0 otherwise, σ is the standard deviation of the
norm of the gradient of the images, and (µV , µH) some constants adjusting spatial
regularization with respect to the other energy terms.

2.3 Temporal constraints
Temporal constraints are designed for both temporal smoothness and temporal
consistency between visible and hidden layers. To this end, using motion informa-
tion, we penalize discontinuous labeling between frames. To simplify notations,
we note xi = T t

i (x) the image of x in frame t + 1 through the motion of layer i
at time t. Our forward temporal energy is written as follows:

Et
FT (L) =

∫

Ω

[
I(vx 6= ∅V)dV

(
ltx, l

t+1
xvx

)

+
n∑

i=1

I(hi
x = true)di

H

(
ltx, l

t+1
xi

) ]
dx (7)
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where dV (., .) and di
H(., .) are dissimilarity measures given by:

dV (lx, ly) =





0 if vx = vy

λH if h
vx
y = true

λD otherwise
(8)

and:

di
H(lx, ly) =





0 if hi
y = hi

x

λV if vy = i
λD otherwise

(9)

where λH , λV and λD respectively penalize the following events: hiding, re-
appearing, and completely disappearing. It can be shown that λD has to be cho-
sen greater than λV and λH (see section 3) and that the following inequality
λH + λV ≤ λD must be respected .

As in the data term, we also consider backward constraints, leading to a sym-
metric temporal energy Et

BT . Moreover, similarly as for the motion residual, we
also embed these temporal constraints into a temporal multiscale framework to
increase robustness (especially in cases of slow motions) considering also con-
straints between frame t and frames t + 1, t + 2, t + 3, t− 1, t− 2, t− 3, · · · and
so on.

2.4 Overall energy
Our overall energy to extract the optimal partition of the T images is finally:

E(L) =
T∑

t=1

Et
FM(L) + Et

BM(L)︸ ︷︷ ︸
data term (motion)

+ Et
S(L)︸ ︷︷ ︸

spatial regularization

+ Et
FT (L) + Et

BT (L)︸ ︷︷ ︸
temporal constraints

(10)

Next section will describe the optimization process used to minimize this
global energy.

3 Energy minimization
We plug our spatially continuous energy minimization problem into a discrete
Markov Random Field framework [7]. The global energy (EQ. 10) is discretized
considering a 4- or 8- neighborhood for the spatial constraints. Due to its effi-
ciency, we use the alpha-expansion algorithm [5, 9] provided that distance func-
tion dS is sub-modular (easy to verify) and that temporal constraints fit also sub-
modularity requirement.
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3.1 About the submodularities of the temporal constraints
First, we remind what a submodular function is.

Definition. A sub-modular function D(., .) verifies D(lx, ly)+D(lα, lα) ≤ D(lx, lα)+
D(lα, ly) for two given pixels x and y (see [9] for more details).

To demonstrate that the temporal constraints fit the submodularity require-
ment, we introduce these two following functions V and H (which depend on dV

and dH) :

Vx,y(lx, ly) = I (
y = Tvx(x) ∧ vx 6= ∅V

) · dV (lx, ly) (11)
H i

x,y(lx, ly) = I (
y = Ti(x) ∧ hi

x = true
) · di

H(lx, ly) (12)

Theorem. The function (V +
∑

i H
i) is submodular if λD is greater than λV and

λH .

Proof. Summary of the proof: we will show that functions D and H i are submod-
ular providing λV = λH = λD. However, considering some particular cases, we
will also show that the function (D +

∑
i H

i) is submodular providing λV ≤ λD

and λH ≤ λD. For the other cases, we use the fact that the sum of two submodular
functions is submodular.

First, we consider the function D(): the table 1 shows all the cases which
give information about the constraints between λH and λD. Cases V5 and V8
are impossible as a change of visible labeling to vα implies a change of projected
pixel Tvα

to consider: as a consequence, the requirement y = Tvα
will not then

be satisfied anymore except if α = vx
3. Valid cases V3 and V6 show that the

following equality λD = λH must be respected. And similarly for H i as shown in
table 2 : valid cases H3 and H6 constrain the following equality λD = λV .

However, for the cases V3 and H3 (which force λH and λV to be greater than
λD), one can see that the function (D +

∑
i H

i) is actually submodular without
any constraints on λH , λV and λD (as shown in figure 3).

For the other valid cases, D() and H i() (and so D +
∑

i H
i) are submodular

providing that λV ≤ λD and λH ≤ λD.

Furthermore, one can see that the following inequality λH + λV ≤ λD must
be respected if we want hidden parts of the layers to be recovered. Indeed, if not,
the cost of a disparition to a hidden layer (cost : λH) followed by an apparition
to a visible layer (cost : λV ) would be coster than a disparition to ’nothing’, i.e.
to any hidden layer, which would only cost λD (indeed, in such case, there is no
apparition constraint, so no apparition cost).

3We consider here that all motion models have different parameters.
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case V (lx, ly) ≤ V (lx, lα) obtained if state
+V (lα, ly)

V1 λH ≤ 0 + 0 {vx 6= vy} ∧ {vx = vα = vy} ⇒ impossible

V2 λD ≤ 0 + 0 equiv. to previous case ⇒ impossible

V3 λD ≤ λH + 0 {vx 6= vy ∧ h
vx
y = false}

∧{vx 6= vα ∧ h
vx
α = true}

∧{vα = vy} ⇒ possible !

V4 λD ≤ 0 + λH {vx 6= vy ∧ h
vx
y = false}

∧{vx = vα}
∧{vα 6= vy ∧ h

vα
y = true} ⇒ impossible

V5 λD ≤ λH + λH {vx 6= vy ∧ h
vx
y = false}

∧{vx 6= vα ∧ h
vx
α = true}

∧{vα 6= vy ∧ h
vα
y = true}

∧{vα = vx} ⇒ impossible

V6 λH ≤ λD + 0 {vx 6= vy ∧ h
vx
y = true}

∧{vx 6= vα ∧ h
vx
α = false}

∧{vα = vy} ⇒ possible !

V7 λH ≤ 0 + λD {vx 6= vy ∧ h
vx
y = true}

∧{vx = vα}
∧{vα 6= vy ∧ h

vα
y = false} ⇒ impossible

V8 λH ≤ λD + λD {vx 6= vy ∧ h
vx
y = true}

∧{vx 6= vα ∧ h
vx
α = false}

∧{vα 6= vy ∧ h
vα
y = false}

∧{vα = vx} ⇒ impossible

Table 1: Cases considered for the submodularity of D().



8 Robust Segmentation of Hidden Layers in Video Sequences

case H i(x, y) ≤ H i(x, α) obtained if, state
+H i(α, y)

H1 λV ≤ 0 + 0 {hi
x 6= hi

y} ∧ {hi
x = hi

α = hi
y} ⇒ impossible

H2 λD ≤ 0 + 0 equiv. to previous case ⇒ impossible

H3 λD ≤ λV + 0 {hi
x 6= hi

y ∧ vy 6= i}
∧{hi

x 6= hi
α ∧ vα = i}

∧{hi
α = hi

y} ⇒ possible !

H4 λD ≤ 0 + λV {hi
x 6= hi

y ∧ vy 6= i}
∧{hi

x = hi
α}

∧{hi
α 6= hi

y ∧ vy = i} ⇒ impossible

H5 λD ≤ λV + λV {hi
x 6= hi

y ∧ vy 6= i}
∧{hi

x 6= hi
α ∧ vα = i}

∧{hi
α 6= hi

y ∧ vy = i}
∧{hi

α = hi
x} ⇒ impossible

H6 λV ≤ λD + 0 {hi
x 6= hi

y ∧ vy = i}
∧{hi

x 6= hi
α ∧ vα 6= i}

∧{hi
α = hi

y} ⇒ possible !

H7 λV ≤ 0 + λD {hi
x 6= hi

y ∧ vy = i}
∧{hi

x = hi
α}

∧{hi
α 6= hi

y ∧ vy 6= i} ⇒ impossible

H8 λV ≤ λD + λD {hi
x 6= hi

y ∧ vy = i}
∧{hi

x 6= hi
α ∧ vα 6= i}

∧{hi
α 6= hi

y ∧ vy 6= i}
∧{hi

α = hi
x} ⇒ impossible

Table 2: Cases considered for the submodularity of H().
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y

vy

0

λH

λD

λD

Case V3

vy

x

vy

i

y

0

λV

λD

λD

Case H3

x

hi
α = false

hx
y = false

hx
α = true

hi
y = falsevx

vy

vx

i

hi
x = true

hi
α = falsehx

α = true

hx
x = false

Figure 3: Cases V3 and H3 (with resp. y = Tvx(x) and y = Ti(x)) . Both cases are
graph-representable as the inequalities λD ≤ λD + λH for case V3 and λD ≤ λD + λV

for case H3 are respected ∀λD, λH and λV ≥ 0 (see tables 1 and 2 for details) .

3.2 Minimization process

Even then, labeling cannot be achieved in reasonable time using a straightforward
alpha-expansion since the number of possible labels (v,h) increases dramatically
with the number of layers: (n+2)2n−1 possible expansions! However the problem
could be circumvented limiting alpha-expansions to a sub-space of L.

3.2.1 First minimization method

One can consider only a change of the visible layer and one hidden layer, i.e.
(v,hi)-expansions for successive choices of i. Using this approach, we reduce the
number of optimization steps to 2n2: for each visible layer j (so n iterations), we
process 2n (vj,h

i)-expansions, testing in same time if the j-th layer is visible and
if the i-th layer is hidden or not (with i 6= j).

However, some labelings are impossible to obtain. Consider the following
example (figure 4): the optimal solution should be vx = 0, vx′ = 1, vx′ = 2 and
h0

x′ = h0
x′′ = true (all other hidden layers set to false). If we consider initial

labelings such as vx = 0, vx′ = 1, vx′ = 2 but h0
x′ = h0

x′′ = false, there is
any (vj,h

0)-expansion which could give the optimal solution. Indeed, neither the
(v1,h

0 = true)-expansion, nor the (v2,h
0 = true)-expansion could change the

labels of x′ and x′′. Note that such a limitation is also encountered even if we
change not only one hidden layer but also all the other ones at same time.

Only a change of hidden labeling without modifying any visible labeling could
handle such case. Hence, we propose a second minimization process to solve the
problem.
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L0

Image t + 1Image tImage t− 1

x′′x′x

L1

L2

Figure 4: Example of sequence where optimal solution could not be obtained through
(vj ,h

i)-expansions. Here, there are three layers L0,L1,L2 (resp. in blue, red and green),
the white pixel x and the projected ones x′ = T0(x) and x′′ = T0(x′).

3.2.2 Second minimization method

One can consider alternatively

• only a change of the visible layer without modifying the hidden layer states
(except for the corresponding hidden layer hv which is set to false)

⇒ (v,hv = false)-expansions for successive choices of v .

• and only a change of one hidden layer, without modifying visible layer

⇒ (hi = false/true)-expansions for successive choices of i.

Using this approach, we reduce the number of optimization steps to 3n: we
process each visible layer (so n iterations) and 2n (hi)-expansions, testing if the i-
th layer is hidden or not. This yields in practice to acceptable minimization times,
without modifying noticeably the segmentation.

But such an approach has also some drawbacks: some labelings can be un-
reachable. For example, if a pixel x is currently labeled as (vx = 1,h0

x = h1
x =

false) and if the optimal label is (vx = 0,h1
x = true), it is not yet guaranteed

that a (v = 0)-expansion will decrease the overall energy, changing the label of x
to (vx = 0,h1

x = false).
The corresponding graph is a three-dimensional one, the third dimension being

time. The data and spatial regularization terms of the energy are standard in the
graph-cut framework. During a v− or hi−expansion, the backward and forward
spatial constraints yield links between each pixel x at time t and 2(2 + n) other
pixels: xv or xh , xvx and xhi

x
(i ∈ [1, n]) at time t + 1 and similarly at time t− 1

(see figure 5).
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s

xt+1
vx

xt+1
hi

x

xt−1
hi

x

xt+1
H or xt+1

V

source

source

sink
sink

xt−1
H or xt−1

V

xt−1
vx

frame t + 1

xt
sink

source

t

frame t

frame t− 1

Figure 5: Graph construction: Source t-links are shown in red, sink t-links in green.
Considering a (V,hV = false)-expansion (or hH -expansion), temporal n-links are shown
in black and link the pixel x (frame t) to pixels xvx ,xhi

x
,xV (or xH ) of frames t − 1 and

t + 1. Note: for clarity, only the links relative to the i-th hidden layer are shown.

4 Results

4.1 Synthetic sequence
Figure 6 shows the results obtained on a synthetic sequence (n = 3). Through-
out the sequence, the proportion of misclassified visible pixels is 0.06% and the
proportion of pixels where the complete label l (visible and hidden parts) is incor-
rect is also 0.06%: for each pixel, classification fails or succeeds globally. Note
that in this particular sequence, no pixel is classified as undefined. Indeed, only
noise or aliasing could generate such pixels. Because hidden parts are modelized,
the undefined label do not account anymore for points that become hidden like in
[15].

4.2 Real sequences
As a first step4 toward comparing our results to state of the art methods like [6, 15],
we show the results obtained for a real sequence (fig. 7). One can see that the seg-
mentation of the visible layers is comparable to the usually obtained segmentation.
Note that the wheels of the car are sometime classified as undefined because the

4No ground truth is provided here!
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Figure 6: A synthetic sequence. From top to bottom, left to right: original sequence,
layers 1, 2 and 3 (white=visible, grey=hidden) (Note: on this particular image of the
sequence, no pixel is classified as undefined)

number n of layers is fixed too small (the wheels have their own motion). A
splitting/merging approach could be used to choose n dynamically. We are in the
process of implementing this.

Moreover, our goal was to extract the hidden parts of the layers and this is
correctly done. Continuous labeling between frames is obtained, providing non-
disrupted segmentation throughout the sequences. Again, note that the number of
undefined pixels is rather small: unlike in [15] where these pixels code also for
points that are going to be hidden, in our method vx = ∅V only stands for a lack
of image information (e.g. too much noise).

5 Conclusion and discussion

We have presented a novel global optimization process for motion layer segmen-
tation in a video sequence. Considering the hidden parts of the layers, we achieve
a continuous labeling, even is case of occlusion: when hidden, a point is tracked
until reappearance. Ongoing work includes dealing with (i) processing longer
sequences through shifting windows, (ii) more robustness thanks to multi-scale
analysis in time and (iii) coping with a robust determination of a variable number
of layers.
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Figure 7: Carmap sequence. From top to bottom, left to right: original sequence, unde-
fined pixels (in red), layers 1, 2 and 3 (white=visible, grey=hidden).
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