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Abstract

In this document, we present methods to camera pose estimfabm one
single images in a known environment. The framework of suethods com-
prises two stages, a learning step and an inference stage giken a new image
we recover the exact camera position. This research wotsfon achieving such
a task with the help of lines and the Radon/Hough transforine. question to be
answered in this study iwhat can be learnt from lines in order to compute a
camera pose estimation

Firstly, we tried to point up a relationship between the Hopgrameters of a
set of lines p, #) and the camera posef¥/(3) -the space of rigid transformations-
based on KCCA method. Such a relationship could be used thop@ose esti-
mation from line configurations.

In a second approach, lines that are recovered in the radme gnsist of
our feature space. Such features are associated with [AxtBearners that cap-
ture the wide image feature spectrum of a given 3D line. Sufifaraework is
used through inference for pose estimation. Given a new émnag extract fea-
tures which are consistent with the ones learnt, and we mdscguch features
with a number of lines in the 3D plane that are pruned throlghuse of geo-
metric constraints. Once correspondence between lindsdeasestablished, pose
estimation is done in a straightforward fashion. Encourggxperimental results
based on a real case are presented in this document.






Réesume

Les problemes de calibrations consistent a retrouvep#atipn et I'orienta-
tion d’un observateur (appareil photo, caméra, casquéaléé vistuel etc .. .).
lls sont omniprésents dans les domaine de la vision panatelir et ont éte lar-
gement explorés ces dernieres années. Cependantkllbedes par apprentissage
sont relativement peu présentes dans la littérature shiwoposons dans ce do-
cument des nouvelles approches de calibration par apgsage de I'environne-
ment.

La méthode se décompose en deux étapes : d’abord uredtgprentissage
ou un environnement (une piece par exemple) est apprés)setite une étape de
déduction ou la position et orientation de la caméra egbuvée. Les travaux
présentés dans ce document repose sur la detection de damis les images a
I'aide de la transformée de Hough. La question qui se pasge® peut-on ap-
prendre des droites afin d’estimer la position d’'une cam&aux approchesont
été explorées:

Nous avons tout d’abord essayé de trouver une relationmelation (a l'aide
d’'un noyau, KCCA) entre les parametres de Houygl#) d’un ensemble de droites,
et la position de la camera dafi&'(3) -I'espace des transformations rigides-. Une
telle relation pourrait étre utilisee pour prédire lsspimn a partir d’'une configu-
ration de droites.

Dans une deuxieme approche, les droites sont caradérizar des patches
centrés autour des maxima locaux de I'espace de Radon. rbésesdmise en
correspondance dans plusieurs images de points de veedif§ permettent a
des algorithmes d’apprentissage AdaBoost de capturerrge fpectres des ca-
ractéristiques d’une droite données.

Etant donnée une nouvelle image, on extrait les caratitfues consistantes avec
celles apprises. Le probleme est relaxé par I'ajout ddraories géométriques
qui permettent d’élaguer les résultats obtenus. Lorgegieorrespondances entre
les droites 3d (reconstruites a partir de la sequencepdeapissage) et les droites
de la nouvelles images sont retrouvées, I'estimation gm#ition de la caméra
est calculée directement. Des résultats expérimerganikmontrés dans ce docu-
ment.
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1 Introduction

Pose estimation has been extensively studied in the past. yBlevertheless, it
is still an open problem particularly in the context of reiahé vision. Robot
navigation, autonomous systems and self-localizationsame of the domains
in computational vision where pose estimation is import&me can also cite a
number of application in augmented and mixed reality wheselation to this
problem is critical. In prior literature pose estimationthrels are either feature-
driven [30] or geometry-drivenZ, 13, 27, 7].

The solution proposed aims to combine feature-based metnatigeometry-
driven approaches. To this end, we consider geometric elenseich as lines
to be the most appropriate feature space. Such a selectiontigated from a
number of reasons. Lines are simple geometric structuegséfer to a compact
representation of the scene, while at the same time one ¢amudee angles and
orientations that relate their relative positions. Patadl that, in the image projec-
tion space appropriate feature spaces (Hough34], Radon B4]) and methods
exist for fast extraction and tracking][of such geometric elements with impor-
tant precision.

The geometry of line configuration [in the Radon space] carelsed with
the space of rigid transformation through KCCA. The kerrmairelation between
both spaces could help us to infer pose estimation from eschexamples. We
achieved some works in this direction but results does revhsdo be promising
compared to the feature-and-geometry based method.

Hence, the most promising solution is both feature-and¥ggty driven. Lines
are caracterized by their projection in the Radon spacejifay a feature space.
In addition, the geometry of 3d-line configuration can belgascovered through
a 3d reconstruction of the scene. The scheme of our methbdsda reconstruct
line while their geometry and features are learnt. Onceishi®ne, a simple line
detector coupled with the information previously learnt ba implemented in or-
der to infer the pose estimation from a single view. The donpainted out is of
course real-time application suchlike augmented realgeld on a head mounted
device or robot navigation.

The reminder of the document is oorganized in the followeghion. In sec-
tion 2, we present basics of line detection based on Hough and Realwsform.
A matching and tracking process are also presented in tbi®e&.3. The corre-
lation between the line configuration of a static environtad the camera pose
in part of sectiorB. In section sectiod, we give a second approach to the prob-
lem where the feature space is based on the Radon space.irismpid results
and discussion are finally presented in the last section.
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2 Feature detection, matching & tracking

The detection of primitives in images is a recurrent probieraomputer vision,
particularly for points and lines. We are going to be onlyemsted in line ex-
traction in the remaining of this document. Feature detects a key point of
the problem. In this section, we present one of the most doWeols for robust
lines detection in images: thdough transform Nervertheless, the voting space
of the Hough transform has some discretization defectsningitt be unsatisfac-
tory, in particular when neighborhood of local maxima arbéaised further. The
Radon transform may be used with the edge map in such case®muSly, Hough
transform and Radon transform are presented in this section

2.1 The Hough transform

The Hough Transform is a method able to find parametrizedeshispa data set
and has been the purpose of a lot of research since the 60idéa®f this trans-
form is to express a mapping between an image space and agiarapace which
constitute a dual space. Obviously, the parameter spa@ndsn the shape of
the primitive we work on. In the first forms, the Hough transfid19, 29 was de-
signed only for 2-lines. HoughP] chose the slope and the intercept as parameters
of the line which can be a complication because both paramate not bounded.
The method is very simple:

Letbel C R?the image spacd? C R? the parameter space alid= {(z,y),y =
—apz—by } aline inthe image space. The superscrigad” are used to specify if
we consider a subset of points in the image space or in thenedea space. Now,
for any pointp, € I we can compute all the liné§ = {(a;, b;), yo = —a;zo —b;}
going through it using the equation. Since this last equagdinear, we clearly
see that a point in image space is mapped to a line in parasgdee and vice
versa. The same reasoning can be done for a point in paraspaiee mapped to
a line in image space and vice versa. Then all the colineat®@ivhich belongs
to a same line) are going to be mapped to as many lines thaséateat the same
point in the parameter space. In practice, an accumalatay af the size of the
parameter space is set up to zero and each pamtthe image space votes for
the cells correponding the lines going throught The line detection is finally
achieved by putting a ceiling on the accumulator array.

The previous description is actually a particular case efahnciple of duality in
projective geometry where the same equation = 0 can be seen alternatively
asthe point equation of the linandthe line equation of the poiritL6]. More
recently, A. S. Aguado, E. Montiel and M. S. Nixoh, [6] have formalized and
generalized not only to projective geometry the relatigmbletween the principle
of duality and the Hough transform.
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Figure 1. Most used parametrization in the Hough transform

As previously evocated, the line slope parametrizatiorotsatways optimal be-
cause both parameter are not bounded. The parametrizdtime anostly used
by the image processing community is the one proposed byaRidh. Duda and
Peter E. Hart12]. The author wrote the line in the following way:

1" = {(z,y),xcos(8) + ysin(d) — p} (1)

where the two parametefisandp are respectively the angle of its normal and the
distance to the origin as represented in figlirelf we choose to restrictheta

to [0, 7], p is an algebraic distance otherwisec [0,27] andp is an absolute
distance. It is clear that this parametrization is uniquethis parametrization, a
point in image space does not map anymore to a line but oldyitwsa sinusoid.
Figure2 shows an example of the Hough transform on a very simple ebeamp

The Hough transform as described so far is from now on writdii (Standart
Hough Transform) and belongs to a classification catled to many1 — m).
Each point produces indeed a bench of points in the pararspesee. The other
main classification of the Hough transform is calledny to ondm — 1), but
we are going to be back about it in a few lines.

Although the Hough transform is a very robust way to find limedata set, it is
very highly costing from a computational point of view, peutarly when the data
set of point in the image space is large. In order to improeethmputation time,
N. Kiryati and Y. Eldar and A. M. Brucksteir2p] have proposed throbabilistic
Hough Transforn{PHT) that selects a poll of sample in the image space instead
of using it entirely. They could thus speed up the processgusiobabilities by
doing a kind of "coarse to fine” Hough transform. The idea hearbextended in
[26].

As previsouly said, the other main classication of Hougm$farm is themany-
to-oneone introduced by thRandomized Hough TransforfRHT) [36]. Rather
than taking a single point in the image space, Lei Xu and E@ki prefered to
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Figure 2: Example of Hough Transform: Image space on thgdafameter space
on the right. The three highest values of the parameter sgapcesented by an
accumulator give the 3 lines in the image space

compute only one point in the parameter space by taking rahdseveral points
in the image space. For the case of a line, two random poifitsede line and so,
vote for one point in the parameter space. As a thresholéchrm the parameter
space, the correponding line is detected and masked oué afntdige space. The
algorithm start again until it does not find any line after g&@i@ number of polls.
The PHT and RHT have been unified later by H. Kalviainen, Ny&iirand S.
Alaoutinen P1]. The reader can refer also t&(Q, 33]for more details.

The Hough transform has been widely extended to other shihpadines, even
in higher dimensions. Nevertheless, we are mainly inteckst lines in the re-
maining of this document.

Nevertheless, the standard Hough transformation spacgnfiagunately dis-
cretization defect as shown in figuBein the stripe between the two red lines.
Since our goal is to work in such space, we chose instead tRaden transform
which do not suffer of such a defect and can be efficiently en@nted thanks to
FFT.[[]] In fact, both transformations are derived from geme concept and the
output spaces are the same when the Radon space is computerierige map.
We recall quickly the mathematical writing of the Radon &f@nm.

2.2 The Radon transform

Let g be a mapping defining an image over a domain spasach that:

g: U— R

u—>g(u)
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Figure 3: Example of discretization defects using standarigh transform be-
tween the two red lines

and letf,(u) = 0 define a shape described by the vector paranget&he Radon
transform ofg regarding to the shapg (u) = 0 is given by:

R(g)(p) = / 9(2)6 [folx)) du @)

wheref(.) is the Delta-Dirac function. Radon transform in its diseré&rm is
extensively used in tomography image reconstruction becant also very useful
for line detection.

In that particular casé/ = R? ie u = (z,y) and letp = (p, #) such that:
So=0) (@, y) = p — wcos(0) — ysin(f) 3)
and thus, equatio can be rewritten:
RUp.) = [[ 10.0)6 (o= wcos(t) — ysin@) dedy @)
R

whereg = [ is the image transformed.
Finally, local maxima are thresholded and the median vatuemborood pixel
is used to achieved such a thing.
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2.3 Tracking / Matching lines in the Radon space

2.3.1 Basicimage to image tracking

Local maxima in such a space correspond to lines in the @ligmmage and can
be extracted in a straightforward fashion. Such a globalstamation encodes

the entire line structure in a compact fashion, is capabéetount for occlusions,
local and global changes of the illumination as well as gnpresence of noise.

Figure 4: Line signature in the Radon space for a number ddexmutive images.

Tracking lines in such a space is a feasible task with simmthods being
able to capture the line displacement from one image to the r&uch a prob-
lem is simplified due to the constraint that lines correspaiedocal maxima in
the space and therefore simple comparison between locah rpdtches could
provide explicit correspondences between lines. To this @ consider simple
normalized correlation criterion. We seek to recover theénag displacement
du = (dz, dy) between two radon images such that the distance betweenrthe ¢
responding patches is minimal. Basically, the algorithntkgowvith the Radon
spacesR: & R,) of two successive image$,(& I,) and for each local maxi-
mum detected previously iR, - ie aline in/; - it searches for the 2d-dimensional
shift in R, such that an energy is minimized:

min FE(dz, dy) (5)
dx,dy)e
E(X,?)

whereQ(X,Y") is the neiborghhood dfX, V).

The search can be constrained on local maximunmgdbut experiments did not
show an interest of proceeding in such a way. A free shiftctemrthus prefered
in the following. Just as points in images are tracked baseg\ery slight image
to image transformation hypothesis, it is reasonable toentlad same assumption
in the radon space. Thus, we simply chose to compute a crossghped sum of
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differences in our implementation:

> Wy {1} (u,0)) Wiy {I2} (u,0))

E(dx, dy) = —=~ ©
( Y) Z Wy (L} (1, v)]2 Z Wiy {12} (u, U)]2

whereX’ = X +dz, Y’ =Y +dy, Wy y is a designed window centred (X, Y)
such that the value®/x y (u, v) are centred (the mean over the windows is sub-
stracted).

Obviously, the particular structure of the Radon space vfotd up is taken into
consideration. We tried other forms of similar energy (etation ...) but none
showed real improvments.

2.3.2 Tracking over a sequence

In the previous line, we presented a simple image to imagettacking. We are
however interested in tracking lines over a video sequeiitels, dying lines -
ie lines that are not present anymore in an image- and newdétection should
be taken into consideration. Without loss of generalitgpathm 1 outlines the
procedure implemented to achieve such a task. It is basdd@mitnain functions:
image to image line detection, new line detection and outglne detection. The
former has been described previously. The algorithm toekeep up to/N;"®
during the tracking within thévs*9images. New line detection has been already
detailled and is used to maintain the number of lines tradkelde current image
(up to N"®). The last function ensure that a line will not be tracked ifiot
anymore in the current image. In order to decide if a line &hbe tracked in
the following images, the algorithm analyses with the hélgaoiance the patches
over N images. Such a way avoids removing and detecting againncansly
the same line along the tracking within the video sequence.

2.3.3 Conclusion

We presented an efficient method for line tracking in the Rasjmace based on
correlation patches. Indeed, systems have more and m@euress to make
these computations. The correlation patches in the Radaresgan also be used
in order to improve a manual matching in a sequence of images.
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Algorithm 1 Tracking Lines in a video sequence
INPUTS: N, N°¢4 N"® be initialized
Initialize O = O, N =0,¢t «— 0
while t + N <= N®®9do
forall linee O do
Trackline(ine,t + N — 2,t + N — 1);
end for
n «— N"® —|O| {number of lines to detect in image
N «— detectn new lines in image
for all line e N do
Trackline(ine,{t,...,t + N — 1});
end for
O—0nN
forall linee O do
OutGoingDetectionlinet,{t,...,t + N — 1});
end for
t—t+1
end while

Trackline(l,{a,...,b}) isthe basic tracking function of the lihdetween images
a andb, in the corresponding Radon/Hough spaces 2s8e

OutGoing_Detection(,t,{t,...,t + N — 1}) is the procedure that detects if the
tracking of the lind should be stopped or not. (s2e).
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Figure 5: Tracking lines in the radon space and their prmestin the corre-
sponding image space. Results are presented in rastefesoaat.
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3 Correlation between Hough parameter and cam-
era pose

We firstly focused on searching experimentallg@relation between the line
configuration and camera pose could be expressed. The hnfigeation refers to
the set of all lines, each of them caracterized by the Hougdnpiers: the distance
of the line from the origin, and its normal angle (see seciidmand figurel). A
space for such configuration is defined&%" in the following section. Similarly,
camera pose will evolve in its own space, the space of rigitkfiormatiors £(3).

In other words, this research work aims at looking for a datien between the
spaces?’ andSE(3).

3.1 Notations & Overview

Without loss of generality, we put forward the hypotheset tihe scene contains
N 3-lines and they are all visible in all images, as well in ta&rhing set as in the
testing set. The 3-lines are labeled. ., n, ..., N and we assume that a matching
of lines has been performed before. Let us defifiethe Hough space associated
with a 3-line labeledh. h,, = (p.,0,) is an element of{,, and the feature space
is given by:

AN = (Hy x ... x Hy)

Let us finally define:

f: N = (Hyx...xHy) — SE(3) -
H = (hn...hy) +— M (7)

whereM is the homogeneous matrix associated to the elements aigrgroup
SE(3).

The aim is to estimate the functign: #" — SF(3) which maps an observa-
tion H € 7™ of the N lines in the Hough space to the positioff/) € SE(3) of
the camera. The spac#’” as the spac§ E(3) are not Hilbert spaces and this is
why we used a kernel method. In this document, we will preaarégxperimental
approach based on KCCA (Kernel Canonical Correlation Asigly The idea is
to (see sheme of the method in fige

1. map the respective spac#’”y and SE(3) into high dimensional Hilbert
spaces” and %

2. compute couples of canonical vectarse # andz; € Z°on the which the
projection of thdearning pointhave maximal correlation.
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3. make a prediction from¥” and 2 with a testing point The prediction is
denotedt € Z. The reason for predicting in this spaces will become clear
later.

4. find a way to retrieve the element W e SFE(3) corresponding to the
predictionz € 2 (this is the inverse problem)

. YN — SE@3)
H — M
| |1
N bsesIp
| .
W z

—
G (H) — ¢SE'3 (M)
Figure 6. Sheme of the method experimented: Ip derlotessse Problem

Obviously as a learning method, KCCA is computed froleaning seta tested
thanks to desting setThe learning setis denotetd= {(H,, M), ..., (Hr, ML)}
and the testing sét = {(Hy, M) ,...,(Hr, Mr)}.

The remaining of the section is organized as follow: in €8C3i.2 presents kernel
method we used, including the KCCA, regardless to our woaksgHough space
andSE(3)). Then, in sectior8.3metrics problems related to the work spaces are
presented. Sectiah4give an overview of how going back from the RKHS to the
space of camera motion. Finally, in secti® results and conclusion about the
method are given.

3.2 Overview of the kernel method

We review with outloss of generality the general idea of kémethod, and more
particularly the KPCA (Kernel Principal Component Anak)sand KCCA (Ker-
nel Canonical Correlation AnalysisB|[

3.2.1 Kernel method: outline

Let 2" be a space on which we have a distange between its elements
and denote the mapping = ¢4 : & — # where# is an infinite di-
mensional Hilbert space in which the scalar product is alslypwell defined,
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D o(x) = (p1(x),...,¢4(x),...). Note that in practice as well the mapping
as its inversey—! is unfortunately unknown. Finally, let assume a featurgarec
X ={x1,...,xp} € ZF. In order to use linear algorithm with non linear data,
the mappingp is used as follow:

[e'¢) L
g(z) = Z MOk (x)+b = ZW (p(x), d(x1))+b (dual representation) (8)
k=1 1=1

Then, K (x,y) is aKernel functionf Vxy € 2~

K(x,y) = (¢(x), 9(y)) (9)

with the following properties:

Symmetry K(x,y) = (¢(x),0(y)) = (o(y), ¢(x)) = K(y,x)

Cauchy-Schwarz inequality K (v, x)* = (¢(x), ¢(y))” < [|6(x)|]*/|¢(y)|* =
K(x,x)K(y,y)

Choice of K There exits different choices fdt and the most commonly used is
the Gaussian kerndllefined by:

2
do

K(xy)=ec 57

Kernel method is very convenient thanks to the Mercer'sitai@o Indeed, it offers
an easy way to map data into a feature spéice ¢(.2") based on a similarity
measure between the elements of the by computing(¢(x), ¢(y)). We denote
the Graam matrixthe matrix as K = (K(le,yjz))fm:l.

From this point, it become possible to compute classic&aliralgorithms like
PCA or CCA isthe spac# in particular thanks to the scalar product well defined
in Hilbert spaces.

3.2.2 KPCA - Kernel Principal Component Analysis

We present quickly the KPCA algorithr82] that compute a PCA in the spa#é
since it is useful for the KCCAZ3] (section3.2.3.

As in the traditional case, the KPCA aims at computing themiglue of the
covariance matrixC' = = 37 | ¢(x1)¢(x1)” such that?

AV = CV (10)

2The PCA is computed on data centered. See appenddZjridr centering kerneled data
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X — ua
X [— Yy
| |
o G
! !
y/4 — <
Gx(x) — du(y)

Figure 7: Scheme for the KCCA

where the eigenvector can writtdh = Zle a;o(x;) (@ = (aq,...,ar)). Then,
the column vectorsay, . .., ) are computed by solving the eigen problem:

Lla = Ka (11)

for non-zeros eigenvalues. Thevector amonday, . . ., ) that have non-zeros
eigenvalues are normalized such th&t*, V¥) = 1 whereV* is thek’ column
of matrix V: it gives \; (au, ) = 1. Finally the coordinate of any test poit
onto the principal component can be easily computed:

L L

(VEo(x)) =D al (6(x3), 6(x)) = > o K (x5, %) (12)

J=1 J=1

3.2.3 KCCA - Kernel Canonical Correlation Analysis

KCCA is quickly outlined in this sectior?f3].

Let define? with an associated distandg,, and¢, : % — 2 as we did
respectively for2", d,- and¢,. We can thus construct the scheme presented in
figure?.

Now, let assume that we havedata pointX* = {x;,...,x} in the space?’
andY* = {yy,...,yr} inthe space?: they constitutes thiearning points We
also define the orthogonal projection operatpf.) 1: Pa(b) is the projection of
vectorb onto vectora in the spacel. As in the classical case, KCCA tries to find
triplets (w;, z;, \;) € (# x Z x [0, 1]) such that

(Pu, (02 (XL))W)Z’EN
and
(Pzi (9250! (Yﬁ))@)ieN
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are maximally correlated with respective correlation toeits (), ), . (wi);cn
and(z;),.y are called the canonical vectors. Obviously, the basj$; and(z;),
should be orthogonal. In order to achieve such a thing, tbedtoates of

{o2 (1), ¢ (xL)})

has to be expressed in the basis of the principal componemyiuted fromyp ,- (X <).
(Same remark for the spac#). Once the KCCA has been computed, if a new
pointx’ from thetest setappears, it is projected into the bais), of # and its
prediction is given by applying the correlation coefficent, giving finally the
component onto the bagis;),. In a practical point of view, here is how the KCCA
is realized:

e The components 6Py = [P (X1), ..., d2 (x1)] are computed in the ba-
sis of principal componen¥ , = ¢’,-A 4 (A 2 holds the expansion co-
efficients), givingC4 = &5, Uy = K4 A 5. Same thing for”

e The canonical vectorsw;), and (z;) are computed in such way that the
canonical variatea; = K4y A »w; andb; = Ky Ay z; are maximmaly

correlated:
max(7<ai’ by) )
[[al|[|bsl|

which lead to the following contrained optimization prainle

argmax w;C') Cyz; (13)

The main difficulties of such a method is the choice of theidhgarity d, (re-
spectivelyds, ) between the elements of " (respectively?’). This is particularly
true in our original problem in whict2” = 7~ and% = SE(3). This is pre-
cisely the matter of the following section to explain our des of metrics in suhc
spaces.

3.3 Metric related problems

From now on, we consider tha™ = #" and% = SFE(3) and the dissimilarity
measurel, = d .+~ andd, = dsg, are to be developped.

3.3.1 Dissimilarity measure in#" : choice ofd;

Let denotep,, = p(l,,) andd,, = 6(l,,) the Hough parameters of liflg. First of
all we need to define a "distancéd] (., .) between two lines in an image. This is
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)8

Figure 8: Two independent cases in whigli,, ;) should be maximal and have
the same value, on the right : Hough parametrization chogea. [-7 7] and

pe [t by

not not an obvious problem since in the case of Hough paraswehave to deal
with two kind of measurements: angular and non angularhleantore, (., .) is
necessarily related to the framework of the image. Indéed,.) should take into
consideration that the dissimilarity between two liheandi, is maximal and has
the same value if we consider independently angular ancanguodar part of the
corresponding Hough parameté(see figures):

o 0y L0y Vpi,po

o py = —lmer py =P andp; = py =1

where p,.... is the length of the diagonal. Last but not the least,,) should
be homogeneous. We can straightforwardly assert (see fgjtoethe Hough
parametrization chosen):

d; (11, 15) = tan (L (921’92>) + tan GL' i |p2|) (14)
pma.r

wheredy (01,02) = min (|0 — 01|, 7 — |#2 — 61]). We can now define the dis-
similarity measurel, (H,, H,), H,, H, € L. Letl* be then' line of theu'
image ¢'" element of the learning s&). As previously mentionnec@lg)ue[m 5

3We consider that we work in normalized coordinates, withesaatio along x-axis and y-axis
of the image
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the projection of the same&” 3-lines in all images from the learning set. Finally,
we have:

\ (H,, H,) Zdl (1%, 10) (15)

Note that we can imagine small varlatlons of the measureqs@g in the last
lines.

3.3.2 Dissimilarity measure inSE(3): choice ofd,

In this section we based our dissimilarity measure on Rienanmetrics on
SO(3) and SE(3) [10, 5]. First of all we give "relative” definitions of spaces
GL,(3), GA.(3), SO(3) and SE(3). GL,(3) denote the set of all positive-
definite3 x 3 real matrices. Thus we have:

SOB3) = {RIR€GL.(3),R"R=1} (16)
GA.(3) — {B\B:[Ag CH,MGGL+(3);dER3} (17)
SE(3) — {A\Az[? d] ReSO()deR} (18)

Without loss of generality, we present [left-invariant]tmes in this spaces. Again,
a lot of details can be found i[10]. Let G, G5 € GL,(3). Thus, we have:

Gy = Galltr, = (Gi— G2 GL—Ga)gy,
where (X,Y)., = Tr[X"YW]
(19)
and W is a symmetric positive-definité x 3 matrix. Any elementG € GL,
can be projected ont8O(3)[5] by computing the SVD decomposition 6fIV:

GW = UXVT. Then, the projectiof® € SO(3) of G is given byR = UV,
In the same way, letl;, A, € GA,(3) and we have:

AL = Ao|[Ea, = (A1 — As, Ai — Ao)g,
where (X,Y)g,, = Tr X"V | (20)
andW = [ M; “ }
a W
We can compute the projectiad € SE(3) of any elementd € GA(3). If
A = { Pal Ef } . B eGL.(3); B,cR’ 21)

BiW = UXVT (singular value decomposition) (22)
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then:

(23)

M:{UVT Bg}

0 1
In our experiments, we cho3®€ = [, and if we setu = 03, equation20 can be
expressed as:

2 2 Ry 1
42 = Avllon, = [1Fa = Rille, +ollis =t whered, = | ¢+t |
andw is become a parameter that balance the relative proportithre sotational
and translational part of the motion. In figu®e we show a way that use the
previous result in order to approximate a dissimilarity smea inSE(3). Let
M, and M, be two points inSE(3). They are also iz A, (3). The geodesic in
G'A4(3) [in the sense off.||¢4. ] between the two points is easily obtained. Then
if we sample this geodesic and project each sample point®A(3), we can get
a good approximation even usifig|c., . LetS be the number of sample points,
(ts)seq1,. sy De the discrete variable such that= 5, andPsx(.) be the projection

.....

of aG A, (3) matrix element ont& E(3). If we write

(e= 5 7))
ie{1,2}

o) = g (| (= 0t 1T

then we have the following dissimilarity measure:

and

do(My, My) = ZHPSEsH — Psp (s)llga, (24)

3.4 The inverse problem : from.2 to SE(3)

As previously explained, the prediction is achieve betwieghe spaceZ” while
we need a prediction of the position of the cameré&'iti(3). Therefore, only
spaces of the right part of scheié considered in this sectio®:F(3) and 2
Once we have the prediction in the basis of canonical véetprwe can reproject
the coordinates of the projection onto the principal congmn Then, we have
straightforwardly:

y = argmin ||A%pK (v) = p|| (25)

YESE(3)

where:
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Figure 9: approximating the dissimilarity measuresif(3)

e K(y)=I[K(y,Mi),....K (y,Mp)]"
e p s the prediction expressed in the principal componentshafs”

The initial estimatey;,isia1 fOr this optimization procedure is chosen among the
learning sef{ M, ..., M} such that :

. 2
Vinitial =  argmin HA;K (y) — pH (26)
ye{]Vh ..... ML}
Obviously the KPCA has been performed without includingtdst samples. Fig-
ure 10 shows some steps of the optimization.

3.5 Results and conclusion

The method previously presented has been tested by siomla#iset of camera
observing a line-based object has been generated. Thiswesh figurellin
whichm = 124 (size of the learning set). We achieved tests with diffevahies

of m. Since the resolution of the inverse problem gives readenasults, we
tried to work closer on the prediction part. Figur2shows some results obtained
by predicting in the(z;),-basis. In case of» = 124, the prediction is quite cor-
rect for thel5 fisrt component which could be sufficient to recover the pasit
of the camera by solving the inverse problem. In order togase the number of
components predicted, the size of the learning set has tadpsyhraised: to have
25 correctly predicted component, the valuerofs changed to 1000. Apart from
the factm = 1000 is unthinkable in a pratical case, it is highly computationa
which is a very negative point. Furthermore, even thoughipt®ns on at least
6 components iriz;), are a priori sufficient to recover the 6 intrinsec parameters
[by solving the inverse problem], they have to be very peecis

Nervertheless, the choice of the dissimilarity measur€Aii{3) seems to be suit-
able since we obtained successful results while solvingitrerse problem.



CERTIS R.R. 06-22 19

800
N

Figure 10: Results of the inverse problem - on the top lef: lgarning set used
to compute de KPCA. Other: Some steps of the optimizatiooralgn used:
Camera position and expansion on the principal componegf inThe first on
the top left correspond to the initial estimate In blue: R&alGreen: Prediction
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Figure 12: Two examples of prediction for 2 valuesnof(size of learning set)-
Above: 124. Below: 1000
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4 Inference from complete Hough/Radon space

4.1 Objectives & Problem formulation

Contrary to the previous works, lines are not only charazerby the Hough pa-
rameter but also by features extracted in the Radon spaceméihod consists
of a learning and an inference step. During the learningesting scene is learnt
from an image sequence and its corresponding 3D reconstmuch geometry-
based learning is achieved by recovering geometric relatimtween lines and
consequently between their projections. In parallel toféaure-based learning,
3d lines are associated through AdaBoost learners with 2eprojection in the
Radon space (local maxima). Such an information space tbwitlein a matching
process to recover camera’s pose from a new image. Matclaitygebn plausi-
ble line candidates in a new image dictate multiple corradpaces between the
2D new image lines and the 3D reconstructed lines. The mosighte configu-
ration in terms of appearance while satisfying geometrits@giency constraints
provides the camera position. The overview of such an agprissshown in [Fig.
(13)].

Let us consider a viewer centered coordinate system thafised with the
camera lens center or the observer located at the originiantcksat the view axis
is collinear to the z axis. We further assume that the imageepis perpendicular
to the view axis. Using the perspective model, the image gfpammnt in space is
equal to the intersection of the image plane and the linarjgithe point to the
center of the camera lens.

The main stream of research in 3D reconstruction and posaatgin has

Learning Step Inference Stage

|’>' Pose Estimation

2D-3D Line Matching

3D Line .
Reconstruction [

3D-Environment

Learning
Views

Line learners

Image Sequence

Line Learning ; Line Feature Extraction
Line feature space

(@) (b) (©)

Figure 13: Overview of the proposed pose estimation appradere both learn-
ing and estimation steps are delineated.
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been devoted to point correspondent® P8, 30]. Line correspondences could be
an efficient alternative to such an approa2h P4]. Such a feature space inherits
the advantage of being more robust than point correspoeders well as more
global. On the other hand, line tracking algorithms are catafonally intensive
and low sampling frequency and long time delays can thezdferexpected. Such
a limitation can be addressed using image transformatikafile Hough11] and
the Radon spacé&fl] which project images into convenient lines spaces.

The remainder of the current section is organized in thefohg fashion:
Section2.3 described our approach toward line tracking. Since linasked
through a video sequence, their 3d information is recovaretithe 3d-2d rela-
tion can be indirectly learned by a boosting algorithm as@néd in sectiod.2
Section4.3is devoted to inference and pose estimation and finally audgaon
for this approach is given in the conclusion of this docunmeisection5.

4.2 3D-2D Line Relation through Boosting

As previously mentionned, the first step is compute a threedsional model of
the scene and more particularly the lines. 3d reconstnuftton image sequences
of video sequence has been widely studied in the past yeiaise Bis not in the
scope of this document, this part is not developped. Figdi®3d reconstruction
of an indoor scene based on lines.

Once the scene and 3D lines have been reconstructedl#igne would like
to establish a connection between such 3D lines and thaiegmonding projec-
tions. Since our approach is both features and geometredbas® aim at learning
both kind of constraints.

First, geometrical constraints can be straight and ndyudalduced from the
3D reconstructed scene implying 2d constraints on the gi@jelines. Since ex-
traction of the relative geometry is not critical - once 3Daestruction has been
completed -, more attention is to be paid on feature extractearning and mod-
eling.

Let us consider that our feature learning stage consists ef {i1,ls, ..., 1,,}
3D lines, and our training consists ofimages. Without loss of generality we
assume that such geometric elements were successfultetigithin thisc im-
ages. LetP, = {pi,p:,...,p5} being the projections in the radon space of line
I, at these: images. Such projections correspond to the 2D local radtshes
represented asdimensional vectors.

Traditional statistical inference techniques can be usea@d¢over a distribu-
tion of suchd-dimensional vectors. To this end, one can consider simplesG
sian assumptions and classical dimensionality reducéionrtiques like principal
component analysis. Such a selection could fail to accaurhé highly no-linear
structure of the Radon space and so of the correspondingrésatFurthermore,
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Figure 14: 3d reconstruction of an indoor scene
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since recovering a training shots from all possible virp@ditions of the observer
itis almost impossible, one should also account for sparsermations and learn-
ing from small training sets. Therefore, more advancedsdiaation techniques
are to be considered that are able to cope with some of thesdinowations.

Our basic classifier consists of given two classeand(C, find an appropriate
transformation/functior’ that can measure the distance between a saprghel
these classeB(Cy, p). To this end, within the context of our application one can
considem bin classification problemsy,

F()— 1, pGOk
P00 peay, Ak

In other words, we are looking for a way to compute the boundéa binary
partition between the features corresponding to lineersus the others. Stump
classification can deal with this problem: it tests binargtipans along all thel
dimensions and all possible thresholds. The model is giyven b

R={aoly,cr +a1ly>rjel, .. d TR,

Qg € [0, 1],0&1 c [0, 1]} (27)

The threshold* and the dimensiogi* that minimizes the desired criteri&(j, 7)
are kept to form the partition parameters. The reader can tef4] to get further
details about stumps and more particularly about the @itérwe used.

Consequently, stump classification returns a funcfigrthat defines a parti-
tion of the space according to an hyperplane which is orthabim the canonical
basis ofX’:

fm = fm,<1.reXfT + fm,zlxexﬁ

Stumps were implemented and tested with a synthetic datarse¢d with a

video sequence of a basic 3D structure. Towards producieglatic test case,
a set of perturbations (random lines) are introduces in ha@&ne [Fig. 17)].
In order to account for possible sensor noise, the correpgvideo images are
convolved with a Gaussian operator (white noise), and ewtdit lines are also
added in the observation set. Radon transformations of isnapes are used to
recover local patches that guide the learning step whiletast is also created.
The classification error for all experiments which were astdd was close to
0.5. Therefore, one can conclude that bin classification on awugace induces a
high risk in pose estimation.

One can overcome such a limitation through the transfoonaif the stump
classifier into a "weak” learner. In addition, the learningaaithm should deter-
mine the origin of the sample as accurate as possible by #@fus multitude
of "weak” learners. AdaBoostl[/, 18] is one of the most prominent techniques
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to address such a task among others such as neural netvidiksnd support
vector machines3p]. Boosting improves significantly the accuracy of any given
learning algorithm, even in the case of a "weak” learner.fSechniques have a
number of interesting empirical properties. It has beemshd 8] that boosting
does not perfom an overfit to the training data.

The general idea of boosting is 1erepeatedly use a "weak” learner [stumps
returning a regression functiofy, in our case] with some weights” on the
training data- m beeing the iteration index2- focus on misclassified data from
one iteration to the next through the updateugf:

m w;“_le*yifm(xi) vie{1,...,N} (28)

wy = K K: normalizing constant

whereY; is the classication corresponding to the featire (X;,Y;) beeing an
element of the learning an¥l its size.

Then, at each step a weight, associated with the current learner is deter-
mined according to the corresponding classification peréorce. The final clas-
sification is given by the thresholded regression funcligy) )~r, G () beeing
the weighted combination of the "weak” learners:

M
G]W(x) - Z Cmfm (29)

This is a slightly modified version of the "real AdaBoost aigfam” [31, 4]
presented in figurd5. Indeed, at the end of the "real” AdaBoost algorithm, the
decision is based ole(m)Z% implying implicitly a fixed threshold on the regres-

sion functionG,(z) = Zf‘il ¢; f;- Instead of doing this and sin€@,,(x) is by

definition piece-wise constant, we preferred to choose mycelly the threshold
T among the finite set of possible values so that the error caletreased.
Finally, the feature learning stage outputslassifiers

S" ={la1, > Lak @100 - - - Loy (0)>Tn b

-one for each linethat are going to be used for line inference and pose estmat

4.3 Line Inference & Pose estimation

Line inference consists of recovering the most prabable a@h@s-to-3D lines
configuration using the set of classifiers

S" = {lg}u(:c)>T1a RN lGﬁJ(I)>Tk7 A HGX{(I)>TH}
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(X,Y) forms the learning sef{ € X = R?is a feature and Y the corresponding
true classification decision

Start with weightsy) = - foranyi € {1,..., N}.
For m = 1to M do

e Determinej € {1,..., N} andr € R minimizingW,m-1(j, 7).
e Choosef,, = fm7<]l$€Xj< + fm>1,c> Where
5T - J,T

f N 1 10 Pwm—l(Y:hXEXj,T +
m< = 5198\ F T v=oXex )+

) ﬁ)

)+6

A 1 Pwmfl(yzl;XEX]%T)Jrﬁ

fm,Z = 210g I

7T

andg =

m=1o—Y; fm(X;) . .
e Setw!" = % foranyi € {1,..., N}, where Cst is the nof

malizing constant.

EndFor
. M
e Output the classifiet; ,»1 = LG @) whereG y () = Z cifi

1
23 2
i=1

Figure 15: "Real” AdaBoostd1] using stumps as defined id][

. In this section, we first explore the straighforward santand then we propose
an objective function that couples the outcome of the weaknkrs with geo-

metric constraints inherited from the learning stage. Sarctlobjective function

also solves pose estimation since the optimal camera pseesmefer to its lowest

potential.

In order to validate the performance of the AdaBoost classiive have cre-
ated a realistic synthetic environment where inferencalt®gsan be compared
with the true configuration. The feature vector for one-plested line has been
learnt, and the corresponding classifier was tested withimages. Results for
the 30 first iterations of the real AdaBoost are presented in [FIg)]( We can
clearly make several observations. First, learning eroowerges to zero while
the error of the classification in the test remains stablechSuremark is con-
sistent with the expected behavior of the classifier; bagstioes not overfit as
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Figure 16: Error rates during tI38 iterations of real AdaBoost: (top row) learning
set, (bottom row) test set. Red: mean error - Blue: errorgatélass I, class of
the line learnt - Green: error rate of Class Il, class of theeptines

previously mentioned. Then, samples from Class Il are aimsger misclassified
while classification error of Class | is very important andréfore direct pose
estimation is almost impossible. On top of that, one camtlhiat the lines that
are visible change from one image to the next; therefore [#leposed. Such
a limitation can be dealt with the use of geometrical comstsaencoded in the
learning state during the 3D reconstruction step. Such sumagtion could allow
us to relax the AdaBoost, since classification errors bedesgesignificant once
geometry is introduced.

A modified classification model is now constructed based enpievious
oberservations. Let be a new image outside the vido sequence. Any sample
p such that(Gﬁf(p) > Tk) (Class 1) is a potential match. Moreover, classification
confidence depends on the distance of the data to be clagssinethe the bound-
ary and so on the value of §gt) = G%,(x) — T}: the greater i$sd’ ()| the more
confident is the classification. Thus, the easiest classditahoice is:

arg max Ghr(pl) = Ty (30)
ief{l,...,n}

stGk,(pl) > Ty

)
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The correspondance expressed in eds0) {s not sufficient since the most
important value does not necessarily correspond to thewatdh. Let us assume
for alinek, we are interested in the best potential match€e,,, [k, . . ., pn, k] }-
Such candidates are determine through the €8@). (f less thanB lines verify
the constrainG%,(p;[k])) > T} Vi, then it is "relaxed” as earlier explained. In
others words, lines misclassified are authorized to be tadkerconsideration by
removing the constraint in eqn3@). A weighting function/(.) is also used to
influence the importance of a potential match based on thetigyad(.).

Actually we want to express a geometrical constraint GC betwhe projec-
tions of C' lines{ls,,....l.....,ls.} (C < B). For each lines, we keep theB
best potential matche®,,, [s¢|, - - ., Pn,[Sc)s - - - s Py - Finally, the energy to
be minimized is given by:

C
’ min e > " h(sd*(p;[sc])) subjectto GQp;,[si], ... pis[sc]) (31)
1 ...1¢ c=1

(Ay,..., Ac)
where:
e A.is the indice set of potential matches with lihe

e A(x)is asin our implementation inversely proportionaktdViore complex
model can however be imagined.

with GC being the geometric constraint. One can recoverdivest potential of
such a cost function using classical optimization methadsabthe sight of the
small number of lines detected, we consider an exaustivelseg@proach. Nu-
merous formulations can be considered for the GC term. Cere prominent
characteristics of 3D scenes. Therefore, 3D lines goingutin the same point
(that can also define an orthogonal basis) is a straighforgeometry-driven con-
straint. One can use such an assumption to define constiraithsir projection

space; that is:

GC(ly, 1o, l3) = |(Iy x 1p)" 3] (32)

where x is the cross product of 2 projective points/lines dni$ the transpose
sign.

Such a term takes into account the scene context. Officddjrimys, etc. are
scenes where the use of such a constraint is mostly justdwuérs, vanishing
pointsetc...). For example in figui®, the learning step of lines 1,2 and 3 gives a
set{n 1 } If only feature constraint is used through eqn.

1
Gl (@)>T 7GR (2)>Ty 7 G [ (2)> Ty
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Figure 17: Example of learning results on synthetic datal IRes show a match-
ing of 3 lines using geometrical constraint

30, only line 2 is well matched. However, by using relaxatiod &me geometrical
constraint associated to these lines, the algorithm vetsi¢he good matching.
In more complex scenes, more advanced terms can be cortsidemaprove the
robustness of the method. Once the line correspondenckeprdias been solved,
the pose parameters of the camera can be determine usingkeenafrmethods
[13, 27, 7], but we choose to implement a fast efficient linear meth@s$@nted in

[3].

5 Conclusion & Discussion

In this document, we explored two approaches to pose estimbased on line
configuration in images. The former tried to find a correlati@tween the space
of line configuration and the space of rigid transformatidnteresting results
could be shown be it was not powerful enough to plan to compytese esti-
mation in a practical case. The latter gave more promisisglt® and several
experiments were conducted to determine the performanite ahethod. To this
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P
A2
W

Blue : True location &
Green : Estimated pose

Pose Error (Normalization by distance p1p2)

Xaxis : 0.7679 %
Y axis : 8.1934 %
Z axis : 2.7812 %

Orientation Error (in Degree, Euler convention)

Around X axis : 0.2193
Around Y axis : 2.9886
Around Z axis : 2.5388

Figure 18: Final calibration: the image to be calibratedviertayed by the edge
map (in white) and the 3D line reprojection (in red)
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end, first a video stream along with the corresponding 3D gggnfthat can be
recovered standard reconstruction techniques] of theeswere used to learn the
model. Such a model refers toclassifiers with their features space being patches
of the radon transformation of the original image. Then, imeages of the same
scene was considered and self-localization of the obséased on 2d-3d line
matching [Fig. 17) & (18)] was performed.

In this paper, we have proposed a new technique to pose éstmfiaom still
images in known environments. Our method comprises a legstep where a di-
rect association between 3D lines and radon patches isveltaBoosting is used
to model that statistical characteristics of these patemesweak classifiers are
used to determine the most optimal match for a given obgervaBuch a classifi-
cation process provides multiple possible matches for @gime and therefore a
fast prunning technique that encodes geometric consigtarthe process is pro-
posed. Such additional constraints overcome the limitagialassification errors
and increase the performance of the method.

Better classification and more appropriate statistical eedf lines in radon
space is the most promissing direction. The use of radormpatencode to some
extend clutter and therefore separating lines from ireleirdormation could im-
prove the performance of the method. Better tracking ofliteough linear pre-
diction techniques like kalman filter could improve the leag stage and make
the method more appropriate for real-time autonomoussssteast, but not least
representing the camera’s pose parameters using non-gai@akernel-based sta-
tistical models seems to be more suitable term to furtheeldevthe inference
process.
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