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d’une caméra l’aide l’espace de

Radon/Hough

Patrick Etyngier2

Nikos Paragios2

Jean-Yves Audibert2

Renaud Keriven2

2CERTIS, ENPC, 77455 Marne la Vallee, France, http://www.enpc.fr/certis/





Abstract

In this document, we present methods to camera pose estimation from one
single images in a known environment. The framework of such methods com-
prises two stages, a learning step and an inference stage where given a new image
we recover the exact camera position. This research work focus on achieving such
a task with the help of lines and the Radon/Hough transform. The question to be
answered in this study iswhat can be learnt from lines in order to compute a
camera pose estimation.

Firstly, we tried to point up a relationship between the Hough parameters of a
set of lines (ρ, θ) and the camera pose inSE(3) -the space of rigid transformations-
based on KCCA method. Such a relationship could be used to predict pose esti-
mation from line configurations.

In a second approach, lines that are recovered in the radon space consist of
our feature space. Such features are associated with [AdaBoost] learners that cap-
ture the wide image feature spectrum of a given 3D line. Such aframework is
used through inference for pose estimation. Given a new image, we extract fea-
tures which are consistent with the ones learnt, and we associate such features
with a number of lines in the 3D plane that are pruned through the use of geo-
metric constraints. Once correspondence between lines hasbeen established, pose
estimation is done in a straightforward fashion. Encouraging experimental results
based on a real case are presented in this document.





Résuḿe

Les problèmes de calibrations consistent à retrouver la position et l’orienta-
tion d’un observateur (appareil photo, caméra, casque de réalité vistuel etc . . . ).
Ils sont omniprésents dans les domaine de la vision par ordinateur et ont été lar-
gement explorés ces dernières années. Cependant, les m´ethodes par apprentissage
sont relativement peu présentes dans la littérature. Nous proposons dans ce do-
cument des nouvelles approches de calibration par apprentissage de l’environne-
ment.

La méthode se décompose en deux étapes : d’abord une étape d’apprentissage
où un environnement (une pièce par exemple) est appris, etensuite une étape de
déduction où la position et orientation de la caméra est retrouvée. Les travaux
présentés dans ce document repose sur la detection de droite dans les images à
l’aide de la transformée de Hough. La question qui se pose est :Que peut-on ap-
prendre des droites afin d’estimer la position d’une camera. Deux approchesont
été explorées :

Nous avons tout d’abord essayé de trouver une relation de corrélation (à l’aide
d’un noyau, KCCA) entre les paramètres de Hough (ρ, θ) d’un ensemble de droites,
et la position de la camera dansSE(3) -l’espace des transformations rigides-. Une
telle relation pourrait être utilisée pour prédire la position à partir d’une configu-
ration de droites.

Dans une deuxième approche, les droites sont caractéris´ees par des patches
centrés autour des maxima locaux de l’espace de Radon. Les droites mise en
correspondance dans plusieurs images de points de vue diff´erents permettent à
des algorithmes d’apprentissage AdaBoost de capturer un large spectres des ca-
ractéristiques d’une droite données.
Etant donnée une nouvelle image, on extrait les caractéristiques consistantes avec
celles apprises. Le problème est relaxé par l’ajout de contraintes géométriques
qui permettent d’élaguer les résultats obtenus. Lorsqueles correspondances entre
les droites 3d (reconstruites à partir de la séquence d’apprentissage) et les droites
de la nouvelles images sont retrouvées, l’estimation de laposition de la caméra
est calculée directement. Des résultats expérimentauxsont montrés dans ce docu-
ment.
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1 Introduction

Pose estimation has been extensively studied in the past years. Nevertheless, it
is still an open problem particularly in the context of real time vision. Robot
navigation, autonomous systems and self-localization aresome of the domains
in computational vision where pose estimation is important. One can also cite a
number of application in augmented and mixed reality where asolution to this
problem is critical. In prior literature pose estimation methods are either feature-
driven [30] or geometry-driven [2, 13, 27, 7].

The solution proposed aims to combine feature-based methods and geometry-
driven approaches. To this end, we consider geometric elements such as lines
to be the most appropriate feature space. Such a selection ismotivated from a
number of reasons. Lines are simple geometric structures that refer to a compact
representation of the scene, while at the same time one can determine angles and
orientations that relate their relative positions. Parallel to that, in the image projec-
tion space appropriate feature spaces (Hough [11, 34], Radon [34]) and methods
exist for fast extraction and tracking [9] of such geometric elements with impor-
tant precision.

The geometry of line configuration [in the Radon space] can berelated with
the space of rigid transformation through KCCA. The kernel-correlation between
both spaces could help us to infer pose estimation from bunches of examples. We
achieved some works in this direction but results does not seems to be promising
compared to the feature-and-geometry based method.

Hence, the most promising solution is both feature-and-geometry driven. Lines
are caracterized by their projection in the Radon space, forming a feature space.
In addition, the geometry of 3d-line configuration can be easily recovered through
a 3d reconstruction of the scene. The scheme of our method is thus to reconstruct
line while their geometry and features are learnt. Once thisis done, a simple line
detector coupled with the information previously learnt can be implemented in or-
der to infer the pose estimation from a single view. The domain pointed out is of
course real-time application suchlike augmented reality based on a head mounted
device or robot navigation.

The reminder of the document is oorganized in the following fashion. In sec-
tion 2, we present basics of line detection based on Hough and Radontransform.
A matching and tracking process are also presented in this section2.3. The corre-
lation between the line configuration of a static environment and the camera pose
in part of section3. In section section4, we give a second approach to the prob-
lem where the feature space is based on the Radon space. Experimental results
and discussion are finally presented in the last section.
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2 Feature detection, matching & tracking

The detection of primitives in images is a recurrent problemin computer vision,
particularly for points and lines. We are going to be only interested in line ex-
traction in the remaining of this document. Feature detection is a key point of
the problem. In this section, we present one of the most powerful tools for robust
lines detection in images: theHough transform. Nervertheless, the voting space
of the Hough transform has some discretization defects thatmight be unsatisfac-
tory, in particular when neighborhood of local maxima are tobe used further. The
Radon transform may be used with the edge map in such cases. Obviously, Hough
transform and Radon transform are presented in this section.

2.1 The Hough transform

The Hough Transform is a method able to find parametrized shapes in a data set
and has been the purpose of a lot of research since the 60’. Theidea of this trans-
form is to express a mapping between an image space and a parameter space which
constitute a dual space. Obviously, the parameter space depends on the shape of
the primitive we work on. In the first forms, the Hough transform [19, 29] was de-
signed only for 2-lines. Hough[19] chose the slope and the intercept as parameters
of the line which can be a complication because both parameters are not bounded.
The method is very simple:
Let beI ⊆ R

2 the image space,P ⊆ R
2 the parameter space andlI0 = {(x, y), y =

−a0x−b0} a line in the image space. The superscriptsI andP are used to specify if
we consider a subset of points in the image space or in the parameter space. Now,
for any pointp0 ∈ I we can compute all the lineslPi = {(ai, bi), y0 = −aix0− bi}
going through it using the equation. Since this last equation is linear, we clearly
see that a point in image space is mapped to a line in parameterspace and vice
versa. The same reasoning can be done for a point in parameterspace mapped to
a line in image space and vice versa. Then all the colinear points (which belongs
to a same line) are going to be mapped to as many lines that intersect at the same
point in the parameter space. In practice, an accumalator array of the size of the
parameter space is set up to zero and each pointp in the image space votes for
the cells correponding the lines going throughtp. The line detection is finally
achieved by putting a ceiling on the accumulator array.
The previous description is actually a particular case of the principle of duality in
projective geometry where the same equationlT p = 0 can be seen alternatively
as the point equation of the lineand the line equation of the point[16]. More
recently, A. S. Aguado, E. Montiel and M. S. Nixon [1, 6] have formalized and
generalized not only to projective geometry the relationship between the principle
of duality and the Hough transform.
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Figure 1: Most used parametrization in the Hough transform

As previously evocated, the line slope parametrization is not always optimal be-
cause both parameter are not bounded. The parametrization of line mostly used
by the image processing community is the one proposed by Richard O. Duda and
Peter E. Hart [12]. The author wrote the line in the following way:

lI = {(x, y) , x cos(θ) + y sin(θ)− ρ} (1)

where the two parametersθ andρ are respectively the angle of its normal and the
distance to the origin as represented in figure1. If we choose to restricttheta

to [0, π], ρ is an algebraic distance otherwise,θ ∈ [0, 2π] andρ is an absolute
distance. It is clear that this parametrization is unique. In this parametrization, a
point in image space does not map anymore to a line but obviously to a sinusoid.
Figure2 shows an example of the Hough transform on a very simple example.

The Hough transform as described so far is from now on writtenSHT (Standart
Hough Transform) and belongs to a classification calledone to many(1 → m).
Each point produces indeed a bench of points in the parameterspace. The other
main classification of the Hough transform is calledmany to one(m → 1), but
we are going to be back about it in a few lines.
Although the Hough transform is a very robust way to find linesin data set, it is
very highly costing from a computational point of view, particularly when the data
set of point in the image space is large. In order to improve the computation time,
N. Kiryati and Y. Eldar and A. M. Bruckstein [22] have proposed theProbabilistic
Hough Transform(PHT) that selects a poll of sample in the image space instead
of using it entirely. They could thus speed up the process using probabilities by
doing a kind of ”coarse to fine” Hough transform. The idea has been extended in
[26].
As previsouly said, the other main classication of Hough Transform is themany-
to-oneone introduced by theRandomized Hough Transform(RHT) [36]. Rather
than taking a single point in the image space, Lei Xu and ErkkiOja prefered to



4 Radon/Hough Space for Pose Estimation

Figure 2: Example of Hough Transform: Image space on the left, parameter space
on the right. The three highest values of the parameter spacerepresented by an
accumulator give the 3 lines in the image space

compute only one point in the parameter space by taking randomly several points
in the image space. For the case of a line, two random points define a line and so,
vote for one point in the parameter space. As a threshold is reach in the parameter
space, the correponding line is detected and masked out of the image space. The
algorithm start again until it does not find any line after a certain number of polls.
The PHT and RHT have been unified later by H. Kalviainen, N. Kiryati and S.
Alaoutinen [21]. The reader can refer also to [20, 33]for more details.
The Hough transform has been widely extended to other shapesthan lines, even
in higher dimensions. Nevertheless, we are mainly interested in lines in the re-
maining of this document.

Nevertheless, the standard Hough transformation space hasunfortunately dis-
cretization defect as shown in figure3 in the stripe between the two red lines.
Since our goal is to work in such space, we chose instead to useRadon transform
which do not suffer of such a defect and can be efficiently implemented thanks to
FFT.[[]] In fact, both transformations are derived from thesame concept and the
output spaces are the same when the Radon space is computed onthe edge map.
We recall quickly the mathematical writing of the Radon transform.

2.2 The Radon transform

Let g be a mapping defining an image over a domain spaceU such that:

g : U 7−→ R

u −→ g(u)
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Figure 3: Example of discretization defects using standartHough transform be-
tween the two red lines

and letfp(u) = 0 define a shape described by the vector parameterp. The Radon
transform ofg regarding to the shapefp(u) = 0 is given by:

R(g)(p) =

∫

U

g(x)δ [fp(x)] du (2)

whereδ(.) is the Delta-Dirac function. Radon transform in its discrete form is
extensively used in tomography image reconstruction but itcan also very useful
for line detection.
In that particular case,U = R2 ie u = (x, y) and letp = (ρ, θ) such that:

fp=(ρ,θ)(x, y) = ρ− x cos(θ)− y sin(θ) (3)

and thus, equation2 can be rewritten:

R(I)(ρ, θ) =

∫∫

R

I(x, y)δ (ρ− x cos(θ)− y sin(θ)) dxdy (4)

whereg = I is the image transformed.
Finally, local maxima are thresholded and the median value of neigborood pixel
is used to achieved such a thing.
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2.3 Tracking / Matching lines in the Radon space

2.3.1 Basic image to image tracking

Local maxima in such a space correspond to lines in the original image and can
be extracted in a straightforward fashion. Such a global transformation encodes
the entire line structure in a compact fashion, is capable toaccount for occlusions,
local and global changes of the illumination as well as strong presence of noise.

Figure 4: Line signature in the Radon space for a number of consecutive images.

Tracking lines in such a space is a feasible task with simple methods being
able to capture the line displacement from one image to the next. Such a prob-
lem is simplified due to the constraint that lines corresponds to local maxima in
the space and therefore simple comparison between local radon patches could
provide explicit correspondences between lines. To this end, we consider simple
normalized correlation criterion. We seek to recover the optimal displacement
du = (dx, dy) between two radon images such that the distance between the cor-
responding patches is minimal. Basically, the algorithm works with the Radon
spaces (R1 & R2) of two successive images (I1 & I2) and for each local maxi-
mum detected previously inR1 - ie a line inI1 - it searches for the 2d-dimensional
shift inR2 such that an energy is minimized:

min
(dx,dy)∈

Ω(X,Y )

E(dx, dy) (5)

whereΩ(X, Y ) is the neiborghhood of(X, Y ).
The search can be constrained on local maximums ofR2 but experiments did not
show an interest of proceeding in such a way. A free shift search is thus prefered
in the following. Just as points in images are tracked based on a very slight image
to image transformation hypothesis, it is reasonable to make the same assumption
in the radon space. Thus, we simply chose to compute a cross normalized sum of
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differences in our implementation:

E(dx, dy) =

∑

u,v

[(WX,Y {I1} (u, v)) (WX′,Y ′ {I2} (u, v))]2

∑

u,v

[WX,Y {I1} (u, v)]2
∑

u,v

[WX′,Y ′ {I2} (u, v)]2
(6)

whereX ′ = X +dx, Y ′ = Y +dy,WX,Y is a designed window centred in(X, Y )
such that the valuesWX,Y (u, v) are centred (the mean over the windows is sub-
stracted).
Obviously, the particular structure of the Radon space which fold up is taken into
consideration. We tried other forms of similar energy (correlation . . . ) but none
showed real improvments.

2.3.2 Tracking over a sequence

In the previous line, we presented a simple image to image line tracking. We are
however interested in tracking lines over a video sequence.Thus, dying lines -
ie lines that are not present anymore in an image- and new linedetection should
be taken into consideration. Without loss of generality, algorithm1 outlines the
procedure implemented to achieve such a task. It is based on three main functions:
image to image line detection, new line detection and outgoing line detection. The
former has been described previously. The algorithm tries to keep up toNmax

l

during the tracking within theNseq images. New line detection has been already
detailled and is used to maintain the number of lines trackedin the current image
(up to Nmax

l ). The last function ensure that a line will not be tracked if it not
anymore in the current image. In order to decide if a line should be tracked in
the following images, the algorithm analyses with the help of variance the patches
overN images. Such a way avoids removing and detecting again continuously
the same line along the tracking within the video sequence.

2.3.3 Conclusion

We presented an efficient method for line tracking in the Radon space based on
correlation patches. Indeed, systems have more and more ressources to make
these computations. The correlation patches in the Radon space can also be used
in order to improve a manual matching in a sequence of images.
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Algorithm 1 Tracking Lines in a video sequence
INPUTS:N , Nseq,Nmax

l be initialized
InitializeO = ∅,N = ∅, t← 0
while t + N <= Nseqdo

for all line∈ O do
Trackline(line,t + N − 2,t + N − 1);

end for
n← Nmax

l − |O| {number of lines to detect in image}
N ← detectn new lines in imaget
for all line∈ N do

Trackline(line,{t, . . . , t + N − 1});
end for
O ← O ∩N
for all line∈ O do

OutGoingDetection(line,t,{t, . . . , t + N − 1});
end for
t← t + 1

end while

Trackline( l,{a, . . . , b}) is the basic tracking function of the linel between images
a andb, in the corresponding Radon/Hough spaces (see2.3).

OutGoing Detection(l,t,{t, . . . , t + N − 1}) is the procedure that detects if the
tracking of the linel should be stopped or not. (see2.3).
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Figure 5: Tracking lines in the radon space and their projections in the corre-
sponding image space. Results are presented in raster-scanformat.
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3 Correlation between Hough parameter and cam-
era pose

We firstly focused on searching experimentally acorrelation between the line
configuration and camera pose could be expressed. The line configuration refers to
the set of all lines, each of them caracterized by the Hough paramters: the distance
of the line from the origin, and its normal angle (see section2.1and figure1). A
space for such configuration is defined asH N in the following section. Similarly,
camera pose will evolve in its own space, the space of rigid transformationSE(3).
In other words, this research work aims at looking for a correlation between the
spacesH N andSE(3).

3.1 Notations & Overview

Without loss of generality, we put forward the hypothesis that the scene contains
N 3-lines and they are all visible in all images, as well in the learning set as in the
testing set. The 3-lines are labeled1, . . . , n, . . . , N and we assume that a matching
of lines has been performed before. Let us defineHn the Hough space associated
with a 3-line labeledn. hn = (ρn, θn) is an element ofHn and the feature space
is given by:

H
N = (H1 × . . .×HN )

Let us finally define:

f : H N = (H1 × . . .×HN ) −→ SE(3)
H = (h1, . . . , hN) 7−→ M

(7)

whereM is the homogeneous matrix associated to the elements of theLie group
SE(3).
The aim is to estimate the functionf : H N −→ SE(3) which maps an observa-
tionH ∈H N of theN lines in the Hough space to the positionf (H) ∈ SE(3) of
the camera. The spaceH N as the spaceSE(3) are not Hilbert spaces and this is
why we used a kernel method. In this document, we will presentan experimental
approach based on KCCA (Kernel Canonical Correlation Analysis). The idea is
to (see sheme of the method in figure6):

1. map the respective spaceH N andSE(3) into high dimensional Hilbert
spacesW andZ

2. compute couples of canonical vectorswi ∈ W andzi ∈ Z on the which the
projection of thelearning pointhave maximal correlation.
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3. make a prediction fromW andZ with a testing point. The prediction is
denoted̂z ∈ Z . The reason for predicting in this spaces will become clear
later.

4. find a way to retrieve the element in̂M ∈ SE(3) corresponding to the
predictionẑ ∈ Z (this is the inverse problem)

f : H
N −→ SE(3)

H 7−→ M

| | ↑
φH N φSE3Ip
↓ ↓ |
W −→ Z

φH N (H) 7−→ φSE3(M)

Figure 6: Sheme of the method experimented: Ip denotesInverse Problem

Obviously as a learning method, KCCA is computed from alearning seta tested
thanks to atesting set. The learning set is denotedL = {(H1, M1) , . . . , (HL, ML)}
and the testing setT = {(H1, M1) , . . . , (HT , MT )}.
The remaining of the section is organized as follow: in section3.2presents kernel
method we used, including the KCCA, regardless to our work space (Hough space
andSE(3)). Then, in section3.3metrics problems related to the work spaces are
presented. Section3.4give an overview of how going back from the RKHS to the
space of camera motion. Finally, in section3.5 results and conclusion about the
method are given.

3.2 Overview of the kernel method

We review with outloss of generality the general idea of kernel method, and more
particularly the KPCA (Kernel Principal Component Analysis) and KCCA (Ker-
nel Canonical Correlation Analysis). [8]

3.2.1 Kernel method: outline

Let X be a space on which we have a distancedX between its elementsx
and denote the mappingφ = φX : X −→ W whereW is an infinite di-
mensional Hilbert space in which the scalar product is obviously well defined,
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: φ(x) = (φ1(x), . . . , φj(x), . . .). Note that in practice as well the mappingφ

as its inverseφ−1 is unfortunately unknown. Finally, let assume a feature vector
X = {x1, . . . ,xL} ∈ X

L. In order to use linear algorithm with non linear data,
the mappingφ is used as follow:

g(x) =
∞∑

k=1

λkφk(x)+b =
L∑

l=1

γl 〈φ(x), φ(xl)〉+b (dual representation) (8)

Then,K(x,y) is aKernel functionif ∀xy ∈ X

K(x,y) = 〈φ(x), φ(y)〉 (9)

with the following properties:

Symmetry K(x,y) = 〈φ(x), φ(y)〉 = 〈φ(y), φ(x)〉 = K(y,x)

Cauchy-Schwarz inequality K(y,x)2 = 〈φ(x), φ(y)〉2 ≤ ||φ(x)||2||φ(y)||2 =
K(x,x)K(y,y)

Choice of K There exits different choices forK and the most commonly used is
theGaussian kerneldefined by:

K(x,y) = e−
dX

2

2σ2

Kernel method is very convenient thanks to the Mercer’s theorem. Indeed, it offers
an easy way to map data into a feature spaceF ⊇ φ(X ) based on a similarity
measure between the elements of theX , by computing〈φ(x), φ(y)〉. We denote
theGraam matrixthe matrix as :K = (K(xj1 ,yj2))

L

j2,j2=1.
From this point, it become possible to compute classical linear algorithms like
PCA or CCA is the spaceW in particular thanks to the scalar product well defined
in Hilbert spaces.

3.2.2 KPCA - Kernel Principal Component Analysis

We present quickly the KPCA algorithm [32] that compute a PCA in the spaceW

since it is useful for the KCCA [23] (section3.2.3).
As in the traditional case, the KPCA aims at computing the eigenvalue of the
covariance matrix.C = 1

L

∑L

l=1 φ(xl)φ(xl)
T such that:2

λV = CV (10)

2The PCA is computed on data centered. See appendix in [32] for centering kerneled data
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X −→ Y

x 7−→ y

| |
φX φY

↓ ↓
W −→ Z

φX (x) 7−→ φY (y)

Figure 7: Scheme for the KCCA

where the eigenvector can writtenV =
∑L

j=1 αjφ(xj) (α = (α1, . . . , αL)). Then,
the column vectors(α1, . . . , αL) are computed by solving the eigen problem:

Lλα = Kα (11)

for non-zeros eigenvalues. Thep vector among(α1, . . . , αL) that have non-zeros
eigenvalues are normalized such that

〈
Vk,Vk

〉
= 1 whereVk is thekth column

of matrix V: it givesλk 〈αk, αk〉 = 1. Finally the coordinate of any test pointx

onto the principal component can be easily computed:

〈
Vk, φ(x)

〉
=

L∑

j=1

αk
j 〈φ(xj), φ(x)〉 =

L∑

j=1

αk
j K(xj,x) (12)

3.2.3 KCCA - Kernel Canonical Correlation Analysis

KCCA is quickly outlined in this section [23].
Let defineY with an associated distancedY , andφY : Y −→ Z as we did
respectively forX , dX andφX . We can thus construct the scheme presented in
figure7.
Now, let assume that we haveL data pointXL = {x1, . . . ,xL} in the spaceX

andY L = {y1, . . . ,yL} in the spaceY : they constitutes thelearning points. We
also define the orthogonal projection operatorPa(.)A: Pa(b)A is the projection of
vectorb onto vectora in the spaceA. As in the classical case, KCCA tries to find
triplets(wi, zi, λi) ∈ (W ×Z × [0, 1]) such that

(
Pwi

(
φX

(
XL

))
W

)
i∈N

and (
Pzi

(
φY

(
Y L

))
Y

)
i∈N
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are maximally correlated with respective correlation coefficients(λi)i∈N
. (wi)i∈N

and(zi)i∈N
are called the canonical vectors. Obviously, the basis(wi)i and(zi)i

should be orthogonal. In order to achieve such a thing, the coordinates of

({φX (x1), . . . , φX (xL)})

has to be expressed in the basis of the principal component computed fromφX (XL).
(Same remark for the spaceY ). Once the KCCA has been computed, if a new
pointxt from thetest setappears, it is projected into the basis(wi)i of W and its
prediction is given by applying the correlation coefficients λi, giving finally the
component onto the basis(zi)i. In a practical point of view, here is how the KCCA
is realized:

• The components ofΦX = [φX (x1), . . . , φX (xL)] are computed in the ba-
sis of principal componentsUX = Φ′

X
AX (AX holds the expansion co-

efficients), givingCX = ΦX UX = KX AX . Same thing forY

• The canonical vectors(wi)i and (zi) are computed in such way that the
canonical variatesai = KX AX wi andbi = KY AY zi are maximmaly
correlated:

max

(
〈ai,bi〉

||ai||||bi||

)

which lead to the following contrained optimization problem:

argmax wiC
′
X

CY zi (13)

subject to wiC
′
X

CY wi = ziC
′
X

CY zi = 1

The main difficulties of such a method is the choice of the dissimilarity dX (re-
spectivelydY ) between the elements ofX (respectivelyY ). This is particularly
true in our original problem in whichX = H N andY = SE(3). This is pre-
cisely the matter of the following section to explain our choices of metrics in suhc
spaces.

3.3 Metric related problems

From now on, we consider thatX = H N andY = SE(3) and the dissimilarity
measured1 = dH N andd2 = dSE3 are to be developped.

3.3.1 Dissimilarity measure inH N : choice ofd1

Let denoteρn = ρ(ln) andθn = θ(ln) the Hough parameters of lineln. First of
all we need to define a ”distance”dl (., .) between two lines in an image. This is
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l1

l2

l1

l2
ρ
max

ρ

θ

Figure 8: Two independent cases in whichdl(l1, l2) should be maximal and have
the same value, on the right : Hough parametrization chosen.θ ∈ [−π

2
π
2
] and

ρ ∈
[
−ρmax

2
, ρmax

2

]

not not an obvious problem since in the case of Hough parameters we have to deal
with two kind of measurements: angular and non angular. Furthermore,dl (., .) is
necessarily related to the framework of the image. Indeed,dl (., .) should take into
consideration that the dissimilarity between two linesl1 andl2 is maximal and has
the same value if we consider independently angular and non-angular part of the
corresponding Hough parameters3(see figure8):

• θ1 ⊥ θ2, ∀ρ1, ρ2

• ρ1 = −ρmax

2
, ρ2 = ρmax

2
andρ1 = ρ2 = π

4

whereρmax is the length of the diagonal. Last but not the least,dl (., ) should
be homogeneous. We can straightforwardly assert (see figure8 for the Hough
parametrization chosen):

dl (l1, l2) = tan

(
dθ (θ1, θ2)

2

)
+ tan

(
π

4

|ρ1|+ |ρ2|

ρmax

)
(14)

wheredθ (θ1, θ2) = min (|θ2 − θ1|, π − |θ2 − θ1|). We can now define the dis-
similarity measured1 (Hu, Hv) , Hu, Hv ∈ L. Let lun be thenth line of theuth

image (uth element of the learning setL). As previously mentionned,(lun)u∈[1,L] is

3We consider that we work in normalized coordinates, with same ratio along x-axis and y-axis
of the image
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the projection of the samenth 3-lines in all images from the learning set. Finally,
we have:

d1 (Hu, Hv) =

N∑

n=1

dl (l
u
n, l

v
n) (15)

Note that we can imagine small variations of the measure proposed in the last
lines.

3.3.2 Dissimilarity measure inSE(3): choice ofd2

In this section we based our dissimilarity measure on Riemannian metrics on
SO(3) andSE(3) [10, 5]. First of all we give ”relative” definitions of spaces
GL+(3), GA+(3), SO(3) and SE(3). GL+(3) denote the set of all positive-
definite3× 3 real matrices. Thus we have:

SO(3) =
{
R|R ∈ GL+(3), RT R = I

}
(16)

GA+(3) =

{
B|B =

[
M d

0 1

]
, M ∈ GL+(3); d ∈ R

3

}
(17)

SE(3) =

{
A|A =

[
R d

0 1

]
, R ∈ SO(3); d ∈ R

}
(18)

Without loss of generality, we present [left-invariant] metrics in this spaces. Again,
a lot of details can be found in [5, 10]. Let G1, G2 ∈ GL+(3). Thus, we have:

||G1 −G2||
2
GL+

= 〈G1 −G2, G1 −G2〉GL+

where 〈X, Y 〉GL+
= Tr

[
XT Y W

]

(19)

andW is a symmetric positive-definite3 × 3 matrix. Any elementG ∈ GL+

can be projected ontoSO(3)[5] by computing the SVD decomposition ofGW :
GW = UΣV T . Then, the projectionR ∈ SO(3) of G is given byR = UV T .
In the same way, letA1, A2 ∈ GA+(3) and we have:





||A1 − A2||2GA+
= 〈A1 − A2, A1 −A2〉GA+

where 〈X, Y 〉GA+
= Tr

[
XT Y W̃

]

andW̃ =

[
W a

aT ω

] (20)

We can compute the projectionM ∈ SE(3) of any elementA ∈ GA+(3). If

A =

[
B1 B2

0 1

]
, B1 ∈ GL+(3); B2 ∈ R

3 (21)

B1W = UΣV T (singular value decomposition) (22)
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then:

M =

[
UV T B2

0 1

]
(23)

In our experiments, we choseW = I, and if we seta = 03, equation20 can be
expressed as:

||A2 − A1||GA+ = ||R2 − R1||
2
GL+

+ ω||t2 − t1||
2 whereAk =

[
Rk tk
03 1

]

andω is become a parameter that balance the relative proportion of the rotational
and translational part of the motion. In figure9, we show a way that use the
previous result in order to approximate a dissimilarity measure inSE(3). Let
M1 andM2 be two points inSE(3). They are also inGA+(3). The geodesic in
GA+(3) [in the sense of||.||GA+] between the two points is easily obtained. Then
if we sample this geodesic and project each sample point ontoSE(3), we can get
a good approximation even using||.||GA+. Let S be the number of sample points,
(ts)s∈{1,...,S} be the discrete variable such thatts = s

S
, andPSE(.) be the projection

of aGA+(3) matrix element ontoSE(3). If we write
(

Mi =

[
Ri Ti

0 1

])

i∈{1,2}

and

PSE (s) = PSE

([
R1 + (R2 −R1) ts T1 + (T2 − T1) ts

03 1

])

then we have the following dissimilarity measure:

d2(M1, M2) =

S−1∑

s=1

||PSE (s + 1)− PSE (s)||GA+
(24)

3.4 The inverse problem : fromZ to SE(3)

As previously explained, the prediction is achieve betweenin the spaceZ while
we need a prediction of the position of the camera inSE(3). Therefore, only
spaces of the right part of scheme6 is considered in this section:SE(3) andZ

Once we have the prediction in the basis of canonical vector(zi), we can reproject
the coordinates of the projection onto the principal component. Then, we have
straightforwardly:

ŷ = argmin
y∈SE(3)

∣∣∣∣AT
SE3

K (y)− p
∣∣∣∣2 (25)

where:
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M2

M1

SE(3)
GA+(3)

Figure 9: approximating the dissimilarity measure inSE(3)

• K (y) = [K (y,M1) , . . . , K (y,ML)]T

• p is the prediction expressed in the principal component basis ofZ

The initial estimateyinitial for this optimization procedure is chosen among the
learning set{M1, . . . , ML} such that :

yinitial = argmin
y∈{M1,...,ML}

∣∣∣∣AT
Y K (y)− p

∣∣∣∣2 (26)

Obviously the KPCA has been performed without including thetest samples. Fig-
ure10 shows some steps of the optimization.

3.5 Results and conclusion

The method previously presented has been tested by simulation. A set of camera
observing a line-based object has been generated. This is shown in figure11 in
whichm = 124 (size of the learning set). We achieved tests with differentvalues
of m. Since the resolution of the inverse problem gives reasonable results, we
tried to work closer on the prediction part. Figure12shows some results obtained
by predicting in the(zi)i-basis. In case ofm = 124, the prediction is quite cor-
rect for the15 fisrt component which could be sufficient to recover the position
of the camera by solving the inverse problem. In order to increase the number of
components predicted, the size of the learning set has to be hugely raised: to have
25 correctly predicted component, the value ofm is changed to 1000. Apart from
the factm = 1000 is unthinkable in a pratical case, it is highly computational
which is a very negative point. Furthermore, even though predictions on at least
6 components in(zi)i are a priori sufficient to recover the 6 intrinsec parameters
[by solving the inverse problem], they have to be very precise.
Nervertheless, the choice of the dissimilarity measure inSE(3) seems to be suit-
able since we obtained successful results while solving theinverse problem.
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4 Inference from complete Hough/Radon space

4.1 Objectives & Problem formulation

Contrary to the previous works, lines are not only characterized by the Hough pa-
rameter but also by features extracted in the Radon space. Our method consists
of a learning and an inference step. During the learning stage, the scene is learnt
from an image sequence and its corresponding 3D reconstruction. A geometry-
based learning is achieved by recovering geometric relations between lines and
consequently between their projections. In parallel to thefeature-based learning,
3d lines are associated through AdaBoost learners with their 2D projection in the
Radon space (local maxima). Such an information space is used within a matching
process to recover camera’s pose from a new image. Matching between plausi-
ble line candidates in a new image dictate multiple correspondences between the
2D new image lines and the 3D reconstructed lines. The most probable configu-
ration in terms of appearance while satisfying geometric consistency constraints
provides the camera position. The overview of such an approach is shown in [Fig.
(13)].

Let us consider a viewer centered coordinate system that is defined with the
camera lens center or the observer located at the origin and such that the view axis
is collinear to the z axis. We further assume that the image plane is perpendicular
to the view axis. Using the perspective model, the image of any point in space is
equal to the intersection of the image plane and the line joining the point to the
center of the camera lens.

The main stream of research in 3D reconstruction and pose estimation has

Figure 13: Overview of the proposed pose estimation approach where both learn-
ing and estimation steps are delineated.
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been devoted to point correspondence [15, 28, 30]. Line correspondences could be
an efficient alternative to such an approach [25, 24]. Such a feature space inherits
the advantage of being more robust than point correspondences as well as more
global. On the other hand, line tracking algorithms are computationally intensive
and low sampling frequency and long time delays can therefore be expected. Such
a limitation can be addressed using image transformations like the Hough [11] and
the Radon space [34] which project images into convenient lines spaces.

The remainder of the current section is organized in the following fashion:
Section2.3 described our approach toward line tracking. Since lines tracked
through a video sequence, their 3d information is recoveredand the 3d-2d rela-
tion can be indirectly learned by a boosting algorithm as presented in section4.2.
Section4.3 is devoted to inference and pose estimation and finally a discussion
for this approach is given in the conclusion of this documentin section5.

4.2 3D-2D Line Relation through Boosting

As previously mentionned, the first step is compute a three dimensional model of
the scene and more particularly the lines. 3d reconstruction from image sequences
of video sequence has been widely studied in the past years. Since it is not in the
scope of this document, this part is not developped. Figure14a 3d reconstruction
of an indoor scene based on lines.

Once the scene and 3D lines have been reconstructed [Fig.14], one would like
to establish a connection between such 3D lines and their corresponding projec-
tions. Since our approach is both features and geometric based, we aim at learning
both kind of constraints.

First, geometrical constraints can be straight and naturally deduced from the
3D reconstructed scene implying 2d constraints on the projected lines. Since ex-
traction of the relative geometry is not critical - once 3D reconstruction has been
completed -, more attention is to be paid on feature extraction, learning and mod-
eling.

Let us consider that our feature learning stage consists ofL = {l1, l2, ..., ln}
3D lines, and our training consists ofc images. Without loss of generality we
assume that such geometric elements were successfully detected within thisc im-
ages. LetPk = {p1

k, p
2
k, ..., p

c
k} being the projections in the radon space of line

lk at thesec images. Such projections correspond to the 2D local radon patches
represented asd-dimensional vectors.

Traditional statistical inference techniques can be used to recover a distribu-
tion of suchd-dimensional vectors. To this end, one can consider simple Gaus-
sian assumptions and classical dimensionality reduction techniques like principal
component analysis. Such a selection could fail to account for the highly no-linear
structure of the Radon space and so of the corresponding features. Furthermore,
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Figure 14: 3d reconstruction of an indoor scene
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since recovering a training shots from all possible virtualpositions of the observer
it is almost impossible, one should also account for sparse observations and learn-
ing from small training sets. Therefore, more advanced classification techniques
are to be considered that are able to cope with some of the above limitations.

Our basic classifier consists of given two classesC1 andC2 find an appropriate
transformation/functionF that can measure the distance between a samplep and
these classesF (Ck, p). To this end, within the context of our application one can
considern bin classification problemsFk,

Fk(p) =

{
1, p ∈ Ck

0, p ∈ Cj, j 6= k

In other words, we are looking for a way to compute the boundary of a binary
partition between the features corresponding to linelk versus the others. Stump
classification can deal with this problem: it tests binary partitions along all thed
dimensions and all possible thresholds. The model is given by:

R ={α01xj<τ + α11xj≥τ : j ∈ 1, . . . , d, τ ∈ R,

α0 ∈ [0; 1], α1 ∈ [0; 1]}
(27)

The thresholdτ ∗ and the dimensionj∗ that minimizes the desired criteriaW(j, τ)
are kept to form the partition parameters. The reader can refer to [4] to get further
details about stumps and more particularly about the criteriaW we used.

Consequently, stump classification returns a functionfm that defines a parti-
tion of the space according to an hyperplane which is orthogonal to the canonical
basis ofX :

fm = fm,<1x∈X<
j,τ

+ fm,≥1x∈X≥
j,τ

Stumps were implemented and tested with a synthetic data setformed with a
video sequence of a basic 3D structure. Towards producing a realistic test case,
a set of perturbations (random lines) are introduces in the 3D scene [Fig. (17)].
In order to account for possible sensor noise, the corresponding video images are
convolved with a Gaussian operator (white noise), and additional lines are also
added in the observation set. Radon transformations of suchimages are used to
recover local patches that guide the learning step while a test set is also created.
The classification error for all experiments which were conducted was close to
0.5. Therefore, one can conclude that bin classification on sucha space induces a
high risk in pose estimation.

One can overcome such a limitation through the transformation of the stump
classifier into a ”weak” learner. In addition, the learning algorithm should deter-
mine the origin of the sample as accurate as possible by the use of a multitude
of ”weak” learners. AdaBoost [17, 18] is one of the most prominent techniques
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to address such a task among others such as neural networks [11] and support
vector machines [35]. Boosting improves significantly the accuracy of any given
learning algorithm, even in the case of a ”weak” learner. Such techniques have a
number of interesting empirical properties. It has been shown [18] that boosting
does not perfom an overfit to the training data.

The general idea of boosting is to1- repeatedly use a ”weak” learner [stumps
returning a regression functionfm in our case] with some weightswm

i on the
training data- m beeing the iteration index -2- focus on misclassified data from
one iteration to the next through the update ofwm

i :

wm
i =

wm−1
i e−Yifm(Xi)

K
∀i∈{1,...,N}
K: normalizing constant (28)

whereYi is the classication corresponding to the featureXi, (Xi, Yi) beeing an
element of the learning andN its size.

Then, at each step a weightcm associated with the current learner is deter-
mined according to the corresponding classification performance. The final clas-
sification is given by the thresholded regression function1GM (x)>T , GM(x) beeing
the weighted combination of the ”weak” learners:

GM(x) =
M∑

m=1

cmfm (29)

This is a slightly modified version of the ”real AdaBoost algorithm” [31, 4]
presented in figure15. Indeed, at the end of the ”real” AdaBoost algorithm, the
decision is based on1GM (x)≥ 1

2
implying implicitly a fixed threshold on the regres-

sion functionGM(x) =
∑M

i=1 cifi. Instead of doing this and sinceGM(x) is by
definition piece-wise constant, we preferred to choose dynamically the threshold
T among the finite set of possible values so that the error can bedecreased.

Finally, the feature learning stage outputsn classifiers

Sn = {1G1
M

(x)>T1
, . . . ,1Gk

M
(x)>Tk

, . . .1Gn
M

(x)>Tn
}

-one for each line- that are going to be used for line inference and pose estimation.

4.3 Line Inference & Pose estimation

Line inference consists of recovering the most prabable 2D patches-to-3D lines
configuration using the set of classifiers

Sn =
{1G1

M
(x)>T1

, . . . ,1Gk
M

(x)>Tk
, . . .1Gn

M
(x)>Tn

}
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(X, Y ) forms the learning set,X ∈ X = Rd is a feature and Y the corresponding
true classification decision
Start with weightsw0

i = 1
N

for anyi ∈ {1, . . . , N}.
For m = 1 to M do

• Determinej ∈ {1, . . . , N} andτ ∈ R minimizingWwm−1(j, τ).

• Choosefm = fm,<1x∈X<
j,τ

+ fm,≥1x∈X≥
j,τ

where





fm,< , 1
2
log

(
P

wm−1 (Y =1;X∈X<
j,τ

)+β

P
wm−1 (Y =0;X∈X<

j,τ )+β

)

fm,≥ , 1
2
log

(
P

wm−1 (Y =1;X∈X≥
j,τ )+β

P
wm−1 (Y =0;X∈X≥

j,τ )+β

)

andβ = 1
4N

• Setwm
i =

wm−1
i e−Yifm(Xi)

Cst for any i ∈ {1, . . . , N}, where Cst is the nor-
malizing constant.

EndFor

• Output the classifier1GM (x)≥ 1
2

= 1+sign[GM (x)]
2

whereGM(x) =
M∑

i=1

cifi

Figure 15: ”Real” AdaBoost [31] using stumps as defined in [4]

. In this section, we first explore the straighforward solution and then we propose
an objective function that couples the outcome of the weak learners with geo-
metric constraints inherited from the learning stage. Suchan objective function
also solves pose estimation since the optimal camera parameters refer to its lowest
potential.

In order to validate the performance of the AdaBoost classifier, we have cre-
ated a realistic synthetic environment where inference results can be compared
with the true configuration. The feature vector for one-preselected line has been
learnt, and the corresponding classifier was tested with newimages. Results for
the30 first iterations of the real AdaBoost are presented in [Fig. (16)]. We can
clearly make several observations. First, learning error converges to zero while
the error of the classification in the test remains stable. Such a remark is con-
sistent with the expected behavior of the classifier; boosting does not overfit as
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Figure 16: Error rates during the30 iterations of real AdaBoost: (top row) learning
set, (bottom row) test set. Red: mean error - Blue: error rateof Class I, class of
the line learnt - Green: error rate of Class II, class of the other lines

previously mentioned. Then, samples from Class II are almost never misclassified
while classification error of Class I is very important and therefore direct pose
estimation is almost impossible. On top of that, one can claim that the lines that
are visible change from one image to the next; therefore poseis ill-posed. Such
a limitation can be dealt with the use of geometrical constraints encoded in the
learning state during the 3D reconstruction step. Such an assumption could allow
us to relax the AdaBoost, since classification errors becomeless significant once
geometry is introduced.

A modified classification model is now constructed based on the previous
oberservations. Letj be a new image outside the vido sequence. Any sample
p such that

(
Gk

M(p) > Tk

)
(Class I) is a potential match. Moreover, classification

confidence depends on the distance of the data to be classifiedfrom the the bound-
ary and so on the value of sdk(x) = Gk

M(x)− Tk: the greater is|sdk(x)| the more
confident is the classification. Thus, the easiest classification choice is:

arg max
i ∈ {1, . . . , n}

st:Gk
M(pj

i ) > Tk

Gk
M(pj

i )− Tk (30)
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The correspondance expressed in eqn. (30) is not sufficient since the most
important value does not necessarily correspond to the realmatch. Let us assume
for a linek, we are interested in theB best potential matches{pn1 [k], . . . , pnB

[k]}.
Such candidates are determine through the eqn. (30). If less thanB lines verify
the constraintGk

M(pi[k])) > Tk ∀i, then it is ”relaxed” as earlier explained. In
others words, lines misclassified are authorized to be takeninto consideration by
removing the constraint in eqn. (30). A weighting functionh(.) is also used to
influence the importance of a potential match based on the quantity sdk(.).

Actually we want to express a geometrical constraint GC between the projec-
tions ofC lines{ls1, . . . , lsc

, . . . , lsC
} (C < B). For each linessc we keep theB

best potential matches{pn1 [sc], . . . , pnb
[sc], . . . , pnB

[sc]}. Finally, the energy to
be minimized is given by:

min
(i1 . . . ıC) ∈

(A1, . . . ,AC)

C∑

c=1

h(sdic(pic [sc])) subject to GC(pi1 [s1], . . . , piC [sC ]) (31)

where:

• Ac is the indice set of potential matches with linelsc

• h(x) is as in our implementation inversely proportional tox. More complex
model can however be imagined.

with GC being the geometric constraint. One can recover the lowest potential of
such a cost function using classical optimization methods but at the sight of the
small number of lines detected, we consider an exaustive search approach. Nu-
merous formulations can be considered for the GC term. Corners are prominent
characteristics of 3D scenes. Therefore, 3D lines going through the same point
(that can also define an orthogonal basis) is a straighforward geometry-driven con-
straint. One can use such an assumption to define constraintsin their projection
space; that is:

GC(l1, l2, l3) = |(l1 × l2)
T l3| (32)

where× is the cross product of 2 projective points/lines andT is the transpose
sign.

Such a term takes into account the scene context. Offices, buildings, etc. are
scenes where the use of such a constraint is mostly justified (corners, vanishing
points etc . . . ). For example in figure18, the learning step of lines 1,2 and 3 gives a
set

1
G1

M
(x)>T1

,1
G2

M
(x)>T2

,1
G3

M
(x)>T3

ff

. If only feature constraint is used through eqn.
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Figure 17: Example of learning results on synthetic data. Red lines show a match-
ing of 3 lines using geometrical constraint

30, only line 2 is well matched. However, by using relaxation and the geometrical
constraint associated to these lines, the algorithm retrieves the good matching.
In more complex scenes, more advanced terms can be considered to improve the
robustness of the method. Once the line correspondence problem has been solved,
the pose parameters of the camera can be determine using a number of methods
[13, 27, 7], but we choose to implement a fast efficient linear method presented in
[3].

5 Conclusion & Discussion

In this document, we explored two approaches to pose estimation based on line
configuration in images. The former tried to find a correlation between the space
of line configuration and the space of rigid transformation.Interesting results
could be shown be it was not powerful enough to plan to computea pose esti-
mation in a practical case. The latter gave more promising results and several
experiments were conducted to determine the performance ofthe method. To this
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Figure 18: Final calibration: the image to be calibrated is overlayed by the edge
map (in white) and the 3D line reprojection (in red)
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end, first a video stream along with the corresponding 3D geometry [that can be
recovered standard reconstruction techniques] of the scene were used to learn the
model. Such a model refers ton classifiers with their features space being patches
of the radon transformation of the original image. Then, newimages of the same
scene was considered and self-localization of the observerbased on 2d-3d line
matching [Fig. (17) & (18)] was performed.

In this paper, we have proposed a new technique to pose estimation from still
images in known environments. Our method comprises a learning step where a di-
rect association between 3D lines and radon patches is obtained. Boosting is used
to model that statistical characteristics of these patchesand weak classifiers are
used to determine the most optimal match for a given observation. Such a classifi-
cation process provides multiple possible matches for a given line and therefore a
fast prunning technique that encodes geometric consistency in the process is pro-
posed. Such additional constraints overcome the limitation of classification errors
and increase the performance of the method.

Better classification and more appropriate statistical models of lines in radon
space is the most promissing direction. The use of radon patches encode to some
extend clutter and therefore separating lines from irelevant information could im-
prove the performance of the method. Better tracking of lines through linear pre-
diction techniques like kalman filter could improve the learning stage and make
the method more appropriate for real-time autonomous systems. Last, but not least
representing the camera’s pose parameters using non-parametric kernel-based sta-
tistical models seems to be more suitable term to further develop the inference
process.
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