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Abstract

Incorporating shape priors in image segmentation has become a key problem in
computer vision. Most existing work is limited to a linearized shape space with
small deformation modes around a mean shape. These approaches are relevant
only when the learning set is composed of very similar shapes. Also, there is no
guarantee on the visual quality of the resulting shapes. In this paper, we introduce
a new framework that can handle more general shape priors. We model a cate-
gory of shapes as a finite dimensional manifold, the shape prior manifold, which
we approximate from the shape samples using the Laplacian eigenmap technique.
Our main contribution is to properly define a projection operator onto the mani-
fold by interpolating between shape samples using local weighted means, thereby
improving over the naive nearest neighbor approach. Our method is stated as a
variational problem that is solved using an iterative numerical scheme. We obtain
promising results with synthetic and real shapes which show the potential of our
method for segmentation tasks.






Résumé

Lutilisation de formes a priori dans les processus de segmentation d’images est
un probleme essentiel en vision par ordinateur. Dans la plupart des travaux exis-
tants, I’espace des formes est linésarisé a I’aide de petits modes variations autour
d’une forme moyenne. De telles approches sont donc pertinentes lorsque 1’en-
semble d’apprentissage est composé de formes tres similaires. Par ailleurs, la
qualité visuelle des formes obtenues ne peut pas €tre garantie. Dans ce rapport
de recherche, nous introduisons un nouveau cadre de travail dont I’objectif est de
manier des a priori de formes plus généraux.

Notre modele établit qu’une catgorie de formes est décrite comme une variété de
dimension finie plongée dans I’espace des formes. Cette variété que nous désignons
par la variété des formes a priori, est dicretisée par des échantillons de formes et
apprise a 1’aide des techniques de graphes laplaciens. Notre contribution princi-
pale est de définir un opérateur de projection sur la variété des formes a priori
en interpolant entre les échantillons a 1’aide de moyennes de formes pondérées,
améliorant ainsi I’approche naive par les k plus proches voisins. Nous propo-
sons une formulation variationelle du probléme, résolu par un schéma numérique
itératif.

Nous obtenons des résultats prometteurs avec des formes synthétiques et réelles,
montrant le potentiel de notre approche dans des taches de segmentation d’images
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1 Introduction

1.1 Motivation

Image segmentation is an ill-posed problem due to various perturbing factors such
as noise, occlusions, missing parts, cluttered data, etc. When dealing with com-
plex images, some prior shape knowledge may be necessary to disambiguate the
segmentation process. The use of such prior information in the deformable mod-
els framework has long been limited to a smoothness assumption or to simple
parametric families of shapes. But a recent and important trend in this domain
is the development of deformable models integrating more elaborate prior shape
information.

An important work in this direction is the active shape model of Cootes et al.
[6]. This approach performs a principal component analysis (PCA) on the position
of some landmark points placed in a coherent way on all the training contours.
The number of degrees of freedom of the model is reduced by considering only the
principal modes of variation. The active shape model is quite general and has been
successfully applied to various types of shapes (hands, faces, organs). However,
the reliance on a parameterized representation and the manual positioning of the
landmarks, particularly tedious in 3D images, seriously limits it applicability.

Leventon, Grimson and Faugeras [9] circumvent these limitations by comput-
ing parameterization-independent shape statistics within the level set representa-
tion [12, 16, [11]. Basically, they perform a PCA on the signed distance func-
tions of the training shapes, and the resulting statistical model is integrated into
a geodesic active contours framework. The evolution equation contains a term
which attracts the model toward an optimal prior shape. The latter is a combina-
tion of the mean shape and of the principal modes of variation. The coefficients
of the different modes and the pose parameters are updated by a secondary op-
timization process. Several improvements to this approach have been proposed
[13 15, [18]], and in particular an elegant integration of the statistical shape model
into a unique MAP Bayesian optimization. Let us also mention another neat
Bayesian prior shape formulation, based on a B-spline representation, proposed
by Cremers, Kohlberger and Schnérr in [[7]].

Performing PCA on distance functions might be problematic since they do
not define a vector space. To cope with this, Charpiat, Faugeras and Keriven [3]]
proposed shape statistics based on differentiable approximations of the Hausdorff
distance. However, their work is limited to a linearized shape space with small
deformation modes around a mean shape. Such an approach is relevant only when
the learning set is composed of very similar shapes.
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1.2 Contributions

In this paper, we introduce a new framework that can handle more general shape
priors. We model a category of shapes as a smooth finite-dimensional subman-
ifold of the infinite-dimensional shape space. In the sequel, we term this finite-
dimensional manifold the shape prior manifold. This manifold cannot be repre-
sented explicitly. We approximate it from a collection of shape samples using
a recent manifold learning technique called Laplacian embedding [2]]. Manifold
learning is already an established tool in object recognition and image classifica-
tion. Also, very recently, Charpiat ef al. [4] have applied the Laplacian eigenmap
to a set of fish shapes for the purpose of shape analysis, and obtained promising
results. But to our knowledge such techniques have never been used in the context
of image segmentation with shape priors.

A Laplacian embedding of the shape prior manifold is interesting in itself:
it reveals the dimensionality of the shape category and a spatial organization of
the associated shape samples. However, this embedding alone does not help to
overcome noise, occlusion or other perturbations in a segmentation task. For the
shape prior manifold to be really useful during a segmentation process, we need
the ability to compute the closest shape of the manifold to some current candidate
shape [13]].

Unfortunately, the manifold learning literature does not give a solution to this
problem. These approaches are mainly interested in recovering local properties
of the manifold by analyzing graph adjacency of samples. They do not focus on
recovering information in between samples.

A naive nearest neighbor approach is not an acceptable solution either. First,
its answers are limited to the original finite and discrete set of shape samples,
which does not account for the smoothness of the shape prior manifold. Second,
in order to produce an acceptable guess, it would require a very dense sampling
of the shape category of interest which is not affordable in practice. Third, it
completely disregards the dimensionality and the spatial organization revealed
during the manifold learning stage.

Our main contribution is to properly define this projection operator onto the
shape prior manifold, by interpolating between some carefully selected shape
samples using local weighted means. Our method is stated as a variational prob-
lem that is solved using an iterative numerical scheme.

The remainder of this paper is organized as follows. Section [2]is dedicated
to learning the shape prior manifold from a finite set of shape samples using the
Laplacian embedding technique. Section 3] presents a method for interpolation
of the shape prior manifold and projection onto it. In Section H] we report on
some numerical experiments which yield promising results with synthetic and
real shapes.
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2 Learning the Shape Prior Manifold

2.1 Definitions

In the sequel, we define a shape as a simple (i.e. non-intersecting) closed curve,
and we denote by S the space of such shapes. Please note that, although this paper
only deals with 2-dimensional shapes, all ideas and results seamlessly extend to
higher dimensions.

The space S is infinite-dimensional. We make the assumption that a category
of shapes, i.e. the set of shapes that can be identified with a common concept or
object, e.g. fish shapes, can be modeled as a finite-dimensional manifold.

In the context of estimating the shape of an object in a known category from
noisy and/or incomplete data, we call this manifold the shape prior manifold. In
practice, we only have access to a discrete and finite set of example shapes in this
category. We will assume that this set constitutes a ”good” sampling of the shape
prior manifold, where ”good” stands for “exhaustive” and “sufficiently dense” in
a sense that will be clarified below.

2.2 Distances between shapes

The notion of regularity involved by the manifold viewpoint absolutely requires
to define which shapes are close and which shapes are far apart. However, cur-
rently, there is no agreement in the computer vision literature on the right way
of measuring shape similarity. Many different definitions of the distance between
two shapes have been proposed.

One classical choice is the area of the symmetric difference between the re-
gions bounded by the two shapes:

dsp(Si,Ss) = /|X91 X! (1)

where xq, is the characteristic function of the interior of shape S;. This distance
was recently advocated by Solem in [[177] to build geodesic paths between shapes.

Another classical definition of distance between shapes is the Hausdorff dis-
tance, appearing in the context of shape analysis in image processing in the works
of Serra [15]] and Charpiat et al. [3]:

dn(1,5) = max {swp it o=yl sup il o —ulf @)
TES yeS2 yeSy T

Another definition has been proposed [9} 13\ 3], based on the representation of

a curve in the plane, of a surface in 3D space, or more generally of a codimension-

1 geometric object in R", by its signed distance function. In this context, the
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distance between two shapes can be defined as the L2-norm or the Sobolev W3-
norm of the difference between their signed distance functions. Let us recall that
Wh2(0Q) is the space of square integrable functions over §2 with square integrable
derivatives: B B

di2(51,82)> = ||Ds, — Dsy|[2aq - 3)

dyn12(S1,5)* = || Ds, — Ds,ll12oz) + IV Ds, = VDs,|[120my » )

where Dsi denotes the signed distance function of shape S; (+ = 1, 2), and VDSZ.
its gradient.

2.3 Manifold learning

Once some distance d between shapes has been chosen, classical manifold learn-
ing techniques can be applied, by building an adjacency graph of the learning set
of shape examples. Let (.9;), ,, denote the n shapes of the learning set. Two
slightly different approaches can be considered to build the adjacency graph:

e-neighborhoods: Two nodes S; and S; (¢ # j) are connected in the graph if
d (S;,S;) < ¢, for some well-chosen constant ¢ > 0.

k nearest neighbors: Two nodes S; and S; are connected in the graph if node S5;
is among the k nearest neighbors of S;, or conversely, for some constant
integer k.

The study of advantages and disadvantages of both approaches is beyond the scope
of this paper. An adjacency matrix (IV; ;) J ,, 1s then designed, the coefficients
of which measure the strength of the different edges in the adjacency graph.

Once an adjacency graph is defined from a given set of samples, manifold
learning consists in mapping data points into a lower dimensional space while
preserving the local properties of the adjacency graph. This dimensionality reduc-
tion with minimal local distortion can advantageously be achieved using spectral
methods, i.e. through an analysis of the eigen-structure of some matrices derived
from the adjacency matrix.

Dimensionality reduction has enjoyed renewed interest over the past years.
Among the most recent and popular techniques are the Locally Linear Embed-
ding (LLE) [14], Laplacian eigenmaps [2] and the Locally Preserving Projections
(LPP) [8].

Below, we present the mathematical formulation of Laplacian eigenmaps for
data living in R". An extension to shape manifolds is straightforward.

Let M be a manifold of dimension m lying in R” (m << n). For the moment,
we take m = 1 since generalization to any dimension m < 7 is immediate.
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The dimensionality reduction problem consists in finding a mapping f : M —
R such that if two points = and z are close in M, so are f(z) and f(z). To
characterize such an optimal mapping, Belkin and Niyogi [2] proved the following
inequality:

1f(2) = F(@)] < da (2, 2) [[V (@) + 0 (dm (2, 2)) (5)

where d is the geodesic distance on the manifold M. The optimality condition
then writes:

f* = arg min / I\ils (6)
HfHL?(M):l M
= arg min / L(f)f (7
A2 (A =1 J M
where £ = —div (V f) is the Laplace operator. Note that the equivalence between

(6) and (@) is due to the Stokes theorem.

Solving the minimization problem (7) is equivalent to solving the eigen prob-
lem £(f) = Af. The optimal mapping is then given by the eigen functions
corresponding to the m smallest non-zero eigenvalues, where m is the target di-
mension. Note that the latter dimension can either be known a priori or be inferred
from the profile of the eigen spectrum.

In practice, a discrete counterpart to this continuous formulation must be used.
The discrete approximation of the Laplace operator is given by the matrix L =
W — D where D is the diagonal matrix defined by D;; = >_; W;;. Optimal
dimensionality reduction is then achieved by finding the eigenvectors of matrix L
corresponding to the m smallest non-zero eigenvalues.

Although Laplacian eigenmaps are a powerful dimensionality reduction tool,
they do not give access to an explicit projection operator on the low dimensional
manifold. In contrast, the Locally Preserving Projection (LPP) [8] defines the
mapping f to be locally a linear operator on the high dimensional input data. This
is a very interesting property since it allows to project new data points onto the
low dimensional representation. Unfortunately, LPP cannot be considered in the
context of shapes since it is limited to finite-dimensional problems.

Thus, existing manifold learning techniques are not able to describe the shape
prior manifold in between the training shapes. However, in the context of shape
estimation from noisy or incomplete images, the two following problems are fun-
damental:

Problem 1 How to interpolate the shape prior manifold from shape samples.
Problem 2 How to project a shape onto the shape prior manifold.

The next section deals with these two challenging problems.
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3 Interpolation and Projection for the Shape Prior
Manifold

From now on, we assume that applying the manifold learning techniques de-
scribed in the previous section allowed us to determine the dimension m of the
shape prior manifold M. Let N' = (S, ..., S,,) be m + 1 shapes of M, close
to each other according to the topology of M. In practice, Sy is given and
Sy,- -+, Sy, are its m nearest neighbors in the adjacency graph. We will refer
to NV as a neighborhood systent of M. Our first goal will be to interpolate M
locally, given this neighborhood system.

When m = 1, a natural solution would be to choose as an interpolation, some
geodesic path between Sy and S;, with respect to distance d. Yet, computing
geodesic paths between shapes is still an open problem. See [[15} [1} [10, [19} [17].
Moreover, extending this solution to the case m > 1 would require some minimal
hyper-surface of & between the S;. This seems out of reach with our current
understanding of shape spaces.

3.1 Weighted means as interpolations

Charpiat et al. [3] define the empirical mean C of [ shapes C}, - - - , C; by:

I
- ' e
C = argm&nZd(Cz, )

i=1

Following the same path, we propose to use weighted mean shapes to locally
interpolate M between our samples Sy, - - - , Sy,:

Solution 1 (Problem [1: Local interpolation of the shape manifold) Ler M be
a finite m dimensional shape manifold and N' = (Sg, - - - , Sy,) be a neighborhood
system as previously defined. Let A = (o, -+ , A\p) with (N\; > 0, > X\, = 1) be
some weights. We call a local interpolation of M according to N, the following
weighted mean:

Q P 1 . . 2
Sy (A) = arg min Z Aid (S;,S)

=0

A can be viewed as a local parametrization of M in the neighborhood sys-
tem N. The set covered by Sy(A) for all the possible values of A provides a
continuous approximation of the manifold between the shapes of N

3More sophisticated choices are possible but beyond the scope of this paper
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Figure 1: Six weighted means. A = 0, 0.2, 0.4, 0.6, 0.8 and 1 following the arrows.

As in [3], the interpolation Syr(A) is obtained by a gradient descent, a shape
S evolving according to a gradient flow:

Figure [1l shows an example of such means for two given shapes. Although this
involves two shapes only, please note that: (i) the number of shapes is not limited
to m = 1, and (ii) even when m = 1, the path defined by the weighted means is
neither a geodesic for some distance, nor a straight gradient descent from S; to
S1. Examples with more than two shapes are given in section 4l

Fitted with a way to locally complete the shape manifold, we can now proceed
to the projection problem.

3.2 Projection onto the shape prior manifold

Image segmentation methods that take shape priors into account, generally require
the projection (in some sense) of a shape candidate onto the set of shape samples.
As previously mentioned, this projection is often just the mean of the samples,
and sometimes a variation of this mean according to deformation modes. Here,
we propose a projection based on our local interpolation:

Solution 2 (Problem 2: projection onto the shape prior manifold) Let M be a
finite m dimensional shape manifold. Let M be a shape of S. Let N(M) =
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Figure 2: The Snail algorithm : steps are indexed 1, 2, ..., if

(So, -+ ,Sm) be a neighborhood system of M close to M (in practice Sy is
the nearest neighbor of M and S.,--- ,S,, are chosen as previously). We de-
fine the local projection 11 (M) of M onto M to be the interpolation according
to N'(M) that is the closest to M :

I (M) = Sy (An)
with Ay = arg mAin d(M, Sy (A)) )

While such a projection is clearly better than choosing the nearest neighbor,
the energy involved in equation (9) cannot be minimized easily. The variations
with respect to A of the distance d(M, Sy (A)) between the interpolation and
shape M are intricate. The gradient of this distance could be written, but, involv-
ing second order shape derivatives, it yields a complex minimization scheme that
might not be useful for our purpose. Keeping shape priors in mind, it appears that
an approximation of the projection IT (M) is sufficient.

Many algorithms might be designed to get an approximate solution to (9). We
suggest an iterative scheme illustrated figure [2| that we call the snail algorithm.
Although it is not guaranteed to converge, it is fast and proved to give good ap-
proximations of the projection of a candidate shape onto the shape prior manifold,
in only a few iterations. Actually, we investigated more extensive searches of
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the minimum of (9 without any significant improvement. The snail algorithm is
defined by:

Solution 3 (Approximation of minimization (9)) Let M, M and N' (M) be de-
fined as in solution |2l The snail algorithm proceeds as follows:

1. Initialization: choose the shapes of the neighborhood system as initial guesses.
Fori=0,---,m,let \' = (\),--- | \)) be defined by )\; = 0;

2. Iterations: look for a better projection between the latest estimate and the
one computed m + 1 steps before.

Fori=m,m+1,--- until convergence, estimate:

Ai+1 = OéiAi —+ (1 — Oéi)Aiim
with a; = arg Or<nir<11 d(M, SN(M)(QN +(1- &)Ai_m)) (10)

3. Exit:

Let iy be the index of last iteration. Approximate the projection
by: B ‘
(M) = Saary (A7)

Note that we still need to design a minimization scheme to estimate the optimal
ain (10). Again, a variational method is both too slow for our purpose and useless
for an approximation. Computing a small number of interpolations and keeping
the best one turns out to be satisfactory. Moreover, because these interpolations
are obtained through a gradient descent (see [3]]), estimating the interpolations for
an increasing series of « is efficient, each interpolation being the initial guess for
the next one.

4 Numerical Experiments

In this section, we present some results obtained with both synthetic and real
shapes. Our shape prior manifold examples are based on a set of rectangles and a
set of fishes built in [4]. We reproduce the graph Laplacian obtained in both cases
in figure Bl The set of rectangle is randomly chosen such that the distribution of
their corners is the uniform law in an authorized area (orientation between —%
and %, length between 2 and time the width). The set of fish is a subset of SQUID
database.

In order to show the reliability of the method, we constructed corrupted shapes
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Figure 3: Graph Laplacian (Courtesy [4]])

from which we extract the neighbor system defined above and computed the best
projection onto the shape prior manifold. In the toy example, the dimension of
the shape prior manifold is 2 and thus the interpolation is obviously between 3
shapes. A rectangle is chosen to lie between two angular positions and two differ-
ents sizes. this rectangle is corrupted in order to move it away from the shape prior
manifold We show in figure 4] the neigbor system chosen, the corrupted shape and
its projection.

We provide also prominent results with the fish example. We have highly cor-
rupted a fish shape M : the head is deformed and the shape suffer from many oc-
clusion. Of course, such a shape does not belong to the set used to build the graph
Laplacian. Then, we determined the neighbor system Sy, . . . S5 and the projection
ITr(M) onto the shape prior manifold. Such a projection is clearly better than
the nearest neighbor as illustrated in figure 6l Our algorithm overcomes most of
shape occlusions and deformations.

5 Conclusion & Perspectives

We proposed a new framework for image segmentation that incorporates more
general priors by learning a shape prior manifold. We provided a solution to
interpolate between shape samples, defined a projection operator onto the shape
prior manifold and suggested its fast estimation by means of an iterative process.
Finally, numerical experiments on synthetic and real images showed promising
results and the potential of the method for image segmentation. Incorporating it
into a complete segmentation process is actually work in progress.
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Figure 4: Toy example : Projection onto the shape manifold

11
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Figure 5: Fish example : Projection onto the shape manifold

(M
- -

Figure 6: Fish example : Comparaison between the nearest neighbor S and the
projection IT (M)
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