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Abstract

In this paper, we propose a completely Eulerian approach to maintain a point cor-
respondence during a level set evolution. Our work is in the spirit of some recent
methods (Adalsteinsson & Sethian, J. Comp. Phys. 2003; Xu & Zhao, J. Sci. Comp.
2003) for handling interfacial data on moving level set interfaces. Our approach
maintains an explicit backward correspondence from the evolving interface to the
initial one, by advecting the initial point coordinates wit h the same velocity as the
level set function. It leads to a system of coupled Eulerian partial di�erential equa-
tions. We describe in detail a robust numerical implementation of our approach, in
accordance with the narrow band methodology. We show in a variety of numerical
experiments that it can handle both normal and tangential velocities, large deforma-
tions, shocks, rarefactions and topological changes. The possible applications of our
approach include scienti�c visualization, computer graphics and image processing.

Key words: level set method, point correspondence, interfacial data,tangential
velocity.

1 Introduction

The level set method, introduced by Osher and Sethian in [1] (a similar work
in the area of 
uid mechanics [2,3] has recently surfaced), isan established
technique to represent moving interfaces in two or more dimensions. Basi-
cally, it consists in representing the interface as the zero level set of a higher-
dimensional scalar function. The movement of the interface can be cast as an
evolution of the embedding level set function. We refer the reader to [4,5] for
all the details about the theory, the recent developments, the implementation
and the applications of the level set method.

Preprint submitted to Elsevier Science 24 April 2006



On the one hand, this approach has several advantages over an explicit La-
grangian representation of the interface as a parameterizedcurve or surface:
no parameterization is needed, the Eulerian PDE formulation brings strong
mathematical proofs as well as robust numerical schemes, topology changes
are handled automatically, and intrinsic geometric properties such as normal
or curvature can be computed easily from the level set function.

On the other hand, the higher dimensional embedding makes thelevel set
method much more expensive computationally than traditional explicit rep-
resentations. Much e�ort has been done to alleviate this drawback, leading to
the narrow band methodology [6] and more recently to the PDE-based fast
local level set method [7].

Another serious shortcoming of the level set method, which has been studied
much more recently, is intimately related to the implicit point of view and
to the absence of parameterization: in the traditional levelset framework, it
is not possible to handle some data associated with the moving interface, for
short someinterfacial data. This is not a surprise, since the level set function
conveys a purely geometric description of the interface.

The earliest Eulerian approach related to the handling of someinterfacial
data in the level set framework appears in [8]. This method allows to track a
region on a deforming level set interface. But it cannot handle some arbitrary
interfacial data, so it has a rather limited range of applications. Also related
is a method to evolve a curve in three dimensions with a level setapproach
[9]. More recently, some Eulerian methods have been proposed to evolve an
interfacial material quantity in the level set framework [10,11]. The data are
simultaneously advected, scaled by the local compression/expansion of the
interface as a result of mass conservation, and di�used along theinterface.

However, in some speci�c applications, it is also necessary to know how each
point or each part of the interface moves, in other words to maintain an explicit
point-wise correspondence during the evolution, a mapping between the initial
interface and the �nal one, which all the above methods cannot achieve.

Some hybrid Lagrangian-Eulerian methods have been proposedto circumvent
this limitation in some applications such as the unfolding of the surface of the
cerebral cortex [12], the construction of transverse lines in grid generation [4],
and image registration with level sets [13]. Basically, in theseworks, the level
set equation is complemented with a set of Lagrangian ODEs which track the
points during the evolution. This particle-based approach leads to well-known
numerical di�culties. Most of the advantages of using an implicit represen-
tation are lost. For sake of numerical stability and topology independence, a
completely Eulerian approach must be preferred.

In this paper, we propose an Eulerian method to maintain an explicit point
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correspondence during a level set evolution. Our approach maintains a map-
ping from the evolving interface to the initial one, by advecting the initial
point coordinates with the same velocity as the level set function.

The rest of this paper is organized as follows. In Section 2, we analyze the pre-
vious work on level sets with some interfacial data and we elaborate a novel
method for handling an explicit point correspondence, based on a system of
coupled Eulerian partial di�erential equations. Section 3 describes in detail
a robust numerical implementation of our approach, in accordance with the
narrow band methodology. In Section 4, we report on some numerical exper-
iments that demonstrate the e�ectiveness of our method in a wide range of
situations including normal and tangential velocity �elds, large deformations,
shocks, rarefactions and topological changes. Finally, Section 5 discusses some
possible applications of our approach.

2 Methods

In the following, we note �( t); t 2 R+ a moving closed and embedded hyper-
surface inRn . � is represented by a level set function� : Rn � R+ ! R such
that:

8
>>>>><

>>>>>:

� (x; t) < 0 if x is inside �( t),

� (x; t) = 0 if x 2 �( t),

� (x; t) > 0 if x is outside �( t).

(1)

A deformation of � with a velocity �eld v has a direct counterpart in the level
set representation:

@�
@t

+ v � r � = 0: (2)

It is well known that the geometry of the interface is only a�ected by the
normal component of the velocity. The corresponding property in the level set
formulation is that the tangential component of the velocity cancels in (2).
That is the reason why the velocity is often taken normal to theinterface:
v = � N , whereN denotes the outward normal. This can be done without any
loss of generality when geometry only is of interest. Given that N = r �= kr � k,
we get the classical form of the level set evolution equation:

@�
@t

+ � kr � k = 0 : (3)
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A tangential velocity does not a�ect the geometry, but it does a�ect the point
correspondence and the data associated with the interface. Hence, in this
paper, it would be erroneous to restrict to a normal velocity �eld.

2.1 Previous work on region tracking

In [8], the problem of tracking a region in � during the level set evolution
is addressed. The boundary of the region of interest is represented as the
intersection of � with the interior of an auxiliary hypersurface �̂ de�ned as
the zero level set of a function�̂ . The two functions � and �̂ are evolved
according to the following system of coupled Eulerian PDEs:

8
>>>><

>>>>:

@�
@t

+ � kr � k = 0 ;

@̂�
@t

+

0

@�
r �

kr � k
�

r �̂





 r �̂








1

A





 r �̂






 = 0 :

(4)

where� is again the magnitude of the outward normal speed of the interface.
Rewriting (4) using a form similar to (2) allows an easier interpretation:

8
>>>>>>><

>>>>>>>:

v = �
r �

kr � k
; (5a)

@�
@t

+ v � r � = 0 ; (5b)

@̂�
@t

+ v � r �̂ = 0 : (5c)

(5)

So (5b) and (5c) simply state that � and �̂ move with the same velocity �eld
v. In [8], only a normal velocity is considered. But a tangential component
is perfectly possible. Again, we emphasize that a tangential velocity does not
a�ect the geometry of the interface, but it does a�ect the motion of �̂ and
hence of the region of interest.

This method is closely related to the work of [9] on the motion of a curve in
three spatial dimensions with a level set approach. The curve isrepresented as
the intersection of � and �̂ and its motion can be expressed as the evolution of
the two level set functions� and �̂ according to (5b) and (5c). But in contrast
with region tracking and (5a), the velocity then depends on the geometric
properties of the curve (e.g. tangent, normal, binormal, curvature, torsion),
and not only on �.
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2.2 Previous work on transport and di�usion of a material quantity

In [10,11], two similar methods are proposed to model the evolution of a ma-
terial quantity f along a moving interface in the level set framework. Besides
being passively advected, the interfacial data are also scaled due to the lo-
cal compression/expansion of the interface, as a result of mass conservation,
and di�used along the interface. This is achieved by the following system of
coupled Eulerian PDEs:

8
>><

>>:

@�
@t

+ v � r � = 0 ;
@f
@t

+ div � (f v) = � � f ;
(6)

where div� is the intrinsic divergence operator and �� is the intrinsic Laplacian
operator on the interface, often called the Laplace-Beltrami operator.

This method requires to de�ne the material quantity on the whole space. Just
like the de�nition of the level set function o� � is arbitrary, any extension
f which agrees with the data on the interface can be considered.Such an
embedding of the data was previously used to solve variational problems and
PDEs on�xed implicit interfaces [14]. In some applications, the data may have
a natural extension o� the interface. In other applications, one may build an
extensionf by some numerical procedure, that we discuss in Section 3.

The mass conservation behavior, responsible for the divergenceform in (6),
and the di�usion behavior are both related to the physical interpretation of
the data as concentrations. However, this interpretation is not relevant to all
types of interface data. For example, mass conservation does not make sense
in the case of an evolving textured surface, in computer graphics. In the next
subsection, we study this slightly di�erent case of passively advected interfacial
data, by taking the region tracking method of Subsection 2.1 as a source of
inspiration.

2.3 LSID: Level sets with some interfacial data

If we go back to Subsection 2.1 and take a closer look at (5), we notice that
the zero level set of�̂ does not play a particular role. All the level sets of̂�
evolve according tov. Actually, the evolution equation for �̂ is nothing but a
passive advection equation with an extrinsic velocity �eld.

Hence we can go beyond the interpretation of̂� as the level set function of a
hypersurface and substitute to it a general scalar or vector-valued function f
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coding for some interfacial data. This slight change immediately generalizes
the tracking method of [8] to the evolution of any quantity passively advected
with a moving level set interface. The corresponding PDEs are

8
>><

>>:

@�
@t

+ v � r � = 0 ; (7a)
@f
@t

+ v � r f = 0 : (7b)
(7)

In the sequel, we will refer to this approach aslevel sets with some interfacial
data (LSID). We can now regard (4) and (5) as a particular case of LSID with
f restricted to a scalar function, the sign of which tags the region of interest.
Interestingly, the above method can be used to upgrade a traditional level set
evolution without any modi�cation of the existing PDE.

At �rst sight, the level set function and the data play symmetric roles in (7)
and the two sub-equations are decoupled. Actually, this is only the case when
the velocity �eld is given a priori . In most problems, the velocity �eld depends
on the geometric properties of � (e.g. normal and curvature)and hence on� .
In some problems, the velocity �eld may also depend on the valuesof the
interfacial data.

2.4 LSPC: Level sets with a point correspondence

LSID is versatile but it su�ers from several limitations. First, it does not
provide an explicit point correspondence, which makes it inadequate for some
applications. Second, it requires to solve a PDE for each scalarcomponent of
the data, which may be prohibitive in some applications.

In order to overcome these problems we propose to maintain, rather than the
interfacial data themselves, some unambiguous coordinates ofthe points of the
interface. This implies a choice of a coordinate system, for example a global pa-
rameterization of the interface. However, obtaining a global parameterization
of a complex shape is di�cult. Moreover, critical points and periodic condi-
tions would be tricky to handle. Finally, reintroducing a parameterization is
quite unnatural in the implicit framework.

A very convenient alternative is to use the initial Cartesian coordinates of
the points of the interface in the embedding spaceRn . We regard them as
vector-valued interfacial data that we evolve with LSID. This is equivalent to
considering a function : Rn � R+ 7! Rn such as

 (x; 0) = x (8)
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and
8
>><

>>:

@�
@t

+ v � r � = 0 ; (9a)
@ 
@t

+ D v = 0 ; (9b)
(9)

whereD stands for the Jacobian matrix of . For each pointx of the inter-
face at timet,  (x; t) holds the position that this point was occupying at time
t = 0. In other words,  (:; t) provides an explicit backward point correspon-
dence from the current interface �(t) to the initial one �(0). O� the interface,
the point correspondence is driven by the extension of the velocity. In most
applications, the latter is arbitrary, so the values of o� �( t) do not have a
physical meaning.

Once the point correspondence is available, the evolution ofany other passively
advected interfacial data with (7b) can be bypassed. We build any such data
by composition of the initial data f 0 with the correspondence function . As
a matter of fact, f = f 0 �  formally satis�es (7b):

@f
@t

+ v � r f = ( r f 0 �  ) �

 
@ 
@t

+ D v

!

= 0 : (10)

In the sequel, we will refer to this approach aslevel sets with a point correspon-
dence(LSPC). Equation (9b) is the Eulerian counterpart of the Lagrangian
ODE which gives the forward point correspondence. The lattercan be repre-
sented by a function ̂ : Rn � R+ 7! Rn such as

8
>><

>>:

 ̂ (x; 0) = x ;

@̂ 
@t

= v �  ̂ :
(11)

This Lagrangian approach is used in [4,12,13] to circumvent the loss of the
point correspondence in the level set method. But the EulerianPDE (9b)
has two important advantages over the Lagrangian ODE (11). First, it is nu-
merically more stable since the computations are performed ona �xed grid.
More importantly, it performs automatic deleting of merging characteristics,
whereas this task requires intricate delooping algorithms in the Lagrangian
approach. Moreover, a forward correspondence may not exist ifthe evolution
forms shocks; the interface may even collapse and merely disappear. In such
cases, (11) is not relevant. That is the reason why LSPC only focuses on the
backward point correspondence. In some applications however, the forward
correspondence is needed and it is necessary to invert the map at a post-
processing stage.
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If the velocity �eld is su�ciently smooth [15,16], (9b) generates a one-parameter
family of di�eomorphisms. So does (11) and by the chain rule we get  (:; t) �
 ̂ (:; t) =  ̂ (:; t) �  (:; t) = Id ; 8t: This is not true in general, as illustrated in
some of the numerical experiments that we report in Section 4.Typically,  
fails to be surjective and develops a discontinuity in the presence of a shock
(see Experiments 2 and 4) and fails to be injective in the presence of a rar-
efaction (see Experiment 3).

3 Numerical Algorithms

In this section, we describe in detail a numerical implementation of LSID and
LSPC.

3.1 Level set reinitialization and data extension

On the one hand, the de�nition of the level set function and of the data
o� the interface is arbitrary in the continuous formulation. But on the other
hand, from a numerical point of view, 
at and/or steep regionsthat develop
in the level set function and in the data during the evolution can dramatically
decrease the accuracy of the computed solution. This motivates the use of the
signed distance function to the interface as the level set function.

An interesting approach to counteract the loss of resolution of the level set
function is to use a particular extension of the velocity that maintains the
signed distance property [17,18]. However, this approach doesnot have a coun-
terpart for the data function. A more common approach is to occasionally
apply a reinitialization procedure which restores the signeddistance property.
This can be done either by applying a Fast Marching technique [19] or by
considering the steady state solution to the following PDE [20]:

@�
@�

+ sign(� 0) (kr � k � 1) = 0 : (12)

Similarly, as discussed in [14,21], an extension of the data constant along the
normal to the isolevels of� , i.e. of the form

r f � r � = 0 (13)

is numerically advantageous. Such an extension can be obtained either in
combination with a reinitialization by Fast Marching [17] or by running the
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following PDE [22]:

@f
@�

+ sign(� ) (r f � r � ) = 0 : (14)

Note that in the case of PDEs on�xed implicit interfaces, pioneered by [14],
an alternative was recently proposed in [21], in order to naturally retain the
desirable property (13) along time, then removing the need for a recurrent
extension of the data. This method is potentially interesting, but the case of
moving interfaces is not addressed yet.

Independently of numerical accuracy, a reinitialization procedure and an ex-
tension procedure are required when using a localized version of the level set
method, such as the narrow band methodology [6] or the PDE-based fast local
level set method [7]. Indeed, when the narrow band is rebuilt,proper values
must be assigned to the level set function and to the data at the newactive
grid points.

In our implementation, we perform both the reinitialization and the extension
with a single pass of Fast Marching, as proposed in [17]. In this work, the
authors build an extension of the velocity and a temporary signed distance
function as a byproduct, at each iteration. In our case, we runthe Fast March-
ing procedure only occasionally: when the narrow band needs rebuilding, and
otherwise periodically to keep the interface and the data well-resolved.

3.2 Keeping the point correspondence onto the initial interface

This subsection speci�cally applies to LSPC. In this case, the interfacial data
are the coordinates of the points of the initial interface. Moreover, due to the
extension procedure described in Subsection 3.1, the values of in the whole
domain belong to �(0).

We show that if the initial correspondences belong to the zero level set of� 0,
this remains true throughout the evolution. We note� = � 0 �  . We obtain
from (9b)

@�
@t

+ v � r � = 0 : (15)

So if � (:; 0) � 0, we have� (:; t) � 0; 8t. However, a numerical scheme for
(9b) will in general move outside of �(0). We propose two adaptations to
counteract this numerical drift. We take our inspiration in the work of [23] on
solving PDEs mapping into an implicitly-de�ned target manifold.
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The �rst adaptation consists in projecting the variation of  on the tangent
plane of the initial interface. Without loss of generality, we can assume that
� 0 is a signed distance function. In this case, the projection operator can be
written in a very simple form. Thus, (9b) is replaced with

@ 
@t

+
h
I � (r � 0 �  ) (r � 0 �  )T

i
D v = 0 : (16)

Eq. (16) is mathematically equivalent to (9b), but it turns out to be nu-
merically advantageous. In particular, the preservation of� is enforced more
directly than in (15) since we now have

@�
@t

= ( r � 0 �  ) �
@ 
@t

= 0 : (17)

The second adaptation consists in projecting the correspondences on the initial
interface, in other words replacing each values of by the closest point on �0.

  P� 0 �  : (18)

Generally, a closest point algorithm must be used to compute the projection
operator P� 0 . However, if � 0 is a signed distance function, a simple expression
can be used outside of the skeleton of �0:

P� 0 (x) = x � � 0(x) r � 0(x) : (19)

In our implementation of LSPC, we use these two adaptations in combina-
tion. We apply the modi�ed PDE (16) at each iteration, and we reproject the
values of the correspondence function with (19) before starting each reinitial-
ization/extension procedure.

3.3 Finite-di�erence schemes

On the one hand, the proper numerical scheme for the level set evolution
equation (7a) and (9a) depends on the properties of the velocity �eld. We do
not discuss this here. All the schemes needed in the numerical experiments of
Section 4 can be found in [1,4]. On the other hand, an advection scheme can
be adopted for (7b) and (9b) as soon as the velocity �eld does not depend
either on the interfacial data or on the correspondence, in other words as soon
as v is extrinsic to f and  .

Moreover, to estimate one-sided space derivatives we adopt thethird-order
weighted essentially non-oscillatory (WENO) scheme derived in [24,25]. Fi-
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nally, with respect to time di�erencing, a simple Euler scheme has proven suf-
�cient in our experiments. Of course, we could resort to higher-order schemes,
such as the total-variation diminishing Runge-Kutta scheme ofthird order
devised in [26].

3.4 Overview of the algorithm

For sake of clarity, we give an overview of our implementationof LSPC in
Algorithm 1 below.

Algorithm 1 Algorithm for level sets with a point correspondence
for all iterations do

Compute the velocity �eld.
Evolve the level set function by (9a).
Evolve the correspondence function by (16).
if the narrow band need rebuilding, otherwise periodicallythen

Reproject the correspondence function by (19).
Run the reinitialization/extension procedure.

end if
end for

4 Experimental Results

In this section, we report on some numerical experiments that demonstrate
the robustness and accuracy of LSID and LSPC in a wide range of situations,
including normal and tangential velocity �elds, large deformations, shocks,
rarefactions and topological changes. Whenever the exact solution for the po-
sition of the interface, for the data and for the correspondence are known, we
measure and we discuss the numerical error.

4.1 De�nition of the error measures

The computation of the numerical error is not straightforward. In particular,
a direct comparison of the computed data and correspondence with the exact
solution is not possible since the computed interface and the exact interface
di�er. In all our experiments, the error is measured as follows.

To get the error on the position of the interface, we extract the zero isocontour
of the computed level set function using the marching cubes algorithm [27].
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At the resulting vertices, we compute the distance to the exact interface. Then
we accumulate the point-wise errors along the contour to get the mean error
(L1 norm), the mean square error (L2 norm), and the maximum error (L1

norm).

To get the error of LSID on the interfacial data, we sample the exact interface
and we interpolate the computed data at these points using cubic spline inter-
polation. Due to the extension procedure (Subsection 3.1), this is equivalent to
evaluating the computed data at the closest points on the computed interface.
Then we substract the exact data and we compute theL1, L2 and L1 norms.
We proceed similarly to get the error of LSPC on the correspondence.

4.2 2D test cases

Throughout this subsection, the spatial domain is the unit square [0; 1]� [0; 1]
and we use a time step of �t = � x=10 and a 6� x-thick narrow band. The
reinitialization/extension procedure is started when the distance of the inter-
face to the borders of the narrow band gets below 3�x. In all �ve experiments,
the initial data are a function of the central angle� : f 0(� ) = sin(3 � ).

Figure 1 demonstrates LSID and LSPC in several 2D test cases. The curves
displayed in this �gure are obtained from the computed level set function using
a marching squares algorithm [27]. At the resulting vertices, we sample the
computed data and correspondence function using cubic spline interpolation.

Each row shows a di�erent experiment. In each experiment, column A shows
the initial interface colored with the initial data. Column B shows the in-
terface at t = 0:2 colored with the data computed with LSID. The last two
columns show the results of LSPC at the same time instant. In column C, the
correspondence function is plotted at one out of ten vertices.The initial and
the current interfaces are plotted too, with a dotted line and a dashed line
respectively. Column D shows the interface colored with the transformed data
f 0 �  .

The errors for the di�erent experiments att = 0:2 for di�erent grid sizes (502,
1002, 2002) are given in Tables 1-5. In the next paragraphs, we describe in
detail the purpose, the setting and the results of each experiment.

Experiment 1: a rotating and shrinking circle. The initial interface is
a circle with radius 0.4 centered at (0:5; 0:5) and the velocity �eld is a com-
bination of a unit inward normal speed and of an extrinsic rigidrotation of
angular velocity 5. This example demonstrates that both normal and tangen-
tial velocities can be handled.
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Fig. 1. Results of LSID (column B) and LSPC (columns C,D) in several 2D test
cases.

Experiment 2: a shrinking square. The initial interface is a square with
side length 0.4 centered at (0:5; 0:5) and the velocity �eld is a unit inward
normal speed. The evolution forms shocks at the angles of the square. Discon-
tinuities develop in the data and in the correspondence. Figure 2,left provides
a detailed view of Figure 1,2C with a denser representation forthe correspon-
dence. It shows that the expected discontinuities are fairly well recovered by
LSPC.

Experiment 3: an expanding square. The initial interface is a square with
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Fig. 2. Some detailed views of Figure 1-C2 and Figure 1,4C.

side length 0.2 centered at (0:5; 0:5) and the velocity �eld is a unit outward
normal speed. The evolution forms rarefactions cones at the angles of the
square. The many-to-one correspondence is successfully recovered by LSPC.

Experiment 4: the merging of two expanding circles. The initial in-
terface is composed of two circles with radius 0.1 centered at(1=3; 0:5) and
(2=3; 0:5) and the velocity �eld is a unit outward normal speed. The twocir-
cles merge att = 2=15 and two discontinuities develop in the data and in the
correspondence. With no surprise, the topological change is handled automat-
ically by the level set method. The discontinuities in the correspondence are
also recovered by LSPC, as illustrated in Figure 2,right.

Experiment 5: a circle in a vortex velocity �eld. The initial interface
is a circle with radius 0.15 centered at (0:5; 0:75) and the evolution is driven
by a non-constant vorticity velocity �eld that varies sinusoidally in time. It is
de�ned by

v(x; y) = 4 cos
�t
T

0

B
@

sin2(�x ) sin(2�y )

� sin(2�x ) sin2(�y )

1

C
A : (20)

This velocity �eld at t = 0 is shown in Figure 3. This experiment is numer-

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 3. Velocity �eld used in Experiment 5.

ically more challenging than the previous ones because the 
ow considerably
stretches the interface. The exact solution is not available at all time, so at
�rst sight we cannot measure the error. But the velocity reversesat time T=2,
so the initial interface and the initial data should be recovered at time T. This
provides a convenient way to evaluate the accuracy of our results. We take
T = 0:4. The errors att = 0:4 are given in Table 5.
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4.3 3D experiments

We now demonstrate our method in three dimensions. In this subsection, the
spatial domain is the unit cube [0; 1] � [0; 1] � [0; 1] and we use a time step of
� t = � x=5. In order to test the robustness to large deformations, we consider
the following incompressible velocity �eld proposed by LeVeque [28]:

v(x; y; z) = cos
�t
T

0

B
B
B
B
B
@

2 sin2(�x ) sin(2�y ) sin(2�z )

� sin(2�x ) sin2(�y ) sin(2�z )

� sin(2�x ) sin(2�y ) sin2(�z )

1

C
C
C
C
C
A

: (21)

This 
ow is a surimposition of a deformation in thexy plane with a deforma-
tion in the xz plane. As in Experiment 5, the initial interface and the initial
data should be recovered at timeT. In the next paragraphs, we apply this
velocity �eld to two di�erent interfaces.

Experiment 6: a deforming plane. The initial interface is the planex = 0:5
and the initial data are given by

f 0(x; y; z) = sin(10�y ) sin(10�z ) : (22)

In this experiment, we takeT = 0:8. Figure 4 shows the computed interface,
the data and the correspondence att=0, 0.2 and 0.4. Rather than plotting
the point correspondence which is di�cult to visualize in three dimensions,
we color the interface with a checkerboard texture obtainedby composition
with  . The errors at t = 0:8 for di�erent grid sizes (503, 1003 and 2003) are
given in Table 6.

Experiment 7: a deforming sphere. The initial interface is a sphere with
radius 0.15 centered at (0:35; 0:35; 0:35) and the initial data are given by

f 0(x; y; z) = ( x � 0:35) (y � 0:35) (z � 0:35)=0:153 : (23)

In this experiment, we takeT = 1:6. Figure 5 shows the results att=0, 0.4
and 0.8. The errors att = 1:6 are given in Table 7.

4.4 Comments on the errors

In Tables 1-7, we observe a regular decrease of theL1, L2 and L1 norms
of the errors of LSID and LSPC when the dimension of the computational
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t = 0 t = 0 :2 t = 0 :4

Fig. 4. Results of LSID (top) and LSPC (bottom) in Experiment 6 at di�erent times.

t = 0 t = 0 :4 t = 0 :8

Fig. 5. Results of LSID (top) and LSPC (bottom) in Experiment 7 at di�erent times.

grid increases. There are a few exceptions to this behavior, shown in bold
fonts. They can be explained easily: in Experiment 2 and Experiment 4, the
discontinuities that develop in the data and in the correspondence cause a
stagnation of theL1 norm of the error.
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5 Applications

5.1 Coupling of thin shells with 
uids

The modeling of the deformation of thin shells [29] is traditionally done in a
Lagrangian formulation, because it requires to track the material properties
(e.g. the 
exural rigidity) associated to the material points.Thus, the de�ni-
tion of elastic forces uses a mapping between the deformed and the undeformed
con�gurations.

Our approach allows an Eulerian modeling of thin shells, whichcan be nu-
merically advantageous in the case of the two-way coupling with an Eulerian

uid. It would remove the need for special techniques to reconcile the Eulerian
and the Lagrangian viewpoints, like the immersed interface method [30], the
ghost-
uid method [31] and its many variants (cf for example [32]).

Nevertheless, at the time of writing of this paper, we have not further inves-
tigated these interesting possibilities.

5.2 Scienti�c visualization

Our method can be used for visualizing some material propertiesof an interface
with a very complex geometry, on a simpler avatar surface. Thistechnique may
be needed in many areas of science and engineering.

For instance, in medical imaging, building unfolded representations of the
cerebral cortex, the thin layer of gray matter at the surface of the brain, has
become an important area of research (see [33,34] and references therein).
Indeed, on a simpli�ed geometry, it becomes easier for physicians to visualize
and analyze functional or structural properties of the cortex.

A straightforward level set implementation of cortex unfolding is not feasible,
due to the loss of the point correspondence. The latter is essential to connect
the observations made on the avatar to the actual surface. By using our ap-
proach, in [34], we have been able to compute simpli�ed representations of the
cortex from real brain data, while enjoying the numerical stability of the Eule-
rian formulation. In Figure 6, we show some of our results. The correspondence
is displayed indirectly with a texture representing the mean curvature of the
initial surface, which provides good landmarks for visualization. By applying
to the cortical surface a mean curvature motion complementedwith an area-
preserving tangential motion, we have built a multi-scale shape description,
while maintaining an area-preserving mapping to the original surface.
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Fig. 6. Several views of the initial surface (top) and of the in
ated representation
(bottom). The correspondence is displayed indirectly with a texture representing
the mean curvature of the initial surface.

6 Conclusion

In this paper, we have extended the applicability of the level set method to
a speci�c class of problems requiring an explicit point correspondence dur-
ing the evolution. We have proposed a system of coupled EulerianPDEs to
maintain a backward mapping from the current interface to the initial one.
We have described in detail a robust numerical implementationof our ap-
proach: a procedure for reinitializing the level set function and for extending
the interfacial data and the point correspondence, two adaptations to keep the
point correspondence onto the initial interface, and the adequate numerical
�nite-di�erence schemes for the di�erent PDEs. We have successfully tested
our approach, in 2D and in 3D, in a wide range of situations, including normal
and tangential velocities, large deformations, shocks, rarefactions and topol-
ogy changes. In all our experiments, we have computed the numerical error
and we have commented its variation with respect to the grid size.
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Grid size 50� 50 100� 100 200� 200

L 1 2.6e-4 1.6e-4 1.1e-4

Surface error L 2 2.7e-4 1.7e-4 1.2e-4

L 1 3.9e-4 3.0e-4 1.9e-4

LSID L 1 1.8e-2 1.2e-2 6.3e-3

Data error L 2 2.1e-2 1.4e-2 7.3e-3

L 1 3.9e-2 2.1e-2 1.2e-2

LSPC L 1 7.3e-4 4.7e-4 2.7e-4

Correspondence error L 2 8.5e-4 5.6e-4 3.3e-4

L 1 1.4e-3 1.3e-3 6.4e-4
Table 1
Errors for Experiment 1 at t = 0 :2.

Grid size 50� 50 100� 100 200� 200

L 1 2.0e-5 6.3e-6 3.6e-6

Surface error L 2 3.4e-5 1.7e-5 7.4e-6

L 1 1.0e-4 6.7e-5 4.0e-5

LSID L 1 2.4e-2 1.3e-2 6.5e-3

Data error L 2 1.1e-1 7.7e-2 5.5e-2

L 1 7.4e-1 6.7e-1 6.5e-1

LSPC L 1 7.1e-3 3.2e-3 1.6e-3

Correspondence error L 2 3.1e-2 2.0e-2 1.4e-2

L 1 1.6e-1 1.4e-1 1.4e-1
Table 2
Errors for Experiment 2 at t = 0 :2.
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Grid size 50� 50 100� 100 200� 200

L 1 3.1e-3 1.5e-3 7.2e-4

Surface error L 2 4.7e-3 2.3e-3 1.1e-3

L 1 9.1e-3 4.4e-3 2.1e-3

LSID L 1 1.9e-2 1.0e-2 5.4e-3

Data error L 2 3.1e-2 1.8e-2 9.6e-3

L 1 1.0e-1 6.6e-2 4.3e-2

LSPC L 1 5.8e-3 2.8e-3 1.4e-3

Correspondence error L 2 8.2e-3 4.3e-3 2.3e-3

L 1 1.9e-2 1.3e-2 8.3e-3
Table 3
Errors for Experiment 3 at t = 0 :2.

Grid size 50� 50 100� 100 200� 200

L 1 2.6e-4 7.7e-5 3.8e-5

Surface error L 2 3.8e-4 1.4e-4 6.5e-5

L 1 1.3e-3 1.3e-3 6.8e-4

LSID L 1 6.7e-2 1.8e-2 5.6e-3

Data error L 2 8.3e-2 5.4e-2 2.7e-2

L 1 3.7e-1 5.2e-1 3.9e-1

LSPC L 1 4.3e-3 1.6e-3 8.1e-4

Correspondence error L 2 2.6e-2 1.4e-2 9.8e-3

L 1 2.1e-1 1.9e-1 1.9e-1
Table 4
Errors for Experiment 4 at t = 0 :2.

23



Grid size 50� 50 100� 100 200� 200

L 1 6.3e-3 2.2e-3 1.1e-3

Surface error L 2 7.0e-3 2.6e-3 1.3e-3

L 1 1.1e-2 5.3e-3 3.1e-3

LSID L 1 2.7e-1 8.5e-2 3.1e-2

Data error L 2 3.4e-1 1.3e-1 5.3e-2

L 1 7.2e-1 3.7e-1 1.9e-1

LSPC L 1 1.4e-2 4.2e-3 2.2e-3

Correspondence error L 2 2.2e-2 6.7e-3 3.3e-3

L 1 5.7e-2 2.0e-2 9.8e-3
Table 5
Errors for Experiment 5 at t = 0 :4.

Grid size 503 1003 2003

L 1 5.5e-3 2.9e-3 1.5e-3

Surface error L 2 7.4e-3 3.9e-3 2.1e-3

L 1 1.9e-2 9.5e-3 5.5e-3

LSID L 1 1.3e-1 5.6e-2 2.4e-2

Data error L 2 1.9e-1 7.3e-2 3.1e-2

L 1 5.6e-1 1.9e-1 1.1e-1

LSPC L 1 2.1e-3 1.6e-3 9.7e-4

Correspondence error L 2 2.5e-3 1.9e-3 1.1e-3

L 1 6.3e-3 6.2e-3 3.9e-3
Table 6
Errors for Experiment 6 at t = 0 :8.
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Grid size 503 1003 2003

L 1 7.2e-3 3.4e-3 1.9e-3

Surface error L 2 1.1e-2 5.2e-3 2.8e-3

L 1 4.4e-2 2.4e-2 1.2e-2

LSID L 1 4.5e-2 1.7e-2 7.1e-3

Data error L 2 5.6e-2 2.1e-2 9.1e-3

L 1 1.5e-1 8.3e-2 3.6e-2

LSPC L 1 1.5e-2 6.3e-3 3.4e-3

Correspondence error L 2 1.8e-2 7.2e-3 4.0e-3

L 1 4.4e-2 2.0e-2 1.2e-2
Table 7
Errors for Experiment 7 at t = 1 :6.
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