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Abstract

We present a novel method to reconstruct the 3D shape of a scene from seve-
ral calibrated images. Our motivation is that most existing multi-view stereovi-
sion approaches require some knowledge of the scene extent and often even of
its approximate geometry (e.g.visual hull). This makes these approaches mainly
suited to compact objects admitting a tight enclosing box, imaged on a simple or
a known background. In contrast, our approach focuses on large-scale cluttered
scenes under uncontrolled imaging conditions. It first generates a quasi-dense 3D
point cloud of the scene by matching keypoints across images in a lenient manner,
thus possibly retaining many false matches. Then it builds an adaptive tetrahe-
dral decomposition of space by computing the 3D Delaunay triangulation of the
3D point set. Finally, it reconstructs the scene by labeling Delaunay tetrahedra
as empty or occupied, thus generating a triangular mesh of the scene. A globally
optimal label assignment, as regards photo-consistency of the output mesh and
compatibility with the visibility of keypoints in input images, is efficiently found
as a minimum cut solution in a graph.





Résumé

Nous présentons une nouvelle méthode de reconstruction de la forme 3D d’une
scène à partir de plusieurs images calibrées. Notre approche est motivée par le fait
que la plupart des autres approches existantes pour la reconstruction requièrent
des informations supplémentaires sur l’étendue de la scène voire même sa forme
approximative (c’est-à-dire son enveloppe visuelle). Ce pré-requis empêche l’uti-
lisation de ces méthodes pour des scènes autres que celles représentant des objets
compacts assortis d’une boı̂te englobante précise, filmés sur un fond connu. Au
contraire, notre approche se focalise sur de larges scènes encombrées sans au-
cun contrôle des conditions de prise de vues. Tout d’abord, un nuage presque
dense de points 3D est généré en appariant le plus possible de points clés entre les
différentes images (beaucoup de faux appariements pouvant être générés). Une
décomposition adaptative de l’espace en tétrahèdres est ensuite construite à partir
de ce nuage de points en calculant sa triangulation de Delaunay. Enfin, la scène est
reconstruite en étiquetant chaque tétrahèdre comme intérieur ou extérieur, et l’in-
terface entre l’intérieur et l’extérieur permet d’extraire un maillage de la scène. Un
étiquetage optimal des tétrahèdres vis-à-vis de la photo-consistence du maillage
créé et de la compatibilité de ce maillage avec les contraintes de visibilité (im-
posées par les points clés issus des images) est obtenu efficacement comme coupe
minimale dans un graphe.
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1 Introduction

1.1 Motivation

As pointed out in the review by Seitz et al. [32], most top-performing algorithms
for dense multi-view stereo reconstruction require significant knowledge of the
geometry of the scene. This ranges from a tight bounding box to a closer approx-
imation by the visual hull.

The visual hull is defined as the intersection of cones generated by the silhou-
ettes of the objects in the input views [25]. This technique requires an accurate
segmentation of input images. In real-life examples, however, such segmentation
is not available or even feasible. In practice, visual hull computation only applies
to datasets obtained under controlled imaging conditions, namely on a simple or
a known background.

Despite this serious limitation, in the last few years, a number of multi-view
stereovision algorithms exploiting visual hull have been proposed. They rely on
visual hull either as an initial guess for further optimization [16, 12, 20, 35, 39,
41, 43], as a soft constraint [12] or even as a hard constraint [16, 34] to be fulfilled
by the reconstructed shape.

While the unavailability of silhouette information discards many of the top-
performing multi-view stereovision algorithms, the requirement for the ability to
handle large-scale scenes discards most of the others, and in particular volumet-
ric methods, i.e.methods based on a regular decomposition of the domain into
elementary cells, typically voxels. Obviously, this approach is mainly suited to
compact objects admitting a tight enclosing box, as its computational and mem-
ory cost quickly becomes prohibitive when the size of the domain increases.

Volumetric multi-view stereovision methods include space carving [9, 24, 33,
40, 42], level sets [13, 21, 31], and volumetric graph cuts [8, 20, 26, 35, 39, 41].
Actually, what distinguishes these three categories is the type of optimization they
rely on: a greedy occupancy assignment in space carving, a surface deformation
driven by a gradient descent in level sets, and a global combinatorial optimization
in graph cuts.

Large-scale cluttered scenes for which no reliable initial guess of geometry is
available also disqualify the deformable model framework [11, 13, 12, 21, 27, 31].
Indeed, it is based on a local optimization by gradient descent. As a result, it is
highly sensitive to initial conditions.

The multi-view stereovision methods which have proven more adapted to re-
construct large-scale scenes (e.g.outdor architectural scenes) are those represent-
ing geometry by several depth maps [18, 17, 22, 36, 37, 38]. However, their
performance for complete reconstruction seems to be lower than previously dis-
cussed approaches, either as regards accuracy or completeness of the obtained
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model. This may be due to the difficulty to handle visibility globally and consis-
tently in this approach. Moreover, in the complete reconstruction case, the several
partial models of the scene have to be fused at post-processing using a volumetric
technique [10].

From the above discussion, we draw the conclusion that, although very im-
pressive progress has been made in the last few years in the multi-view stereovi-
sion problem as regards reconstruction accuracy, novel algorithms that can handle
more general scenes are still needed.

1.2 Novelty of our approach
In this paper, we propose a novel multi-view reconstruction approach adapted to
large-scale cluttered scenes under uncontrolled imaging conditions. Our method
first generates a quasi-dense 3D point cloud of the scene by matching keypoints
across images in a lenient manner, thus possibly retaining many false matches.
Then it builds an adaptive tetrahedral decomposition of space by computing the
3D Delaunay triangulation of the 3D point set. Finally, it reconstructs the scene
by labeling Delaunay tetrahedra as empty or occupied, thus generating a trian-
gular mesh of the scene. A globally optimal label assignment, as regards photo-
consistency of the output mesh and compatibility with the visibility of keypoints
in input images, is efficiently found as a minimum cut solution in a graph.

Our method shares with existing multi-view graph cuts approaches [8, 16, 20,
22, 26, 34, 35, 39, 41] the desirable property of yielding an exact global optimum
of an energy functional. Compared to these methods, however, our approach en-
joys a unique combination of desirable features:

1. It uses a fully adaptive unstructured tetrahedral decomposition of space,
namely the Delaunay triangulation of a quasi-dense point sample of the sur-
face of the scene, in constrast with a regular subdivision used in volumetric
graph cuts [8, 20, 26, 35, 39, 41]. This yields several significant benefits:

• it removes the need for a predefined bounding box of the scene, since
the Delaunay triangulation seamlessly accounts for the convex hull of
the point cloud.

• it considerably alleviates quantization artefacts, namely the stair-casing
effect.

• it keeps the computation and memory cost sustainable on large-scale
scenes, since empty space regions are represented by few large tetra-
hedra.

• it allows to directly output a high-quality triangular mesh of the scene,
free of self-intersections.
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2. It exploits visibility information coming from keypoints to guide the posi-
tion of the surface. As a result, it avoids the mininum cut solution from
being an empty surface. Hence it exonerates from the different techniques
proposed in the literature so far to solve this problem: a heuristic balloon-
ing term [26, 41], a restriction of the feasible set using silhouette informa-
tion [16, 20, 34, 35, 39, 43], or a maximization of photo-flux [8]. Moreover,
this visibility information is not enforced as a hard constraint but integrated
in the very optimization framework, thus yielding robustness to outliers.

3. It can handle closed as well as open scenes. For example, it can simultane-
ously recover the walls of an indoor scene and a complete reconstruction of
objects seen from all sides in the input images.

The remainder of this paper is organized as follows. Section 2 gives some
background on the different techniques needed in our approach: interest point de-
tectors, Delaunay triangulation and graph cuts. In Section 3, we describe in detail
the different steps of our multi-view stereo reconstruction algorithm. Section 4
discusses implementation aspects and presents some numerical experiments that
demonstrate the potential of our approach for reconstructing large-scale cluttered
scenes from real-world data.

2 Background

2.1 Keypoint extraction and description
Our method relies on the extraction of robust keypoints that can be matched across
different viewpoints: we use the keypoint extraction and description method of
Lowe [29]. The first stage of the Scale-invariant feature transform (SIFT) searches
for scale-space extrema in the difference-of-Gaussian function convolved with
the image in order to find interest points [28]. The second stage associates a
descriptor (a high dimension vector) to each keypoint localization: this descriptor
represents the distributions of smaller scale features in the neighbourhood of the
detected point, it is invariant to scale and rotation and is robust to small affine
or projective deformations and illumination changes. It has also been shown to
perform among the very best descriptors [30] and has become one of the most
widely used descriptor in practice nowadays, justifying our choice.

2.2 Delaunay triangulation
The following definitions are taken from a computational geometry textbook [6].
Let P = {p1, . . . , pn} be a set of points in Rd. The Voronoi cell associated to a
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point pi, denoted by V (pi), is the region of space that is closer from pi than from
all other points in P:

V (pi) = { p ∈ Rd : ∀ j 6= i, ‖p− pi‖ ≤ ‖p− pj‖ }

V (pi) is the intersection of n − 1 half-spaces bounded by the bisector planes of
segments [pipj], j 6= i. V (pi) is therefore a convex polytope, possibly unbounded.
The Voronoi diagram of P , denoted by Vor(P), is the partition of space induced
by the Voronoi cells V (pi).

The Delaunay triangulation Del(P) ofP is defined as the geometric dual of the
Voronoi diagram: there is an edge between two points pi and pj in the Delaunay
triangulation if and only if their Voronoi cells V (pi) and V (pj) have a non-empty
intersection. It yields a triangulation of P , that is to say a partition of the convex
hull of P into d-dimensional simplices (i.e.into triangles in 2D, into tetrahedra
in 3D, and so on). Figure 1 displays an example of a Voronoi diagram and its
associated Delaunay triangulation in the plane.

The algorithmic complexity of the Delaunay triangulation of n points isO(n log n)
in 2D, andO(n2) in 3D. However, as was recently proven in [2], the complexity in
3D drops toO(n log n) when the points are distributed on a smooth surface, which
is the case of interest here.

Our choice of Delaunay triangulation as a space subdivision for multi-view
stereo reconstruction is motivated by the following remarkable property: under
some assumptions, and especially if P is a “sufficiently dense” sample of a sur-
face, in some sense defined in [1], then a good approximation of the surface is
“contained” in Del(P), in the sense that the surface can be accurately recon-
structed by selecting an adequate subset of the triangular facets of the Delaunay
triangulation.

2.3 Energy minimization by graph cuts
Given a finite directed graph G = (V , E) with nodes V and edges E with non-
negative weights (capacities), and two special vertices, the source s and the sink t,
an s-t-cut C = (S, T ) is a partition of V into two disjoints sets S and T such that
s ∈ S and t ∈ T . The cost of the cut is the sum of the capacity of all the edges
going from S to T : c(S, T ) =

∑
(p,q)∈S×T |p→q∈E wpq. The minimum s-t-cut prob-

lem consists in finding a cut C with the smallest cost: the Ford-Fulkerson theorem
[14] states that this problem is equivalent to computing the maximum flow from
the source s to the sink t and many classical algorithms exist to efficiently solve
this problem. Such a cut can be viewed as a binary labeling of the nodes: by build-
ing an appropriate graph, many segmentation problems in computer vision can be
solved very efficiently [19]. More generally, global minimization of a whole class
of energy is achieved by graph cuts [23].
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Figure 1: The Voronoi diagram (gray edges) of a set of 2D points (red dots) and
its associated Delaunay triangulation (black edges).
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The graph considered in our approach derives from an adaptive space decom-
position provided by the Delaunay triangulation. This differs from the graphs
commonly used in computer vision, which are often regular grids in the input
images or in the bounding volume of the scene.

3 Reconstruction Method

Our algorithm can be decomposed in four main steps: the first step is quite
straightforward as it reduces to extracting features from the input views. The key-
points are then matched pair-wise between different views by taking epipolar ge-
ometry into account: these matches enable the generation a quasi-dense 3D point
cloud, which is later refined and structured by incrementally building a Delaunay
triangulation and merging 3D points that are close enough. Finally a graph-cut
optimization is used to extract the surface of the scene from this triangulation.

3.1 Quasi-dense 3D point cloud generation

The first step in our method is the generation of a quasi-dense 3D point cloud. To
this end, pairs of keypoints are matched across different views. The usual way
of obtaining robust matches is, given one keypoint, to find the best match in the
other image, and to keep it provided its matching score is significantly better than
the second best matching score. Here, however, as the global optimization in the
final step is able to cope with false matches, we favor density over robustness
and we admit a lot of false positives. To achieve this, given one keypoint, we
always keep the best match along the epipolar line, plus we keep all other matches
along the epipolar line whose matching scores are not significantly lower than the
best match. This step outputs a 3D point cloud by computing the 3D position
associated to each match.

3.2 Match aggregation and Delaunay triangulation

The next step in our method consists in adding some structure to the previous 3D
point cloud, while efficiently aggregating matches in tuples. This is accomplished
by incrementally building a Delaunay triangulation of the 3D point set. Each
vertex of the triangulation does not only store its position, it also maintains the
list of keypoints it originates from. Each time a candidate point from the original
3D point cloud is to be added, its nearest neighbour in the triangulation is found
(this query is very efficient in a Delaunay triangulation [5]) and the maximum
reprojection error between the two 3D points is computed.
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insert a new vertex

update nearest vertex

Figure 2: A candidate point (blue cross) updates the Delaunay triangulation de-
pending on the maximum reprojection error between it and the nearest vertex:
either it is inserted as a new vertex or it updates the position of the nearest vertex.

As illustrated in Figure 2, two different cases can occur. If the maximum
reprojection error is above some threshold, the candidate point is regarded as a
distinct point and is inserted in the Delaunay triangulation. If the error is below
the threshold, the candidate point is not inserted in the Delaunay triangulation.
Instead, the nearest point is updated: first, the list of keypoints it originates from
is complemented with the two keypoints from which the candidate point was gen-
erated, then its position is recomputed using its updated keypoint list, and the
Delaunay triangulation is modified accordingly, if needed.

This step outputs a Delaunay triangulation, whose vertices store a keypoint
tuple and the best-fit corresponding 3D position. Note that the size of keypoint
tuples is related to the confidence of 3D points, since false matches are unlikely
to aggregate into large tuples.

3.3 Surface extraction

The final step in our method consists in labeling each tetrahedron of the Delaunay
triangulation as inside or outside of the scene. The output triangular mesh is
then obtained by taking the triangular facets between adajacent tetrahedra having
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different labels. This constrains the reconstructed surface to be included in the
Delaunay triangulation. This is not a limitation, however, as soon as the point
cloud is sufficiently dense, as discussed in Section 2.2.

A globally optimal label assignment is efficiently found using graph cuts. To
this end, we consider the dual graph to the Delaunay triangulation, in other words,
the graph whose vertices correspond to Delaunay tetrahedra, and whose edges
correspond to the triangular facets between adajacent tetrahedra. Actually, this
coincides with the vertices and edges of the Voronoi diagram of the point set.
In addition, there are links between each vertex of the graph (i.e.each Delaunay
tetrahedron) and the sink and the source.

In the sequel, we note S the surface to be reconstructed. As discussed above,
S is a union of Delaunay triangles. We wish to minimize an energy functional
composed of three terms, one dealing with visibility, one dealing with photo-
consistency and one dealing with surface smoothness:

E(S) = Evis(S) + λphoto Ephoto(S) + λarea Earea(S)

where λphoto and λarea are positive weights. In the rest of this section, we give the
exact definition of each energy term and we describe how it can be implemented
in the graph cuts framework.

3.3.1 Surface visibility

Each vertex in the triangulation has some visibility information: the keypoint tuple
from which it was reconstructed (this tuple can contain as little as two keypoints
or as many tuples as the total number of input views if the point was the result of
multiple merges).

This information is decisive to design the Evis(S) term: if some vertex be-
longs to the final surface then it should be visible in the views it comes from.
Consequently, all the tetrahedra intersected by the ray emanating from the vertex
to the camera center of one of these views should be labelled as outside (and the
tetrahedron behind the vertex should be labelled as inside).

The following term: Evis(S) = λvis #{ray conflicts}, where a ray from a
vertex to a camera center is in conflict if it intersects a tetrahedron labelled as
inside, naturally comes to mind. Unfortunately, such energy term is not suitable
for graph-cut optimization, as it would require complex interactions between more
than two nodes in the graph [15, 23].

Instead, the number of intersections of the ray with the oriented surface is
used (only ray crossings of a triangle from the inside to the outside are penalized).
Moreover the surface should go through the vertex originating the ray and the last
tetrahedron traversed by the ray should be labelled as outside. The construction of
the corresponding visibility terms for one ray is summarized in Figure 3. Note that
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the term Vp2q2 cannot be translated to weights in the graph because the tetrahedra
whose nodes are p and q do not share a triangle and the nodes p and q are thus
not linked in the graph. Fortunately this term only amounts to a link to the sink
with weight wq2t = λin. The positive weights λin, λout and λ∞ possibly take into
account the confidence in the reconstructed vertex yielding the ray.

The global visibility term sums all the contributions of the rays cast by the
vertices of the triangulations (the corresponding weights of the edges of the graph
are accumulated the same way).

Note that the edges for the origin and for the end of the ray (with weights λin

and λ∞ respectively) can straightforwardly be adjusted (thanks to the Delaunay
triangulation) to allow the reconstruction of, for instance, the walls of an indoor
scene: not only finite tetrahedra can be used as nodes in the graph but also infinite
tetrahedra (which have three vertices on the convex hull of the 3D point cloud and
share an infinite vertex). . .

3.3.2 Surface photo-consistency

The photo-consistency term Ephoto(S) of our energy measures how well the given
surface S matches the different input images in which it is seen. It is defined as
the sum over the whole surface of some photo-consistency measure ρ ≥ 0 (in our
case, every triangle of the surface has a uniform photo-consistency):

Ephoto(S) =

∫
S
ρ dS =

∑
T∈S

ρ(T )A(T )

The photo-consistency of each triangle is computed in all the views from which
its three vertices were reconstructed. Furthermore, as a triangle of the surface
S lies by definition on the interface between the inside and the outside of the
reconstructed object(s), its orientation needs to be taken into account: an “oriented
photo-consistency” is used, which means that the two possible orientations of a
given triangle get different photo-consistencies, each computed only in the subset
of the considered views compatible with the given orientation of the triangle.

This maps quite easily onto the graph cuts framework: for each directed pair
of tetrahedra (represented by nodes p and q in the graph) which shares a triangle
T with normal ~n (pointing from tetrahedron p to tetrahedron q), an edge p → q
is added with a weight wpq = ρ{Πi|~di.~n>0}(T ), where ~di is the direction from the
center of the triangle to the center of the i-th camera Πi.
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3.3.3 Surface smoothness

Surface smoothness is encouraged by minimizing the area of the surface. Hence
it is the simplest term of our energy:

Earea(S) = A(S) =

∫
S

dS =
∑
T∈S

A(T )

This is also trivially minimized in the graph cuts framework: for each pair of
tetrahedra (sharing a triangle T ) represented by nodes p and q in our graph, an
edge p → q is added with a weight wpq = A(T ) and, similarly, an opposite edge
q → p with the same weight wqp = wpq is also added.

4 Experimental Results

4.1 Implementation aspects
In order to boostrap our algorithm, keypoints are extracted from the datasets im-
ages with the help of the freely available demo software of the SIFT keypoint
detector3.

The Delaunay triangulation is computed using the Computational Geometry
Algorithms Library (CGAL)4 [5]. CGAL defines all the needed geometric prim-
itives and provides an excellent algorithm to compute the Delaunay triangulation
in 3D: it is robust to degenerate configurations and floating-point error, thanks
to the use of exact geometric predicates, while being able to process millions of
points per minute on a standard workstation. It provides all the elementary opera-
tions needed in our algorithm: vertex insertion, vertex move, nearest vertex query
and various traversals of the triangulation.

The photo-consistency is evaluated with a software rasterizer with sweeps the
projection of each triangle of the Delaunay triangulation in the chosen views and
computes the mean color variance of the pixels in this triangle.

Finally we compute the minimum s-t-cut of the graph we designed using the
software5 described in [7] which is in fact better suited for regular grid-based
graphs more commonly found in computer vision.

Currently our implementation leaves room for improvement in term of com-
putational speed: leaving aside the time required to extract the keypoints, it can
take (on an Intel R©CoreTM2 Duo 2.13 GHz PC) as little as a minute and a half to
reconstruct a scene from a ∼ 50 images dataset to a few dozens minutes from a

3http://www.cs.ubc.ca/˜lowe/keypoints/
4http://www.cgal.org/
5http://www.adastral.ucl.ac.uk/˜vladkolm/software.html

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cgal.org/
http://www.adastral.ucl.ac.uk/~vladkolm/software.html
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∼ 300 images dataset depending on the number of input keypoints to match. For-
tunately our method is quite versatile: we can use any type of features as input and
we could resort to much faster features detector such as SURF [3]. The matching
of keypoints is presently done by brute force so most of the above computational
time is actually spent on feature matching alone: this could be improved by using
a more adapted nearest neighbor search in high-dimension spaces [4]. Finally the
software rasterizer used for the photo-consistency computation could obviously
take great advantage of modern graphics hardware.

4.2 Temple

The first experiment (shown in Figure 4) uses the 312 views temple dataset from
the review of Seitz et al. [32]. It shows that our approach is quite flexible and
while able to reconstruct large-scale scenes, it can still cope with more traditional
multi-view stereo without using any of the usual clues that most high-precision
algorithms would require. Also recall that in our case the final shape of the
object(s) depends on the 3D point cloud reconstructed from matched features,
so regions without many matched keypoints are reconstructed as large triangles
whereas densily sampled regions are more detailed.

4.3 Toys

The data for the second experiment (shown in Figures 5 and 6) was acquired with
a consumer-grade handheld DV camcorder shooting soft toys laid on a table; one
frame out of ten was extracted from the video sequence resulting in a 237 views
dataset and calibration was done with a tracking software. The imaging conditions
were absolutely not controlled, most of the images show large specular highlights
on the tablecloth. No additional stabilizer was used and besides motion blur, many
important color sampling and aliasing artefacts due to video compression require-
ments are clearly noticeable. Despite this impressively hard dataset, our algorithm
was able to reconstruct the table and the soft toys showing its robustness and its
ability to cope with a large-scale cluttered scene without any additional informa-
tion about its extent. Note that some small details compared the global scale of
the scene are still recovered (the antennas, the ears or the tail of some of the soft
toys, for instance) but areas that lack matchable features are less accurately recon-
structed.
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5 Conclusion and Future Work
We have presented a new multi-view reconstruction method adapted to large-scale
cluttered scenes under uncontrolled imaging conditions. First a quasi-dense 3D
point cloud of the scene is generated by matching keypoints across different views.
An adaptive tetrahedral decomposition of the space is then built by means of a De-
launay triangulation of the 3D point set. Finally the scene is reconstructed by la-
beling the tetrahedra as empty or occupied using an assignement globally optimal
as to photo-consistency of the output mesh and compatibility with the visibility of
the matched keypoints. This new approach is free from numerous restrictions of
previous reconstruction algorithms: it does not require any knowledge of the ex-
tent of the scene, it can deal with large-scale scenes at a reasonable computational
cost, it exploits visibility information from keypoints to guide the position of the
surface in a robust way, lastly, it can handle closed and open scenes.

We have demonstrated our method on real data: a classical dataset acquired
in a controlled setup and a new real-world data set showing the efficiency of our
method in handling difficult imaging conditions. The experimental results shown
are quite promising and only give an insight into the potential of our approach.
We are eager to evaluate it on other challenging data sets. We also expect to
greatly improve the computation time of our implementation by switching to faster
kinds of features, by computing the photo-consistency on graphics hardware and
by matching features using an adapted high-dimensional nearest-neigbor search.
Our method could eventually be incorporated into a full reconstruction system in
which the feature extraction and matching step would be shared between calibra-
tion and reconstruction.
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of the Delaunay triangulation of points on surfaces: the smooth case. In
Annual Symposium on Computational Geometry, pages 201–210, 2003.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust
features. In European Conference on Computer Vision, 2006.

[4] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1000–1006, 1997.



CERTIS R.R. 07-34 13

[5] Jean-Daniel Boissonnat, Olivier Devillers, Monique Teillaud, and Mariette
Yvinec. Triangulations in CGAL. In Annual Symposium on Computational
Geometry, pages 11–18, 2000.

[6] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry, chap-
ter Voronoi diagrams: Euclidian metric, Delaunay complexes, pages 435–
443. Cambridge University Press, 1998.

[7] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–
1137, 2004.

[8] Yuri Boykov and Victor Lempitsky. From photohulls to photoflux optimiza-
tion. In British Machine Vision Conference, volume 3, pages 1149–1158,
2006.

[9] Adrian Broadhurst, Tom W. Drummond, and Roberto Cipolla. A proba-
bilistic framework for space carving. In IEEE International Conference on
Computer Vision, volume 1, pages 388–393, 2001.

[10] Brian Curless and Marc Levoy. A volumetric approach for building complex
models from range images. In ACM SIGGRAPH, pages 303–312, 1996.

[11] Ye Duan, Liu Yang, Hong Qin, and Dimitris Samaras. Shape reconstruction
from 3D and 2D data using PDE-based deformable surfaces. In European
Conference on Computer Vision, volume 3, pages 238–251, 2004.

[12] Carlos Hernández Esteban and Francis Schmitt. Silhouette and stereo fu-
sion for 3D object modeling. Computer Vision and Image Understanding,
96(3):367–392, 2004.

[13] Olivier Faugeras and Renaud Keriven. Variational principles, surface evolu-
tion, PDE’s, level set methods and the stereo problem. IEEE Transactions
on Image Processing, 7(3):336–344, 1998.

[14] Lester Randolph Ford and Delbert Ray Fulkerson. Flows in Networks. 1962.

[15] Daniel Freedman and Petros Drineas. Energy minimization via graph cuts:
Settling what is possible. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2005.

[16] Yasutaka Furukawa and Jean Ponce. Carved visual hulls for image-based
modeling. In European Conference on Computer Vision, volume 1, pages
564–577, 2006.



14 Voronoi Features Cut

[17] Pau Gargallo and Peter Sturm. Bayesian 3D modeling from images using
multiple depth maps. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 885–891, 2005.

[18] Michael Goesele, Briand Curless, and Steven M. Seitz. Multi-view stereo
revisited. In IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 2402–2409, 2006.

[19] D. M. Greig and B. T. Porteous A. H. Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society, Series
B, Methodological, 51(2):271–279, 1989.

[20] Alexander Hornung and Leif Kobbelt. Hierarchical volumetric multi-view
stereo reconstruction of manifold surfaces based on dual graph embedding.
In IEEE Conference on Computer Vision and Pattern Recognition, volume 1,
pages 503–510, 2006.

[21] Hailin Jin, Stefano Soatto, and Anthony J. Yezzi. Multi-view stereo recon-
struction of dense shape and complex appearance. The International Journal
of Computer Vision, 63(3):175–189, 2005.

[22] Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction
via graph cuts. In European Conference on Computer Vision, volume 3,
pages 82–96, 2002.

[23] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be min-
imized via graph cuts? IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):147–159, 2004.

[24] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of shape by space carv-
ing. The International Journal of Computer Vision, 38(3):199–218, 2000.

[25] Aldo Laurentini. The visual hull concept for silhouette-based image under-
standing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(2):150–162, 1994.

[26] Victor Lempitsky, Yuri Boykov, and Denis Ivanov. Oriented visibility for
multiview reconstruction. In European Conference on Computer Vision, vol-
ume 3, pages 225–237, 2006.

[27] Maxime Lhuillier and Long Quan. A quasi-dense approach to surface recon-
struction from uncalibrated images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(3):418–433, 2005.



CERTIS R.R. 07-34 15

[28] David G. Lowe. Object recognition from local scale-invariant features.
In IEEE International Conference on Computer Vision, pages 1150–1157,
1999.

[29] David G. Lowe. Distinctive image features from scale-invariant keypoints.
The International Journal of Computer Vision, 60(2):91–110, 2004.

[30] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of
local descriptors. IEEE Transactions on Pattern Analysis & Machine Intel-
ligence, 27(10):1615–1630, 2005.

[31] Jean-Philippe Pons, Renaud Keriven, and Olivier Faugeras. Multi-view
stereo reconstruction and scene flow estimation with a global image-based
matching score. The International Journal of Computer Vision, 72(2):179–
193, 2007.

[32] Steven Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Rick
Szeliski. A comparison and evaluation of multi-view stereo reconstruction
algorithms. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, volume 1, pages 519–526, 2006.

[33] Steven M. Seitz and Charles R. Dyer. Photorealistic scene reconstruction by
voxel coloring. The International Journal of Computer Vision, 35(2):151–
173, 1999.

[34] Sudipta Sinha and Marc Pollefeys. Multi-view reconstruction using photo-
consistency and exact silhouette constraints: A maximum-flow formulation.
In IEEE International Conference on Computer Vision, volume 1, pages
349–356, 2005.

[35] Jonathan Starck, Gregor Miller, and Adrian Hilton. Volumetric stereo
with silhouette and feature constraints. British Machine Vision Conference,
3:1189–1198, 2006.

[36] Christoph Strecha, Rik Fransens, and Luc Van Gool. Wide-baseline stereo
from multiple views: a probabilistic account. In IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages 552–559, 2004.

[37] Christoph Strecha, Rik Fransens, and Luc Van Gool. Combined depth and
outlier estimation in multi-view stereo. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages 2394–2401, 2006.

[38] Christoph Strecha, Tinne Tuytelaars, and Luc Van Gool. Dense matching of
multiple wide-baseline views. In IEEE International Conference on Com-
puter Vision, volume 2, pages 1194–1201, 2003.



16 Voronoi Features Cut

[39] Son Tran and Larry Davis. 3D surface reconstruction using graph cuts with
surface constraints. In European Conference on Computer Vision, volume 2,
pages 219–231, 2006.

[40] Adrien Treuille, Aaron Hertzmann, and Steven M. Seitz. Example-based
stereo with general BRDFs. In European Conference on Computer Vision,
volume 2, pages 457–469, 2004.

[41] George Vogiatzis, Philip H. S. Torr, and Roberto Cipolla. Multi-view stereo
via volumetric graph-cuts. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 391–398, 2005.

[42] Ruigang Yang, Marc Pollefeys, and Greg Welch. Dealing with textureless
regions and specular highlights: A progressive space carving scheme using
a novel photo-consistency measure. In IEEE International Conference on
Computer Vision, volume 1, pages 576–584, 2003.

[43] Tianli Yu, Narendra Ahuja, and Wei-Chao Chen. SDG cut: 3D reconstruc-
tion of non-lambertian objects using graph cuts on surface distance grid. In
IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
pages 2269–2276, 2006.



CERTIS R.R. 07-34 17

1
q

2
p

2
q

p
1

0
pp

0
p

1
1

q
2

p
2

q
2

q

cam
era cen

ter
ray

~

Delaunay triangulationGraph weights

Energy terms

v
ertex

surface

st

st

st

st

λ
in

λ
in

D
q
2 (1)

=
0

V
p
1 q

1 (0,0)
=
V

p
1 q

1 (1,0)
=
V

p
1 q

1 (1,1)
=

0

V
p
1 q

1 (0,1)
=
λ

out
V

p
2 q

2 (0,0)
=
V

p
2 q

2 (1,0)
=
λ

in

V
p
2 q

2 (0,1)
=
V

p
2 q

2 (1,1)
=

0

D
q
2 (0)

=
λ

in

λ
∞

λ
out

D
p
0 (0)

=
0

D
p
0 (1)

=
λ
∞

Figure 3: A ray emanating from a vertex to a camera center and the corresponding
visibility-related energy terms and edge weights of the crossed tetrahedra (the
label 0 means s / “outside” and the label 1 means t / “inside”)
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Figure 4: Temple dataset sample images and results
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Figure 5: Toys dataset sample images
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Figure 6: Toys dataset results
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