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3 ODYSSÉE, ENPC / ENS / INRIA, Paris, France

Fig. 1. Surface meshes.Left: Meshing the boundaries of brain tissues with a tissue-dependent
resolution. We requested the cortical surface (colored in dark gray) to have a resolution twice
higher than other tissues. As a result, output surface meshes of other anatomical structures have
a coarse resolution except inlocal regions where they neighbor gray matter. This is apparent in
the magnified view of the white matter mesh (in light gray), in which the gray matter interface
has been partially removed for visualization purposes.Right:The quality of the obtained surface
meshes is much higher than with the marching cubes algorithm.

Abstract. In this paper, we extend some recent provably correct Delaunay-based
meshing algorithms to the case of multi-label partitions, so that they can be
applied to the generation of high-quality geometric models from labeled med-
ical datasets. Our approach enforces watertight surface meshes free of self-
intersections, and outputs surface and volume meshes of the different tissues
which are consistent with each other, including at multiple junctions. Moreover,
the abstraction of the tissue partition into an oracle that, given a point in space,
answers which tissue it belongs to, makes our approach applicable to virtually
any combination of data sources. Finally, our approach offers extensive control
over the size and shape of mesh elements, through customizable quality crite-
ria on triangular facets and on tetrahedra, which can be tuned independently for
the different anatomical structures. Our numerical experiments demonstrate the
effectiveness and flexibility of our approach for generating high-quality surface
and volume meshes from real multi-label medical datasets.



1 Introduction

1.1 Motivation

The generation of realistic geometric patient models from high-resolution medical im-
ages is of great significance in many clinical and research applications. An increasing
number of numerical simulations of physical or physiological processes (e.g. electroen-
cephalography (EEG) and magnetoencephalography (MEG) [1, 2], image-guided neu-
rosurgery [3, 4], electromagnetic modeling [5, 6], . . . ) require geometrically-accurate
and topologically-correct models. The latter consist either of surface meshes represent-
ing boundaries between different anatomical parts, or of volume meshes.

However, due to the lack of reliable fully-automated tools for the unstructured
discretization of medical datasets, simplistic geometric models are still of wide use.
For example, in electromagnetic modeling, such as specific absorption rate studies, for
which finite element methods (FEM) on unstructured grids conforming to anatomical
structures would be desirable [6], most numerical simulations have been conducted
using finite difference methods on rectilinear grids, although the poor definition of
tissue boundaries (stair-casing effect) strongly limits their accuracy. Similarly, in the
EEG/MEG source localization problem using the boundary element method (BEM), as
pointed out in [2], popular simplistic head models consisting of nested tissue layers may
yield a significantly lower accuracy than realistic models featuring multiple junctions.

In addition to accuracy, geometric patient models often have to fulfill several re-
quirements in terms of smoothness, number, size and shape of mesh elements, sampling
density, among others, in order to obtain acceptable results and make useful predictions,
avoid instabilities in the simulations, or simply reduce the overall processing time. For
instance, during image-guided neurosurgery, real-time constraints impose strong limi-
tations on the complexity of the geometric brain model being dynamically registered
onto the patient anatomy [3].

1.2 Previous Work

While different strategies can be used to obtain realistic geometric models from labeled
medical datasets, few of them offer sufficient flexibility: handling of data coming from
different sources, control over the density and quality of the mesh elements. Also, most
existing approaches have been designed to extract surface meshes corresponding to
boundaries between labeled anatomical structures, hence necessitating post-processing
steps to generate volume meshes needed by finite element methods.

The most celebrated technique for producing surface meshes from sampled data is
undoubtedly themarching cubesalgorithm, introduced by Lorensen and Cline [7], and
its variants (e.g. [8]). Given a scalar field sampled on a rectilinear grid, the marching
cubes algorithm efficiently generates a triangular mesh of an isosurface by tessellating
each cubic cell of the domain according to a case table constructed off-line.

Initially dedicated to binary classification, this method has been extended to non-
binary volumes [9–12]. Unfortunately, these techniques produce unnecessarily large
meshes (at least one triangle per boundary voxel) of very low quality (lots of skinny
triangles). Frequently, the resulting meshes have to be regularized, optimized and dec-
imated in order to obtain suitable representations, while simultaneously controlling the



approximation accuracy and preserving some topological properties, such as the ab-
sence of self-intersections, which turns out to be a difficult task.

Delaunay-based meshing is recognized as one of the most powerful techniques for
generating surface and volume meshes with guaranteed quality. It offers easy control
over the size and shape of mesh elements, for instance through a (possibly non-uniform)
sizing field.

Our work builds on some recent provably correct Delaunay-based algorithms for
meshing smooth surfaces [13] and volumes bounded by such surfaces [14]. These two
algorithms are proven to terminate and to construct good-quality meshes, while offering
bounds on the approximation accuracy of the original boundary and on the size of the
output mesh. The refinement process is controlled by highly customizable quality crite-
ria on triangular facets and on tetrahedra. A notable feature of the method of Boissonnat
and Oudot [13] is that the surface needs only to be known through an oracle that, given
a line segment, detects whether the segment intersects the surface and, in the affirma-
tive, returns an intersection point. This makes the algorithm useful in a wide variety of
contexts and for a large class of surfaces. Very recently, Oudot, Rineau and Yvinec [14]
have proposed to combine the latter Delaunay-based surface mesher with a Delaunay
refinement volume mesher [15]. This algorithm has the particularity of sampling the
interior and the boundary of the object at the same time.

However, the case of multi-label partitions is not addressed in these works, there-
fore restricting their applicability to real datasets. The contribution of our paper is to
reformulate the two above methods in the non-binary perspective.

1.3 Novelty of our Approach

Our work extends the method of Boissonnat and Oudot [13] and the method of Oudot,
Rineau and Yvinec [14] to the case of multi-label partitions, so that they can be applied
to the generation of high-quality geometric models from labeled medical datasets.

To that end, we define apartition of Delaunay tetrahedra induced by a space subdi-
vision. It is related to the concept ofrestricted Delaunay triangulation, borrowed from
computational geometry. In our approach, the subdivision of the domain of interest is
approximated by a discrete partition of the Delaunay tetrahedralization of a point set:
each Delaunay tetrahedron is labeled with one adequate tissue type. Output surface
meshes are composed of the triangular facets adjacent to two tetrahedra having dif-
ferent labels. The point set is iteratively refined until it forms a “good” sample of the
boundaries between the different anatomical structures, and, if a quality volume mesh
is desired, a “good” sample of their interior.

Interestingly, our approach directly enforces watertight surface meshes free of self-
intersections. Also, the consistency of surface meshes and volume meshes of the dif-
ferent tissues with each other is guaranteed by construction, including at multiple junc-
tions.

Another notable feature of our approach is that the continuous partition need not
to be represented explicitly. It is known only through alabeling oraclethat, given a
point in space, answers which tissue it belongs to. This makes our approach applicable
to virtually any combination of data sources, including labeled 3D images, polyhedral
surfaces, unstructured volume meshes, fuzzy membership functions, possibly having



different resolutions and different coordinate systems. The different data sources may
even be inconsistent with each other due to noise or discretization artefacts. In this case,
the labeling oracle has the responsibility of resolving the conflicts using some user-
defined rules. As a result, our meshing algorithm is not affected by the heterogeneity
and possible inconsistency of the input datasets.

Finally, another major advantage of our approach is that the customizable quality
criteria on boundary facets and/or on tetrahedra can be tuned independently for the
different anatomical structures.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on the basic computational geometry concepts needed in our approach: Voronoi
diagrams, Delaunay triangulations and restricted Delaunay triangulations. Our method
is described in Sect. 3. In Sect. 4, we report on some numerical experiments which
demonstrate the effectiveness and flexibility of our approach for generating high-quality
surface and volume meshes from real multi-label medical datasets.

2 Background

2.1 Voronoi Diagram and Delaunay Triangulation

Voronoi diagrams are versatile structures which encode proximity relationships be-
tween objects. They are particularly relevant to perform nearest neighbor search and
motion planning (e.g. in robotics), and to model growth processes (e.g. crystal growth
in materials science). Delaunay triangulations, which are geometrically dual to Voronoi
diagrams, are a classical tool in the field of mesh generation and mesh processing due
to its optimality properties.

Most of the following definitions are taken from [13]. We also refer the interested
reader to some computational geometry textbooks [16, 17].

In the sequel, we callk-simplexthe convex hull ofk+1 affinely independent points.
For example, a0-simplex is a point, a1-simplex is a line segment, a2-simplex is a
triangle and a3-simplex is a tetrahedron.

Let E = {p1, . . . , pn} be set of points inRd. Note that in this work, we are mainly
interested ind = 3. TheVoronoi region, or Voronoi cell, denoted byV (pi), associated
to a pointpi is the region of space that is closer frompi than from all other points inE:

V (pi) = {p ∈ Rd : ∀j, ‖p− pi‖ ≤ ‖p− pj‖} . (1)

V (pi) is the intersection ofn−1 half-spaces bounded by the bisector planes of segments
[pipj ], j 6= i. V (pi) is therefore a convex polytope, possibly unbounded. TheVoronoi
diagramof E, denoted by Vor(E), is the partition of space induced by the Voronoi cells
V (pi).

See Fig. 2(a) for a two-dimensional example of a Voronoi diagram In two dimen-
sions, the edges shared by two Voronoi cells are calledVoronoi edgesand the points
shared by three Voronoi cells are calledVoronoi vertices. Similarly, in three dimen-
sions, we termVoronoi facets, edgesandverticesthe geometric objects shared by one,
two and three Voronoi cells, respectively. The Voronoi diagram is the collection of all
thesek-dimensional objects, with0 ≤ k ≤ d, which we callVoronoi objects. In partic-
ular, note that Voronoi cellsV (pi) correspond tod-dimensional Voronoi objects.
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Fig. 2. (a) Voronoi diagram of a set ot points in the plane.(b) Its dual Delaunay triangulation.
(c) The Delaunay triangulation restricted to the blue curve is plotted with a thick red line.(d)
The Delaunay triangulation restricted to the region bounded by the blue curve is composed of the
filled red triangles, whose circumcenters (blue crosses) are inside the region.

The Delaunay triangulationDel(E) of E is defined as the geometric dual of the
Voronoi diagram: there is an edge between two pointspi andpj in the Delaunay trian-
gulation if and only if their Voronoi cellsV (pi) andV (pj) have a non-empty intersec-
tion. It yields atriangulationof E, that is to say a partition of the convex hull ofE into
d-dimensional simplices (i.e. into triangles in 2D, into tetrahedra in 3D and so on).

The fundamental property of the Delaunay triangulation is called theempty circle
(resp.empty spherein 3D) property: in 2D (resp. in 3D), a triangle (resp. tetrahedron)
belongs to the Delaunay triangulation if and only if its circumcircle (resp. circumsphere)
does not contain any other points ofE in its interior.

The algorithmic complexity of the Delaunay triangulation ofn points isO(n log n)
in 2D, andO(n2) in 3D. Fortunately, as was recently proven in [18], the complexity in
3D drops toO(n log n) when the points are distributed on a smooth surface, which is
the case of interest here.

2.2 Restricted Delaunay triangulation

Eachk-simplex in the Delaunay triangulation is dual to a(d− k)-dimensional Voronoi
object. In 3D, the dual of a Delaunay tetrahedron is the Voronoi vertex which coincides
with the circumcenter of the tetrahedron, the dual of a Delaunay facet is a Voronoi edge,
the dual of a Delaunay edge is a Voronoi facet, and the dual of a Delaunay vertexpi is
the Voronoi cellV (pi).

Given a subsetΩ ∈ Rd, typically a manifold of dimensionk ≤ d, we call theDe-
launay triangulation ofE restricted toΩ, and we note Del|Ω(E) the subcomplex of
Del(E) composed of the Delaunay simplices whose dual Voronoi objects intersectΩ.
For example, in 2D, as illustrated in Fig. 2(c), the Delaunay triangulation restricted to
a curveC is composed of the Delaunay edges whose dual Voronoi edges intersectC.
Similarly, as shown in Fig. 2(d), the Delaunay triangulation restricted to a regionR is
composed of the Delaunay triangles whose circumcenters are contained inR. The at-
tentive reader may have noticed that in both cases the restricted Delaunay triangulation
forms a good approximation of the object.

Actually, this is a general property of the restricted Delaunay triangulation. It can
be shown that, under some assumptions, and especially ifE is a “sufficiently dense”



sample ofΩ, in some sense defined in [19], Del|Ω(E) is a good approximation of
Ω, both in a topological and in a geometric sense: as regards topology, Del|Ω(E) is
homeomorphic toΩ; as regards geometry, the Hausdorff distance between Del|Ω(E)
andΩ can be made arbitrarily small; normals and curvatures ofΩ can be consistently
approximated from Del|Ω(E).

Based on these approximation properties, a family of provably correct algorithms
for mesh generation and mesh reconstruction from point clouds have been designed in
the last decade. We refer the reader to [13] and references therein for more details.

3 Methods

3.1 Partition of Delaunay Tetrahedra

Let us considerP = {Ω0, Ω1, . . . , Ωn} a partition of space into the backgroundΩ0

andn different tissues, i.e.
R3 = ti∈{0,...,n}Ωi , (2)

and letΓ denote the boundaries of the partition:

Γ = ∪iδΩi . (3)

Given a set of pointsE in R3, we define thepartition of Delaunay tetrahedra in-
duced byP, denoted by Del|P(E), as the partition of the tetrahedra of Del(E) depend-
ing on the region containing their circumcenter. In other words,

Del|P(E) = {Del|Ω0(E), . . . , Del|Ωn
(E)} ,

where Del|Ωi
(E) is the set of tetrahedra of Del(E) whose circumcenters are contained

in Ωi.
Del|P(E) induces mutually-consistent surface meshes and volume meshes of the

different tissues. In particular, the surface meshes are composed of the triangular facets
adjacent to two tetrahedra assigned to different tissues (i.e. belonging to different parts
of Del|P(E)) and of the convex hull facets adjacent to non-background tetrahedra.
These facets are calledboundary facetsin the sequel.

It can be proven that the resulting surface and volume meshes form a good approx-
imation of the original partitionP as soon asE is a “sufficiently dense” sample of
its boundaries, in some sense defined in [19]. The proof is omitted here due to space
limitations. The outline of the proof is the same as in [13].

With this concept in hand, our meshing algorithm boils down to generating a point
sampleE which fulfills the above sampling condition as well as some additional user-
defined quality criteria on boundary facets and tetrahedra.

3.2 Incremental construction of the point sample

Our algorithm for generatingE closely parallels the surface meshing algorithm of Bois-
sonnat and Oudot [13]. The algorithm starts with a small initial point sampleE0 of Γ
and, at each iteration, it inserts a new point ofΓ into E and updates Del|P(E). Each
point inserted intoE is the intersection betweenΓ and the dual of a boundary facet



(that is to say, a ray or a segment of the Voronoi diagram ofE). We callsurface De-
launay ballof a boundary facet the ball circumscribing the boundary facet and centered
on the intersection point. Note that such an intersection always exists, by construction.
In case there are several intersections, any of them can be chosen, without compromis-
ing the good continuation of the algorithm. The algorithm stops when there are no bad
boundary facets left.

The surface is known only through alabeling oraclethat, given a point in space,
answers which tissue it belongs to. This oracle can be formulated as alabeling function
LP : R3 → {0, . . . , n} associated to the partitionP, such thatLP(p) = i if and only
if p ∈ Ωi. Intersections of a segment or a line withΓ can be computed to the desired
accuracy using a dichotomic search onLP .

When high-quality volume meshes are needed in addition to quality surface meshes,
this procedure is complemented with the refinement of bad tetrahedra by insertion of
their circumcenter inE. This technique, pioneered by Ruppert [15], is known asDe-
launay refinement. Very recently, Oudot, Rineau and Yvinec [14, 20] have described
how to properly combine these two meshing levels (facet refinement and tetrahedron
refinement) in the binary case.

Under these considerations, the overview of our algorithm is given below:
while there is a bad boundary facet or a bad tetrahedrondo

if there is a bad boundary facetthen
let f be the worst boundary facet
let p be an intersection betweenΓ and the dual off
insertp in E

else{there is a bad tetrahedron}
let c be the circumcenter of the worst tetrahedron
if there is a boundary facetf whose surface Delaunay ball containsc then

let p be the center of the surface Delaunay ball
insertp in E

else
insertc in E

end if
end if
update Del|P(E)

end while

3.3 Quality Criteria

In the above algorithm, the determination of “good” and “bad” boundary facets and
tetrahedra is devoted to some user-defined criteria, that are typically a combination of
thresholds on the following elementary quality measures:

– Boundary facets:aspect ratio(minimum angle),size(circumradius of surface De-
launay ball),curvature(distance between facet circumcenter and center of surface
Delaunay ball),edge length, . . .

– Tetrahedra: aspect ratio(ratio between tetrahedron circumradius and shortest
edge length),size(tetrahedron circumradius),edge length, minimum angle, . . .



Note that these thresholds are possibly non-uniform over space, which allows to
locally increase accuracy in a region of interest, while keeping the total size of the
geometric model, and hence the computational and memory cost, sustainable. This ca-
pability is illustrated in Experiment 2 in Sect. 4.

Another important source of flexibility of our approach is that the quality criteria
can be tuned independently for the different anatomical structures. Thus, a boundary
facet must be tested against the criteria of its two adjacent tissues. It is classified as a
good facet if it fulfills both criteria. For example, as illustrated in Experiment 3 in Sect.
4, if different resolutions are required for the two tissues adjoining the facet, the higher
resolution is enforced.

3.4 Sliver Removal

While Delaunay refinement techniques can be proven to generate tetrahedra with a good
radius-edge ratio(ratio between tetrahedron circumradius and shortest edge length),
they cannot guarantee against badly-shaped tetrahedra of a special type calledslivers.
A sliver is a tetrahedron whose four vertices lie close to a plane and whose projection
to that plane is a quadrilateral with no short edge. Such tetrahedra have a good radius-
edge ratio but a very poorradius-radius ratio(ratio between circumradius and radius
of largest contained sphere). Unfortunately, the latter measure typically influences the
numerical conditioning of finite element methods.

In order to remove slivers from our volume meshes, we use a post processing step
calledsliver exudation[21]. This step does not include any new vertex in the mesh, nor
does it move any of them. Simply each vertex is assigned a weight and the Delaunay tri-
angulation is turned into a Delaunay weighted triangulation. The weights are carefully
computed in such a way that no vertex nor any boundary facet disappear from the mesh.
Within these constraints, the weight of each vertex is chosen in turn to maximize the
minimum dihedral angles of tetrahedra incident to that vertex. Although the guaranteed
theoretical bound on radius-radius ratio is known to be miserably low, this algorithm is
efficient in practice and generates almost sliver-free meshes.

3.5 Implementation Aspects

By using CGAL (Computational Geometry Algorithms Library, homepage:
www.cgal.org) [22], we have been able to implement our approach with only
1000 lines of C++ code. CGAL defines all the needed geometric primitives and
provides an excellent algorithm to compute the Delaunay triangulation in 3D: it is
robust to degenerate configurations and floating-point error, thanks to the use of exact
geometric predicates, while being able to process millions of points per minute on a
standard workstation.

Moreover, the incremental surface meshing algorithm of Boissonnat and Oudot [13]
is now available as a CGAL package. Although this algorithm is dedicated to restricted
Delaunay triangulations, the code can be modified to compute the partition of Delaunay
tetrahedra induced by a partition. Although this is not optimal as regards computation
time, we have chosen this option for our prototype. Also, our implementation of sliver
pumping could be heavily optimized.



4 Experimental Results
In order to illustrate the wide applicability and the high flexibility of the proposed algo-
rithm, we generated several meshes from real labeled medical datasets, under various
parameter settings. The parameters (number of tissues and refinement criteria) and the
quantitative results (number of vertices, of boundary facets and of tetrahedra; computa-
tion time) of our different experiments are gathered in Table 1.

Experiment 1 2 3 4
# tissues 15 72 72 77
# vertices 11K 36K 112K 389K
# boundary facets 23K 79K 228K 536K
# tetrahedra 73K 231K 728K 2370K
Time (sec) 35 54 340 1363

+ 5080 (sliver pumping)
Refinement criteria minimum angle> 30◦

size< 1mm non-uniform size cortex: size< 1mm
others: size< 2mm
tets: radius-edge ratio< 2
cortex tets: size< 1.5mm

other tets: no size constraint
Table 1.Parameters and quantitative results of our different numerical experiments.

Experiment 1: Uniform surface meshing. In a first experiment (Fig. 3-Left), we
meshed the interfaces of a labeled MR angiography of iliac veins and arteries ([23])
with a uniformboundary facet quality criterion: the output surface meshes are required
not to contain any triangle greater than1mm. The resulting angle distribution illustrates
the high-quality of the surface meshes that do not contain any badly-shaped triangles
- no triangle forms an angle smaller than 30◦ (or larger than 120◦). Note also that the
angle distribution peaks around 60◦.

Experiment 2: Non-uniform surface meshing. In the three following experiments,
we use some segmented brain data which were automatically generated from a T1-
weighted magnetic resonance (MR) image using FreeSurfer’s Whole Brain Segmenta-
tion tool [24].

The second experiment demonstrates the ability of our algorithm to produce surface
meshes with non-uniform resolution (Fig. 3-Right). The facet size criterion was chosen
to be spatially-varying so that the occipital cortex would be more finely sampled than
the frontal cortex. Although for clarity, only four surfaces are displayed (for each hemi-
sphere, the cortical and cerebellum surfaces), a total number of72 tissues were meshed
using the aforementioned criteria.

Experiment 3: Surface meshing with tissue-dependent resolution.Figure 1 dis-
plays brain anatomical interfaces meshed with different sampling resolutions - different
boundary facet quality criteria were assigned to different anatomical structures. The re-
sulting meshes are consistent with each other (i.e. common anatomical interfaces share
the same mesh representation) and interfaces are meshed with the finer density required
for the neighboring anatomical structures.



Fig. 3. Surface meshes.Left: Vascular mesh model, obtained by meshing uniformly 15 tissue
interfaces.Right:Non-uniform surface meshing of brain tissues.

In this experiment, the cortical surface was required to have a finer resolution
(≤ 1mm) than all other structures (≤ 2mm). Consequently, interfaces of anatomi-
cal structures other than cortical gray matter were meshed less densely, except forlocal
regions where the structures were in contact with the cortex. This is clearly illustrated in
the magnified region of Fig. 1, where the white matter interface is more densely meshed
in regions that are in direct contact with gray matter.

In order to show the quality of the output surface meshes, we computed their angle
distribution and compared it to the one of meshes extracted by a marching cubes algo-
rithm [8]. Figure 1-Rightshows both histograms. Contrarily to our method, which pro-
duces well-shaped triangles only, the MC algorithm yields meshes with lots of skinny
triangles and whose angle distribution peaks around 45◦ and 90◦.

Experiment 4: Surface and volume meshing with tissue-dependent resolution.The
last experiment illustrates the ability of our method to generate high-quality consistent
surface and volume meshes under elaborate tissue-dependent criteria. Similarly to the
previous experiment, tissue-dependent boundary facet criteria constrained the cortical
surface to be more finely meshed than other interfaces. In addition, we also meshed
the anatomical volumes with tissue-dependent resolution. Tetrahedra in cortical gray
matter were required to be smaller than1.5mm, while no size constraint was imposed
on tetrahedra in other anatomical structures; on the other hand, the aspect ratio of all
tetrahedra was required to be smaller than2.

Figure 4 displays the resulting surface and volume meshes. Some cross-sections,
obtained by cutting the models by different planes, reveal the high quality of tetrahe-
dra. The surface meshes, which have tissue-dependent sampling densities, are consis-
tent with the volume meshes. Note the size variation of white matter tetrahedra, which
become very large as they get further from the cortical surface. The angle and radius-
radius ratio distributions show that the obtained surface and volume meshes constitute
high-quality geometric models of brain anatomical structures, well-adapted to numeri-
cal simulations.



Fig. 4. Consistent tissue-dependent surface and volume meshes of head tissues.Left: The cor-
tical surface and volume meshes (in yellow) both have a high resolution. Other anatomical struc-
tures have a coarser resolution except in regions adjacent to the cortex.Center:The magnified
view exemplifies some consequences of tissue-dependent volume resolution: the unconstrained
white matter tetrahedra (in red) become smaller as they approach the cortical surface.Right:
Angle and radius-radius ratio distributions of surface meshes and volume meshes, respectively.

5 Discussion and Conclusion

An increasing number of simulation tasks in clinical and research imaging necessitate
more and more realistic geometric models (i.e. surface or volume meshes), whose el-
ements (i.e. size, shape, number, . . . ) are often constrained by the numerical methods
they are being designed for. The proposed approach has been designed to meet all these
requirements, extensive control over the constructed meshes being achieved through
two user-defined quality criteria on triangular facets and on tetrahedra (Sect. 3.3).

The produced models are watertight surface meshes, free of self-intersections and
consistent with volume meshes of the different tissues. Contrarily to existing meth-
ods [14], the algorithm is not restricted to nested topologies and can handle multiple
junctions. Our current implementation does not guarantee that each surface mesh con-
stitutes a valid two-manifold when the resolution requested by the user is too low. A
more elaborate refinement criterion automatically enforcing the manifold property is
under development.

In conclusion, we have proposed a very flexible Delaunay-based technique for the
generation of high-quality meshes from medical datasets. We plan to make our code
available, and we hope that it will contribute to facilitate the creation of realistic geo-
metric patient models.
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