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Abstract—In vivo quantification of neuroanatomical shape 

variations is possible due to recent advances in medical imaging 
and has proven useful in the study of neuropathology and 
neurodevelopment. In this paper, we apply a spherical wavelet 
transformation to extract shape features of cortical surfaces 
reconstructed from magnetic resonance images (MRIs) of a set of 
subjects. The spherical wavelet transformation can characterize 

 
Manuscript received June 1, 2006. This work is supported in part by the 

National Center for Research Resources (P41-RR14075, R01 RR16594-01A1 
and the NCRR BIRN Morphometric Project BIRN002, U24 RR021382), the 
National Institute for Biomedical Imaging and Bioengineering (R01 
EB001550), the NIH NINDS (R01-NS051826), The Washington University 
ADRC and the National Institute on Aging (P50 AG05681 and P01 AG03991),  

the Grant K23 NS42758, as well as the Mental Illness and Neuroscience 
Discovery (MIND) Institute, and is part of the National Alliance for Medical 
Image Computing (NAMIC), funded by the National Institutes of Health 
through the NIH Roadmap for Medical Research, Grant U54 EB005149.  

P. Yu is with the Harvard-MIT Division of Health Sciences and Technology 
(HST), Massachusetts Institute of Technology (MIT), Cambridge, MA 02139 
USA (e-mail: pengyu@mit.edu). 

P. E. Grant is Chief of Pediatric Radiology, Massachusetts General Hospital 
(MGH), Boston, MA 02114 USA and with the Athinoula A. Martinos Center 
for Biomedical Imaging, MGH/MIT/HMS, Charlestown, MA 02129 USA 
(e-mail: ellen@nmr.mgh.harvard.edu). 

Y. Qi is with the Computer Science and Artificial Intelligence Laboratory 
(CSAIL), MIT, Cambridge, MA 02139 USA (e-mail: alanqi@csail.mit.edu). 

X. Han was with the Athinoula A. Martinos Center for Biomedical Imaging, 
MGH/MIT/HMS, Charlestown, MA 02129 USA. He is now with the CMS Inc., 
St. Louis, MO 63132 USA (e-mail: xiao.han@cmsrtp.com). 

F. Ségonne was with CSAIL, MIT, Cambridge, MA 02139 USA. He is now 
with CERTIS Laboratory, ENPC, Paris France (email: segonne@csail.mit.edu) 

R. Pienaar is with the Athinoula A. Martinos Center for Biomedical Imaging, 
MGH/MIT/HMS, Charlestown, MA 02129 USA (e-mail:   
rudolph@nmr.mgh.harvard.edu). 

E.Busa is with the Athinoula A. Martinos Center for Biomedical Imaging, 
MGH/MIT/HMS, Charlestown, MA 02129 USA (e-mail: 
evelina@nmr.mgh.harvard.edu). 

J. Pacheco is with the Athinoula A. Martinos Center for Biomedical Imaging, 
MGH/MIT/HMS, Charlestown, MA 02129 USA (e-mail: 
jpacheco@nmr.mgh.harvard.edu). 

N. Makris is with the Athinoula A. Martinos Center for Biomedical Imaging, 
MGH/MIT/HMS, Charlestown, MA 02129 USA (e-mail: 
nikos@nmr.mgh.harvard.edu) 

R. L. Buckner is with the department of Psychology, Harvard University, 
Cambridge, MA 02138 USA, the department of Radiology, Harvard Medical 
School, Boston, MA 02115 USA, and the Athinoula A. Martinos Center for 
Biomedical Imaging, MGH/MIT/HMS, Charlestown, MA 02129 USA (e-mail: 
buckner@nmr.mgh.harvard.edu). 

P. Golland is with CSAIL, MIT, Cambridge, MA 02139 USA (e-mail: 
polina@csail.mit.edu). 

*B. Fischl is with the Athinoula A. Martinos Center for Biomedical Imaging, 
MGH/MIT/HMS, Charlestown, MA 02129 USA, HST, MIT, Cambridge, MA 
02139 USA, and CSAIL, MIT, Cambridge, MA 02139 USA (phone: 
617-726-4897; fax: 617-726-7422; e-mail: fischl@nmr.mgh.harvard.edu). 

the underlying functions in a local fashion in both space and 
frequency, in contrast to spherical harmonics that have a 
noncompact basis set. We perform principal component analysis 
(PCA) on these wavelet shape features to study patterns of shape 
variation within normal population from coarse to fine resolution. 
In addition, we study the growth of cortical folding pattern in 
newborns using the Gompertz model in the wavelet domain, 
allowing us to characterize the order of development of large-scale 
and finer folding patterns independently. To improve 
generalization performance, we use a regularization framework to 
estimate the parameters of the Gompertz model given a limited 
amount of training data. We develop an efficient method to 
estimate this regularized growth model based on the 
Broyden-Fletcher-Goldfarb-Shannon (BFGS) approximation of 
Hessian matrices. Promising results are presented using both PCA 
and the growth model in the wavelet domain. The growth model 
provides quantitative anatomic information regarding 
macroscopic cortical folding development and may be of potential 
use as a biomarker for early diagnosis of neurologic deficits in 
newborns. 
 

Index Terms—folding, MRI, multiscale, neurodevelopment 
 

I. INTRODUCTION 

VIDENCE suggests that morphological changes of 
neuroanatomical structures may reflect abnormalities in 
neurodevelopment, or a variety of disorders, such as 

schizophrenia and Alzheimer's disease (AD). These 
morphological variations can be characterized by the change of 
volume, thickness, surface area and shape. Efforts were 
originally made to verify the relationship between the pathology 
and the volumetric variation of various neuroanatomical 
subjects, such as the cerebral cortex, hippocampus and corpus 
callosum. Recently, a considerable amount of effort has been 
focused on developing a technique to quantify the changes in the 
2D or 3D shape of brain structures, which could potentially lead 
to more accurate diagnoses, better treatments, and an improved 
understanding of neurodevelopment. 

To accurately study inter-subject shape variations, one would 
like to find not only an effective shape representation but also a 
registration method to preserve individual variation while 
aligning anatomically important structures. Different techniques 
employed in these two aspects confer merits and disadvantages 
to various shape analysis methods. One of the earliest 
techniques developed in this field represented shape by points 
sampled on the boundary of the object being studied, and the 
coordinates of the corresponding points on different subjects 
were directly used as shape features [1], [2]. Cootes et al. 
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extended this method by building the point distribution model, 
which allows for global scale analysis of shape variation by 
applying principal component analysis (PCA) to the positions of 
the boundary points [3]. However, this method depends heavily 
on the accuracy of the inter-subject registration for group 
comparison. Subsequently, parametric models were developed 
to decompose the boundary or surface using Fourier or spherical 
harmonic descriptors, and to use the decomposition coefficients 
as shape descriptor [4]-[7]. A drawback of these models is the 
lack of ability to study local shape variation because of the 
global support of the basis functions. Another popular method 
warps a template to individual subjects and studies the 
deformation field for shape variations [8]-[11]. Although this 
method is sensitive to the template selection and presents 
challenges in interpreting and comparing shape differences 
using the high-dimensional deformation field, a number of 
interesting shape analysis results have been obtained and more 
advanced techniques based on it have been developed. Medial 
axis techniques, originally proposed by Pizer et al. and Golland 
et al. in 3D and 2D, respectively, have been applied as a 
powerful tool for the shape analysis of a variety of subcortical 
structures [12], [13]. This technique allows for the separate 
study of the local position and thickness of the object at both 
coarse and fine levels. Another advantage of medial 
descriptions is due to the object intrinsic coordinate system, 
which facilitates the construction of correspondences between 
subjects and the subsequent statistical analysis. However, a 
fundamental problem of any skeletonization technique is 
sensitivity to perturbations in the boundary, which presents a 
challenge to the further development and application of medial 
representations.  

The difficulties in finding both a good shape presentation and 
a robust registration method present a challenge to the study of 
the complex shape of the cortical surface in human beings, 
which are highly convoluted and greatly affected by 
neurodevelopment and neuropathy. In order to accurately and 
efficiently extract shape features and conduct statistical analysis, 
we develop a procedure to register and normalize cortical 
surface models, and decompose them using spherical wavelets. 
The computed wavelet coefficients can be used as shape 
features to study the folding pattern of cortical surfaces at 
different spatial scales and locations, as the underlying wavelet 
basis function has local support in both space and frequency. 
Using this method, we proposed to study the patterns of shape 
variation at different spatial-frequency levels by applying PCA 
in the wavelet domain, and promising results are shown by using 
synthetic and real data. 

Based on this developed spherical wavelets procedure, we 
also propose to model growth of cortical surfaces from infancy 
to early adolescence by using the Gompertz function in the 
wavelet domain. To achieve an optimum generalization 
performance with a limited amount of training data, which 
includes a set of MRI scans of newborns and children, a 
regularization framework is employed. An efficient method is 
developed to estimate this regularized growth model using 
BFGS optimization method.  

The entire procedure, including MR image preprocessing, 
spherical wavelet transformation, statistical analysis using PCA, 

and the growth model fitting are introduced in detail in the 
Methods section. Although the entire procedure can be used to 
analyze both the gray/white matter boundary and 
gray-matter/cerebrospinal fluid (CSF) boundary, only the 
gray/white surface, which is a direct reflection of the gyral 
folding, is used in this paper to exemplify the developed 
methods. The results of using PCA in detecting the 
multi-resolutional patterns of shape variation in a nondemented 
aged population are demonstrated in the Results section. The 
use of the proposed growth model in detecting the spatial scale 
and pattern of the growth of the gray/white matter boundary in 
newborns and children is also presented.  

 

II. METHODS 

The automated procedure for conducting shape analysis 
using spherical wavelet transformation is shown in Fig. 1. The 
details of each step are introduced in this section. The tools used 
for preprocessing the cortical surfaces, and the procedures 
developed to transform the reconstructed cortical surfaces using 
SPHARM and spherical wavelets are first introduced. Then the 
procedure developed to study the pattern of shape variations in a 
population based on the PCA technique is described. Finally, 
the growth model that is used to study the growth of the cortical 
folding is also presented. 

A. Preprocessing 

For decomposing a surface using basis functions defined in 
the spherical coordinate system, such as spherical wavelets, the 
surface must be mapped onto a parameterized sphere. In order 
to carry out any statistical analysis across subjects, 
correspondence must be established using a registration 
procedure. A set of automated tools distributed as part of the 
FreeSurfer package are used to preprocess the data, which 
includes cortical surface reconstruction, spherical 
transformation, and spherical registration based on the folding 
patterns of cortical surfaces [14, 15].  

To reconstruct the cortical surfaces, which include the 
gray/white matter boundaries and gray-matter/CSF boundaries 
of the left and right hemispheres, the MR images are first 
registered to a pre-built template in the Talairach space. The 
image intensity is normalized to remove spatial variations 
induced by inhomogeneities in the RF field, and used to guide 
skull stripping and white matter labeling. This white matter 
segmentation is further refined and cut to generate a single 
connected mass of each hemisphere. The surface of the labeled 
white matter of each hemisphere is then tessellated by using 2 
triangles to represent each square face of the voxel in the 
interface between white matter and differently labeled voxels.  
To generate a more accurate and smoother white matter surface, 
this tessellation is refined and deformed in the normalized 
image volume under smoothness and boundary intensity 
constraints. Furthermore, the white matter surface is deformed 
outwards to the location in the volume that has the largest 
intensity contrast between the gray matter and CSF, and refined 
to generate the pial surface. Finally, topological defects are 



  3 

automatically detected and corrected for both surfaces to 
guarantee spherical topology.  

 Next, the reconstructed cortical surface of each subject is 
mapped onto a sphere with minimal metric distortion, and then 
registered in the spherical coordinate system by minimizing an 
energy functional that is a combination of a topology preserving 
term, a folding alignment term and a metric preservation term. 
This alignment enables us to find anatomically corresponding 
points on the reconstructed cortical surfaces across subjects. 

B. Spherical Harmonics (SPHARM) 

The common spherical coordinate system established by this 
procedure allows us to extract shape features using SPHARM 
and spherical wavelets. As a natural extension of Fourier 
transformation on the sphere, SPHARM has been demonstrated 
to be a powerful tool in describing the boundary of objects of 
spherical topology.  In this method, the 
coordinates ),,(),( zyxv =ϕθ , )2,0[],,0[ πφπθ ∈∈ , of a 

parameterized surface are expressed as the weighted summation 
of a set of spherical harmonic basis functions of degree l and 
order m  lmlY m

l ≤≤−, : 
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where the coefficients m
lc  contain hierarchical shape 

information. Truncating the spherical harmonics series at 
different degrees results in object representations at different 
levels of detail, as shown in Fig. 2. However, SPHARM 
coefficients cannot indicate the type and location of shape 
differences due to the global support property of the basis 
functions. For the purpose of comparison, SPHARM is 
implemented in this study to decompose the cortical surface as 
well. 

C. Spherical Wavelets 

Broadly speaking, a wavelet representation of a function 
consists of a coarse overall approximation together with detail 
coefficients that influence the function at various spatial scales 
and locations. The classical form of wavelet analysis 
decomposes signals onto a set of basis functions, called 
wavelets, in which every wavelet is a scaled and translated copy 
of a single unique function, called the mother wavelet. However, 
this shift-invariant theory breaks down when representing data 
sets defined on a bounded surface. The construction of the 
newly developed spherical wavelets is based on recursive 
subdivision starting with an icosahedron (subdivision level 0). 
Denoting the set of all vertices on the mesh before the jth 
subdivision as K(j), a set of new vertices M(j) can be obtained by 
adding vertices at the midpoint of edges and connecting them 
with geodesics. Therefore, the complete set of vertices at the 
(j+1)th level can be given by )()()1( jMjKjk U=+ . Next, 

using an interpolating subdivision scheme (such as the linear 
scheme and the Butterfly scheme) and a lifting scheme, the 
scaling functions 

kj ,ϕ defined at level j and node )( jKk ∈  , and 

the wavelets 
kj ,ψ defined at level j and node )( jMk ∈  can be 

constructed. Any function defined on the sphere can be 

decomposed using the scaling function at ground level 0 and 
wavelets at all the higher levels. In application, the fast wavelet 
transformation algorithm developed can carry out the 
decomposition without explicit constructions of wavelets and 
scaling functions [16].  

The cortical surfaces reconstructed using the procedure 
described in previous sections are mapped onto a sphere and 
deformed to align with each other. Therefore, the original 
position ),,( zyx  of each vertex on the cortical surface can be 

considered as a function defined on the sphere. To transform 
this coordinate function into the wavelets domain, these 
coordinates are first interpolated onto a 7th order icosahedron. 
The coordinate vector Tzyxv ),,(= ，  where x, y, z are 

coordinates on the original surface, is then expanded by a set of 
spherical wavelet functions and the scaling function at the 
ground level as 

∑∑
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where 
kj ,γ  are the 3-dimensional wavelet coefficients at level 

j， 7,...0,1−=j  and location k, )( jMk ∈ . The highest level 

used in our study is 7, since the total number of vertices on 
icosahedron after subdivision 7 is 163842, which is 
substantially (20% or so) greater than the typical  number of 
vertices used for representing the cortical surfaces from ~1mm 
isotropic MRI data. The Butterfly technique is used as the 
interpolating subdivision scheme to improve the smoothness of 
the wavelets, and a lifting scheme is selected to generate one 
vanishing moment.  

These coefficients can be used as shape features because each 
of them provides some limited information about both the 
position and the frequency of the decomposed surface (Fig. 3). 
In order to make these shape features invariant to rotation, 
translation and scaling, the coordinate function has to be 
normalized with respect to a reference coordinate frame. This 
normalization is initialized by first transforming each surface 
using the transformation matrix calculated previously for 
volume Talairach registration during surface reconstruction. 
The roughly normalized coordinates of corresponding points on 
all the surfaces under study, where the correspondence is found 
by the spherical registration, are then averaged to create a new 
template surface for the second round normalization. Finally, 
each surface is normalized by finding an optimal linear 
transformation that minimizes the mean square error of the 
transformed individual surface and the template. 

The resulting normalized wavelet coefficients provide a way 
to study shape variations hierarchically and locally.  

D. Principle Component Analysis (PCA) 

Principal Component Analysis is a useful tool in finding 
patterns in data of high dimension and has been extensively used 
in the fields of computer vision and image recognition. Based on 
this technique, methods have been developed to build 
generative models of shape variation within a single population 
and used to segment 2D or 3D medical images [17-19]. The 
basic idea of these approaches is to identify and visualize the 
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first few principal modes of the variation of the positions of 
points on the boundary or surface of the dataset.  

For example, if ),1( Nixi L= is a vector containing shape 

features, such as the coordinates of the points on the surface 
calculated for a group of subjects, then any individual shape can 
be decomposed as: 

∑
=

−+=
N

n
i

T
nni xxeexx

1

)( ,                (3) 

where x is the mean of ),1( Nixi L= , Nee ,,1 L are the 

eigenvectors corresponding to eigenvalues Nλλλ ,,, 21 L  of the 

covariance matrix of x , in decreasing order. This is essentially 
equivalent to linearly transforming a dataset into a new 
coordinate system such that the variance of the projection of the 
dataset on the first axis (first principal component) is greatest, 
and the variance of projection on the second axis is the second 
greatest, and so on. The fact that the variance explained by each 
eigenvector is equal to the corresponding eigenvalue enables us 
to study the most significant modes of variation in the dataset. 
Usually, most of the variations can sufficiently be represented 
by a small number of modes, k, so that the sum of the first k 
variances represents a sufficiently large proportion of total 
variance of all the variables used to derive the covariance matrix. 
Thus by limiting the number of terms in (2), the statistical 
analysis can be greatly simplified. However, it has been argued 
that omitting the eigenvectors corresponding to relatively small 
shape variations leads to the failure of characterizing subtle, yet 
important shape features because coordinates of all the points 
on the surface are collected in the shape feature vector [20]. For 
the same reason, the application of PCA in the shape study of 
neuroanatomical structures (i.e. the cortical surface) has also 
been largely limited.  

 In this work, we propose to conduct PCA on wavelet 
coefficients at different frequency levels separately, as the 
coefficients in the lowest level provide an overall 
approximation and localized morphological variations are 
captured hierarchically by the higher-level coefficients. Instead 
of using positions of all the points on the surface as shape 
features in (3), each time we take only as 
input { })(, jMkx i

kjij ∈= γ , the subset of the wavelet coefficients 

at the jth frequency level. Once the set of principal components 

),1,7,1( Nnje jn KL ==  that characterizes the majority of 

the variance of the wavelet coefficients in the thj  frequency 

level is found, the corresponding shape variations can be 
visualized by inversely transforming the principal components 
to generate the principal surfaces. This visualization technique 
provides an intuitive way to analyze and understand the most 
distinct patterns of shape variations within a group of subjects 
from coarse to fine resolution. 

E. Growth Model 

The human cortex is highly convoluted, in contrast to the 
smooth cortex found in other animals such as mice and rats. In 
human beings, cortical development begins prenatally, and the 
majority of neurons are generated before birth. The 
development of cortex folding starts at about 9 weeks in 

gestation, changes dramatically until birth, but continues into 
late adolescence. The mechanism involved in the regulated 
formation of folding pattern remains unclear. It is hypothesized 
that folding pattern formation is caused by neuron 
differentiation, migration and the growth of neutrite. Another 
theory suggests that differential growth of the outer layers 
relative to inner layer of the cortex results in cortical buckling 
[21]. A third theory proposed that the mechanical tension 
generated during the “long-distance” connections of different 
regions of the brain leads to the formation of folding [22]. Like 
many growth phenomena in nature, the folding of the human 
cortex starts slowly, and accelerates before slowing down to 
approach a limit. In this study, we model the growth of the 
gray/white boundary at different spatial scales using a growth 
model in the wavelet domain. Specifically, if )(tw  is one of the 

spherical wavelet features extracted from a subject at age t , we 
use a Gompertz function to model the features at different ages 
as follows [23]:  

NTTtgtggtw L,))),(exp(exp()( 1321 =−−−=                  (4) 

where 
1g  is the estimated maximum value of the Gompertz 

model, 
2g  is the growth rate, and 

3g  is the age of the fastest 

growth. Given the features, we need to estimate these 
parameters { } 3,1L=iig . 

    Due to the limited number of subjects available in this study, 
a regularization framework is employed for parameter 
estimation to avoid overfitting. In such a framework, we 
minimize a cost function 

2332211

3
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22
321321
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       (5) 

where the first term in the right hand side of the equation models 
the empirical error of model fitting, the second term is a scaled 
L2 norm regularizer, with the scaling factor c controlling the 
trade-off between the empirical error and the degree of 
regularization.   
 To minimize the cost function Q, we first compute its 
gradient, which has the closed form: 

)(
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32

32321
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32
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.                             (6) 

Since a simple gradient method suffers from slow convergence, 
we adopt a quasi-Newton method based on the BFGS 
approximation of the Hessian matrix [24]. The BFGS method 
allows us to efficiently minimize f over the parameters{ } 3,1K=iib . 

We tune the regularization parameter c based on the 
leave-one-out cross-validation. Specifically, we compute the 
mean square error of our predictions on the held-out data points 
using the model parameters optimized from the rest of the 
training set. From a collection of pre-specified values, we select 
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the parameter c that minimizes the leave-one-out error. The 
goodness-of-fit is measured by the R2, the ratio of the sum of 
squares explained by the model and the total sum of squares 
around the mean: 
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F. Data 

Two sets of high-resolution structural MR scans were 
analyzed in this paper. The first dataset was obtained from a 
total of 76 nondemented older participants (OP; 55 women: 67
–95, mean age = 80.45, standard derivation = 7.49; 21 men: 
71-90, mean age = 79, standard derivation =6.16). These data 
have been reported previously in several publications associated 
with the Washington University Alzheimer’s Disease Research 
Center (ADRC). None of the participants had any history of 
neurologic, psychiatric, or medical illness that could contribute 
to dementia or a serious medical condition. Two to four 
high-resolution MP-RAGE scans were motion corrected and 
averaged per participant (four volumes were averaged for all 
except five participants; Siemens 1.5T Vision System, 
resolution 1 × 1 × 1.25 mm, TR = 9.7 ms, TE = 4 ms, FA = 10
° , TI = 20 ms, TD = 200 ms) to create a single high 
contrast-to-noise image volume. These acquisition parameters 
were empirically optimized to increase gray/white and 
gray/CSF contrast. Cortical surfaces were reconstructed and 
registered as described in previous section. This dataset was 
mainly used to study normal variations and aging-related shape 
changes of gray/white matter boundaries in a healthy older 
population.  

The second dataset was from eight normal neonates with 
corrected gestational ages (cGA) of 30.57, 31.1, 34, 37.71, 38.1, 
38.4, 39.72, and 40.43 weeks, and 3 children who were 2, 3 and 
7 years old at the time of scanning. T1 weighted 3D SPGR 
images were collected on a 1.5T scanner, with TR/TE = 30/8, 
flip angle = 25 to 30 degrees, matrix = 256 × 192, FOV = 
220×165 mm or 200×150 mm and slice thickness 1.2 to 1.4 
mm. The images of newborns were manually segmented into 
white matter and cortical regions due to inverted gray-white 
contrast and low contrast of the gray-white boundary. The 
children dataset was processed with automated FreeSurfer tools. 
Wavelet transformation and growth model are then applied to 
the reconstructed gray/white matter boundary to study the shape 
changes of cortical surface in neurodevelopment. To be 
compared with neonates, children’s ages were converted to 167, 
235, and 451 weeks by assuming a 40 week gestation period. 

 

III. RESULTS 

A. Comparison of Spherical Wavelets with SPHARM 

To compare the abilities of SPHARM and spherical wavelets 
to detect local shape variation, both methods were applied to 
decompose an inflated cortical surface model with a synthesized 
shape deformation. The deformed surface was reconstructed 

using the original surface’s coefficients as well as the 
coefficients calculated from the deformed surface with the most 
variations, using both SPHARM and spherical wavelets. The 

coefficient variation is calculated by
o

od

c

cc − , where cd and co 

are the corresponding coefficients calculated from the deformed 
and original surfaces respectively. The reconstruction error is 

measured by ∑
=

−
N

i

i
d

i
r xx

N 1

1 , where i
rx  and i

dx  are the 

coordinates of the ith vertex on the reconstructed and deformed 
surfaces, and N is the number of vertices on the surface. Fig. 4(a) 
is the original surface and Fig. 4(b) shows the set of wavelet 
coefficients with variation values larger than a prespecified 
threshold, which accurately localizes the bump around the 
deformation (indicated by red dots). Conversely, the majority of 
the SPHARM coefficients have variations larger than the 
threshold, illustrating the conciseness of the wavelet 
representation. The synthetic bump is not well reconstructed 
(Fig. 4(c)), with the 200 most varied SPHARM coefficients, 
while the deformation is accurately recovered using the same 
number of coefficients (Fig. 4(d)). A quantitative comparison of 
the reconstruction error is given in Table I. This type of succinct 
representation is particularly important to avoid multiple 
comparison problems that plague the statistical analysis of 
neuroimaging data. 

B. Detection of Shape Variation Using PCA 

The PCA study of the wavelet coefficients in the 
nondemented older sample demonstrated a wide range of 
differences of cortical surface geometry, in both the overall 
shape of the cortex and the hierarchically finer local details.  
Most of the shape variance (98%) was represented by the first 
10 to 20 eigenvectors and the variance explained by the first 
principal component ranges from 8% to 13% of the total 
variance at the lower spatial-frequency levels. Variances in 
higher frequency scales spread out more evenly over 50 to 80 
eigenvectors. The shape variation represented by the jth 
principal component at the lth frequency level is illustrated by 
generating two sets of new wavelet coefficients: 

njnjjj exx σ3±=± ,                    (8) 

where
jx is the mean wavelet coefficients of all the subjects at jth 

level, 2
njσ  is the nth eigenvalue of the covariance matrix of the 

wavelet coefficients at level j. Mean wavelet coefficients were 
used in the other levels to generate the whole set of wavelet 
coefficients. By inversely transforming these two sets of 
wavelet coefficients, two synthetic surfaces can be generated, 
with the difference between them representing the shape 
variations characterized by the corresponding eigenvector at 
different frequency levels. Fig. 5 shows the surfaces generated 
for levels 0 to 3 with the color indicating the magnitude, 
location and spatial scale of each coefficient in the first 
eigenvector 1je . The real surfaces that have the largest positive 

and negative projections on the first eigenvector are also shown 
in Fig. 5 to validate the detected shape variations. 



  6 

Finally, a preliminary study of cortical shape (gray/white 
matter boundary) variations due to healthy aging was carried out 
by observing the change with age of the projected surfaces on 
the set of eigenvectors representing 98% of the variances at each 
level. The projected surface of the ith subject at the jth level is 
reconstructed by inversely transforming a new set of wavelet 
coefficients containing the projected wavelet coefficients on the 
set of eigenvectors at the jth level, and the mean wavelet 
coefficients at other levels. 

Shape changes consistent with age were observed in the 
low-frequency domain as well. Fig. 6 shows the projected 
cortical surfaces in three age ranges of female and male subjects 
using the second level wavelet coefficients. The narrowing of 
the central sulcus and the elongation of the occipital lobe with 
aging were both observed in female and male groups, which 
may characterize and correlate with white matter atrophy. This 
result is verified by regressing the projections of all the subjects 
on the first k principal components (representing 98% of the 
variances) at each level with age, gender, and other neuropsych 
measurements. The shape variations detected using PCA are 
significantly correlated with age at level 0, 2, 4 and 5. More 
rigorous study will be carried out to clarify the causes of these 
shape variations.  

C. The Growth Study of Gray/White Matter Boundary 

In this section we describe the application of the wavelet 
techniques to detect and characterize the evolution of the folds 
of the gray/white matter boundary in the neonate and child 
population described above. We first use the mean squares of all 
the wavelet coefficients at each frequency level to study the 
development of folding. As shown in Table II, the R2 values of 
the Gompertz growth model fitting at most of the levels are 
higher than 0.6 in both hemispheres. Furthermore, the estimated 
age of maximal growth increases, while the estimated growth 
rate decreases from the low to high frequency levels, indicating 
that the primary folds develop earlier, but slower than the 
secondary and tertiary folds. The wavelet power and the 
predicted growth curves from level 1 to 5 for both hemispheres 
are shown in Fig. 7. 

The growth model was then fitted to each one of the wavelet 
coefficients across subjects to study the growth of the cortical 
surface locally at multiple spatial scales. The estimated growth 
rates and maximum growth ages of the coefficients with R2 
larger than 0.5 are mapped on the youngest newborn cortical 
surface, as shown in Fig. 8, where the colormap indicates the 
location and extent of wavelet coefficients selected. The overall 
changes of the estimated growth rates and maximum growth 
ages from the low to high spatial scales are consistent with the 
results from the overall wavelet power growth study. These 
results provide further characteristics of normal cortical surface 
growth at different spatial scales and brain regions. 

 

IV. CONCLUSIONS 

A spherical wavelet transformation was demonstrated to be 
able to accurately and efficiently detect the locations and spatial 

scales of shape variations. The use of wavelet coefficients in 
detecting and visualizing patterns of cortical surface variation 
shows promising results in a nondemented aging population. 
The study of cortical surface growth in newborns also 
demonstrated the power of wavelets in analyzing the underlying 
function locally in both the space and the frequency domain. 
The Gompertz growth function applied to this population was 
seen to provide a good model for the observed growth as 
characterized by the wavelet coefficients, and allowed the 
generation of maps revealing the temporal ordering of the 
development of large scale and progressively finer scale folds. 
Future work includes employing more sophisticated statistical 
tools and extending the wavelet analysis to other 
neuroanatomical structures. 
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(c)                                               (d) 
Fig. 4. (a) Original surfaces. (b) The expanded surface with red 
dots indicating the  location of the wavelet coefficients that showed 
difference from original coefficients. (c) Surface reconstructed 
with 200 coefficients using SPHARM. (d) Surface reconstructed 
with 200 coefficients using spherical wavelets 

(a) (b) 

Table I Reconstruction error (%) using varying numbers of 
coefficient 

    

  10 100 200 
SPHARM 96.7 79.3 67.2 
Wavelets 57.2 3.55 5.00e-04 
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Fig. 1. The automated procedure for conducting shape analysis of neuroanatomical structures. 
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Fig. 3. Wavelet decomposition of cortical surface 

Aj 

Fig. 2. Reconstructed cortical surfaces using SPHARM coefficients truncated at degree 1, 2, 5, 10, 20, and the original surface. 
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Level 3 Level 5 Level 4 

Level 0  Level 1 Level 2 

Fig. 5. Top 2 rows: the synthetic surfaces representing the σ3m variations (ordered in top-down direction) of the first principal component at level 0 
to 3: color showing the spatial scale and magnitude of each wavelet coefficients in the first principle component; Bottom 2 rows: corresponding real 
surfaces validating the shape variations detected by PCA. 
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Fig. 6.  Reconstructed surfaces for female and male subjects of different ages using projected wavelet coefficients on the set of principal 
components that represent 98% of the total variance at level 2. 

Female 67 Female 80 Female 95 

Male 71 Male 80 Male 90 
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Table II. Growth Model Fitting at Different Frequency Levels For Both Hemisphere 

Hemisphere Level g1 
Growth 

Rate 
(1/week) 

g3 
Maximum 

Growth Age 
(week) 

R2 

 Level 1 72.06308 0.393754 11.77473 29.903736 0.520539 

 Level 2 38.88278 0.248656 7.677831 30.877259 0.645357 

Left Level 3 15.43398 0.260217 8.314655 31.95283 0.816203 

 Level 4 4.452873 0.32017 10.47158 32.706352 0.684932 

 Level 5 0.938141 0.330639 11.07225 33.487467 0.556491 

 Level 1 53.10727 0.221013 6.399454 28.955049 0.597591 

 Level 2 28.465 0.289463 9.040932 31.233493 0.652711 

Right Level 3 13.65047 0.255177 8.199575 32.132865 0.664997 

 Level 4 3.691559 0.291544 9.555109 32.774204 0.702736 

 Level 5 0.728441 0.293548 9.733724 33.158875 0.606539 
 

 

Fig. 7. The predicted growth curves using the mean squares of the wavelet coefficients at levels 1 to 5 for left and right hemispheres (from left to right). 
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Fig. 8. The predicted growth rate and growth ages  for the left and right hemisphere using individual wavelets at level 1 to 5: colormaps indicating the location, 
spatial coverage and magnitude of  estimated growth rate (left; 1/week;  scaled up by a factor of 10 for the purpose of illustration) and growth age ( weeks; right). 
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