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Chapter 1

Introduction

This document presents the research I have undertaken since the beginning of
my PhD thesis. The Laboratoire de Probabilités et Modèles Aléatoires of Uni-
versité Paris 6 hosted my PhD (2001-2004). I was then recruited in the Cen-
tre d’Enseignement et de Recherche en Traitement de l’Information et Signal de
l’Ecole Nationale des Ponts et Chaussées, which is now a common research lab-
oratory with the Centre Scientifique et Technique du Bâtiment and part of the
Laboratoire d’informatique Gaspard Monge de l’Université Paris Est. Besides,
since 2007, part of my research has been done within the Willow team of the
Laboratoire d’Informatique de l’École Normale Superiéure.

My main research directions are statistical learning theory and machine learn-
ing techniques for computer vision. Machine learning is a research field posi-
tioned between statistics, computer science and applied mathematics. Its goal is
to bring out theories and algorithms to better understand and deal with complex
systems for which no simple, accurate and easy-to-use model exists. It has a con-
siderable impact on a wide variety of scientific domains, including text analysis
and indexation, financial market analysis, search engines, bioinformatics, speech
recognition, robotics, industrial engineering... The development of new sensors
to acquire data, the increasing capacity of storage and computational power of
computers have brought new perspectives to understand more and more complex
systems from observations. In particular, Machine learning techniques are used in
computer vision tasks that are unsolvable using classical methods (object detec-
tion, handwriting recognition, image segmentation and annotation).

The core problem in statistical learning can be formalized in the following
way. We observe n input-output (or object-label) pairs: Z1 = (X1, Y1), . . . , Zn =
(Xn, Yn). A new input X comes. The goal is to predict its associated output
Y . The input is usually high dimensional and highly structured (such as a digital
image). The output is simple: it is typically a real number or an element in a finite
set (for instance, ’yes’ or ’no’ in the case of the detection of a specific object in
the digital image). The usual probabilistic modelling is that the observed data (or
training set) and the input-output pair Z = (X,Y ) are independent and identically
distributed random variables coming from some unknown distribution P , and that,
for various possible reasons, the output is not necessarily a deterministic function
of the input.

The lack of quality of a prediction y′ when y is the true output is measured by
its loss, denoted ℓ(y, y′). Typical loss functions are the 0/1 loss: ℓ(y, y′) = 1y ̸=y′

(the loss is one if and only if the prediction differs from the true output) and the
square loss: ℓ(y, y′) = (y − y′)2. The latter loss is more appropriate than the
0/1 loss when the output space is the real line, a small difference between the
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prediction and the true output generating a small loss. The target of learning is to
infer from the training set a function g from the input space to the output space
having a low risk, also called expected loss or generalization error:

R(g) = E(X,Y )∼P ℓ
(
Y, g(X)

)
.

Statistical learning theory aims at answering the following questions. What are
the conditions for (asymptotic) consistency of the learning scheme? What can we
learn from a finite sample of observations? Under which circumstances, can we
expect the risk to be close to the risk of the best prediction function, that is the one
we could have proposed had we a full knowledge of the probability distribution P
underlying the observations? How accurate is the prediction built on the training
set? For instance, how low is its risk? What kind of guarantees can we ensure?
Both theoretical and empirical (i.e., computable from the observed data) upper
bounds on the risk or the excess risk are of interest. Can we understand/explain
the success of some prediction schemes? Besides, we also expect that a new
theoretical analysis leads to the design of new prediction methods.

This document details my contributions to these issues, and specifically to:

• the PAC-Bayesian analysis of statistical learning,

• the three aggregation problems: given d functions, how to predict as well as

– the best of these d functions (model selection type aggregation),

– the best convex combination of these d functions,

– the best linear combination of these d functions,

• the multi-armed bandit problems.

Being in computer science departments where image processing and computer
vision are core research directions leads me to address a wide variety of topics in
which machine learning plays a key role. It includes object recognition, content-
based image retrieval, image segmentation and image annotation and vanishing
point detection. This document will not detail my contributions on these topics.
My related publications can be found on my webpage.
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Chapter 2

The PAC-Bayesian analysis of statistical learning

2.1. INTRODUCTION

The natural target of learning is to predict as well as if we had known the dis-
tribution generating the input-output pairs. In other words, we want to infer from
the training set Zn

1 = {(X1, Y1), . . . , (Xn, Yn)} a prediction function ĝ whose risk
is close to the risk of the Bayes predictor g∗ = argmingR(g), where the minimum
is taken among all functions g : X→ Y (such that ℓ

(
Y, g(X)

)
is integrable). The

goal is therefore to propose a good estimator ĝ of g∗, where the quality of the es-
timator is not in terms of the functional proximity of the prediction functions but
in terms of their risk similarity.

Since the distribution P of the input-output pair is unknown, the risk is not
observed, and numerous core learning procedures have recourse to its empirical
counterpart:

r(g) =
1

n

n∑
i=1

ℓ(Yi, g(Xi)),

either by minimizing it on a restricted class of functions, or almost equivalently
by minimizing a linear combination of this empirical risk and a penalty (or reg-
ularization) term whose role is to favor “simple” functions. The term “simple”
typically refers to some a priori of the statistician, and is often linked to either
some smoothness property or some sparsity of the prediction function. The tradi-
tional approach to statistical learning theory relies on the study of R(ĝ)− r(ĝ).

In the PAC-Bayesian approach, randomized prediction schemes are consid-
ered. Let M denote the set of distributions on the set G(X;Y) of functions from
the input space to the output space. A distribution ρ̂ in M is chosen from the
data, and the quantity of interest is R(g), where g is drawn from the distribution
ρ̂. This risk is thus doubly stochastic: it depends on the realization of the training
set (which is a realization of the n-fold product distribution P⊗n of P ) and on the
realization of the (posterior) distribution ρ̂.

Basically, one can argue that the difference between the approaches seems
minor: the understanding of Eg∼ρ̂R(g) for any distribution ρ̂ implies the under-
standing of R(ĝ) (simply by considering the Dirac distribution at ĝ), and that the
converse is also true (to the extent that if R(ĝ) ≤ B(ĝ) holds for any estimator ĝ
and some real-valued function B, then Eg∼ρ̂R(g) ≤ Eg∼ρ̂B(g) also holds for any
posterior distribution ρ̂).

The main difference lies rather in the very starting point of the PAC-Bayesian
analysis. To detail it, let me introduce a distribution π ∈M, that is non-random (as
opposed to ρ̂, which depends on the sample). The central argument is (based on)
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the following property of the Kullback-Leibler (KL) divergence: for any bounded
function h : G(X;Y)→ R, we have

sup
ρ∈M

{
Eg∼ρh(g)−K(ρ, π)

}
= logEg∼πe

h(g), (2.1.1)

where e denotes the exponential number, and K(ρ, π) is the KL divergence be-
tween the distributions ρ and π: K(ρ, π) = Eg∼ρ log

(
ρ
π
(g)
)

if ρ admits a density
with respect to π, denoted ρ

π
, and K(ρ, π) = +∞ otherwise1. To control the dif-

ference Eg∼ρ̂R(g) − Eg∼ρ̂r(g), putting aside integrability issues, one essentially
uses: for any λ > 0,

EZn
1 ∼P⊗neλ[Eg∼ρ̂R(g)−Eg∼ρ̂r(g)]−K(ρ̂,π) ≤ EZn

1 ∼P⊗nesupρ∈M λ[Eg∼ρR(g)−Eg∼ρr(g)]−K(ρ,π)

= EZn
1 ∼P⊗nEg∼πe

λ[R(g)−r(g)]

= Eg∼πEZn
1 ∼P⊗neλ[R(g)−r(g)]

= Eg∼π

(
E(X,Y )∼P e

λ
n
[R(g)−ℓ(Y,g(X))]

)n

.

(2.1.2)

A first consequence is that PAC-Bayes bounds are not (directly) useful for pos-
terior distributions with K(ρ̂, π) = +∞: this is in particular the case when ρ̂
is a Dirac distribution and π assigns no probability mass to single functions. So
classical results of the standard approach does not derive from the PAC Bayesian
approach. On the other hand, the apparition of the KL term shows that the PAC-
Bayesian analysis fundamentally differs from the simple analysis given in the pre-
vious paragraph.

To illustrate this last point, consider the case of a prior distribution putting
mass on a finite set G ⊂ G(X;Y) of functions. For simplicity, consider bounded
losses, say 0 ≤ ℓ(y, y′) ≤ 1 for any y, y′ ∈ Y. By using Hoeffding’s inequality
and a weighted union bound, one gets that for any ε > 0, with probability at least
1− ε, we have for any g ∈ G

R(g)− r(g) ≤
√

log(π−1(g)ε−1)

2n
,

hence for any distribution ρ such that ρ(G) = 1,

Eg∼ρR(g)− Eg∼ρr(g) ≤ Eg∼ρ

√
log(π−1(g)ε−1)

2n

≤
√
K(ρ, π) +H(ρ) + log(ε−1)

2n
, (2.1.3)

1See Appendix A for a summary of the properties of the KL divergence.
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where the second inequality uses Jensen’s inequality and Shannon’s entropy: H(ρ) =
−
∑

g∈G ρ(g) log ρ(g). This is to be compared to the first PAC-Bayesian bound
from the pioneering work of McAllester [102], which states that with probability
at least 1− ε, for any distribution ρ ∈M, we have

Eg∼ρR(g)− Eg∼ρr(g) ≤
√
K(ρ, π) + log(n) + 2 + log(ε−1)

2n− 1
.

The main difference is that the Shannon entropy has been replaced with a log n
term. In fact, the latter bound is not restricted to prior distributions putting mass
on a finite set of functions: it is valid for any distribution π. On the contrary, the
basic argument leading to (2.1.3) does not extend to continuous set of functions
because of the Shannon’s entropy term (for ρ putting masses on a continuous set
of functions, this term diverges).

The previous discussion has shown the originality of the PAC-Bayesian anal-
ysis. However it does not clearly demonstrate its usefulness. Several works in the
last decade have shown that the approach is indeed useful, and that PAC-Bayesian
bounds lead to tight bounds, which are often representative of the risk behaviour
even for relatively small training sets (see e.g. [88, 103, 82] for margin-based
bounds from Gaussian prior distributions, [83] for an Adaboost setting, that is
majority vote of weak learners, [118] in a clustering setting, [7, Chap.2],[89] for
compression schemes, [50, 51] for PAC bounds with sparsity-inducing prior dis-
tributions).

My contributions to the PAC-Bayesian approach are the use of relative PAC-
Bayesian bounds to design estimators with minimax rates (Section 2.3), the com-
bination of the PAC-Bayesian argument with metric and (generic) chaining ar-
guments (Section 2.4), the use of PAC-Bayesian bounds to propose new estima-
tors and minimax bounds under weak assumptions for the aggregation problems
(Chapter 3). Before detailing them, I give in the next section a global picture of
PAC-Bayesian bounds, with a particular emphasis on the relations between the
different works since they have not been underlined so far in the literature.

2.2. PAC-BAYESIAN BOUNDS

We consider that the losses are between 0 and 1, unless otherwise stated. The
symbol C will be used to denote a constant that may differ from line to line. The
bounds stated here are the original ones, possibly up to minor improvements. Most
of them rely on a different use of the duality formula (2.1.1) and the Markov in-
equality, which allows to prove a Probably Approximatively Correct (PAC) bound
from the control of the Laplace transform of an appropriate random variable: pre-
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cisely, if a real-valued random variable V is such that EeV ≤ 1, then for any
ε > 0, with probability at least 1− ε, V ≤ log(ε−1).

2.2.1. NON LOCALIZED PAC-BAYESIAN BOUNDS. McAllester’s first bound
states that for any ε > 0, with probability at least 1− ε, for any ρ ∈M, we have

Eg∼ρR(g)− Eg∼ρr(g) ≤
√
K(ρ, π) + log(2n) + log(ε−1)

2n− 1
. (McA)

In [87, 117], Seeger has proposed a simplified proof and improved the bound when
the losses take only two values 0 or 1 (classification losses). The result is that with
probability at least 1− ε, for any ρ ∈M, we have

K(Eg∼ρr(g),Eg∼ρR(g)) ≤
K(ρ, π) + log(2

√
nε−1)

n
. (S)

where, with a slight abuse of notation, K(Eg∼ρr(g),Eg∼ρR(g)) denotes the KL
divergence between the Bernoulli distributions of respective parameters Eg∼ρr(g)
and Eg∼ρR(g). The concise proofs of (McA) and (S) are given in Appendices B
and C.

Since we have Eg∼ρR(g)−Eg∼ρr(g) ≤
√
K
(
Eg∼ρr(g),Eg∼ρR(g)

)
(Pinsker’s

inequality), (S) implies (McA). Besides, when Eg∼ρR(g) is small, (S) provides a
much better bound than (McA) since, from a cumbersome study of the function
t 7→ K(Eg∼ρr(g),Eg∼ρr(g) + t), (S) implies∣∣Eg∼ρR(g)− Eg∼ρr(g)

∣∣ ≤√2Eg∼ρr(g)[1− Eg∼ρr(g)]K

n
+

4K

3n
, (S’)

with K = K(ρ, π) + log(2
√
nε−1). In particular, when the empirical risk of the

randomized estimator is zero, this last bound is of 1/n order, while (McA) only
gives a 1/

√
n order.

Still in the classification setting, Catoni [40] proposed a different bound: for
any ε > 0 and λ > 0 with λ

n
Ψ(λ

n
) < 1, with probability at least 1 − ε, for any

ρ ∈M,

Eg∼ρR(g) ≤
Eg∼ρr(g)

1− λ
n
Ψ(λ

n
)
+
K(ρ, π) + log(ε−1)

λ[1− λ
n
Ψ(λ

n
)]

, (C1)

where

Ψ(t) =
et − 1− t

t2
.

Since typical values of λ (the ones which minimizes the previous right-hand side)
are in [C

√
n;Cn] and since Ψ(λ/n) ≈ 1/2 for λ/n close to 0, we roughly have

Eg∼ρR(g) / Eg∼ρr(g) +
λ

2n
Eg∼ρr(g) +

K(ρ, π) + log(ε−1)

λ
,
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which gives by choosing λ optimally2

Eg∼ρR(g) / Eg∼ρr(g) +

√
2Eg∼ρr(g)

K(ρ, π) + log(ε−1)

n
. (C1’)

My PhD thesis used in variant ways the following Bernstein’s type PAC-Bayesian
bound, which is a direct extension of the argument giving (C1): for any λ > 0,
with probability at least 1− ε, for any ρ ∈M,

Eg∼ρR(g) ≤ Eg∼ρr(g) +
λ

n
Ψ

(
λ

n

)
Eg∼ρVarZ ℓ(Y, g(X))

+
K(ρ, π) + log(ε−1)

λ
. (A)

The basic PAC-Bayesian bound used in Zhang’s works [136, 137] does not require
any boundedness assumption of the loss function and states that for any λ > 0,
with probability at least 1− ε, for any ρ ∈M,

−n
λ
Eg∼ρ logEZe

−λ
n
ℓ(Y,g(X)) ≤ Eg∼ρr(g) +

K(ρ, π) + log(ε−1)

λ
. (Z)

Catoni’s book [41] concentrates on the classification task. Instead of using

logEe−
λ
n
ℓ(Y,g(X)) ≤ −λ

n
R(g) +

λ2

n2
Ψ
(λ
n

)
R(g),

which would give (C1) from (Z), Catoni used the equality

logEe−
λ
n
ℓ(Y,g(X)) = log

(
1−R(g)(1− e−

λ
n )
)
,

and obtain that with probability at least 1− ε, for any ρ ∈M,

−n
λ
log[1− (1− e−

λ
n )Eg∼ρR(g)] ≤ Eg∼ρr(g) +

K(ρ, π) + log(ε−1)

λ
. (C2)

To compare Seeger’s bound with the bounds having the free parameter λ in
the classification framework, one needs to apply the same kind of analysis which
leads from (C1) to (C1’). As a result, both (A) and (Z) lead to

Eg∼ρR(g) / Eg∼ρr(g) +

√
2Eg∼ρ

(
R(g)[1−R(g)]

)K(ρ, π) + log(ε−1)

n
, (Z’)

2Technically speaking, we are not allowed to choose λ depending on ρ, but using a union
bound argument, the argument can be made rigorous at the price that the log(ε−1) term becomes
log(C log(Cn)ε−1).
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(C1) leads to

Eg∼ρR(g) / Eg∼ρr(g) +

√
2Eg∼ρR(g)

K(ρ, π) + log(ε−1)

n
,

(S) gives, once more, from studying the function t 7→ K(Eg∼ρr(g),Eg∼ρr(g)+ t),

Eg∼ρR(g) ≤ Eg∼ρr(g) +

√
2Eg∼ρR(g)[1− Eg∼ρR(g)]K

n
+

2K

3n
,

with K = K(ρ, π) + log(2
√
nε−1), and finally (C2) leads to

Eg∼ρR(g) / Eg∼ρr(g) +

√
2
(
Eg∼ρR(g)[1− Eg∼ρR(g)]

)K(ρ, π) + log(ε−1)

n
.

Although we have Eg∼ρR(g)[1−Eg∼ρR(g)] ≥ Eg∼ρR(g)[1−R(g)] (from Jensen’s
inequality), the two quantities will be of the same order, and also of the order of
Eg∼ρR(g) for the typical posterior distributions, i.e., the ones which concentrate
on low risk functions. As a consequence, in the classification setting, all these
bounds are similar (even if this similarity has not been exhibited so far in the
literature).

In fact, the works which lead to (C1), (A), (Z) and (C2) rather differ in the
way these bounds are refined and used. The main common refinement is the
PAC-Bayesian localization, which can be seen as a way to reduce the complexity
term and the influence of the particular choice of the prior distribution π. Before
detailing the localization idea, let us see how to design an estimator from PAC-
Bayesian bounds.

2.2.2. FROM PAC-BAYESIAN BOUNDS TO ESTIMATORS. The standard way to
exploit an upper bound on the risk of any estimators is to minimize it in order to
get the estimator having the best guarantee in view of the bound. This will be
achievable if the bound is empirical, that is computable from the observations.
Bounds (McA), (S’), (C1), (A) and (C2) are of this type (unlike (Z’) for instance).

When minimizing PAC-Bayesian bounds, one gets a posterior distribution cor-
responding to a randomized estimator. The minimizer can be written in the fol-
lowing form

πh(dg) =
eh(g)

Eg′∼πeh(g
′)
· π(dg)

for some appropriate function h : G → R. This is essentially due to the equality
argminρ∈M

{
− Eg∼ρh(g) +K(ρ, π)

}
= πh.

Let us now detail the case of McAllester’s bound as it is representative of what
can be derived from the other PAC-Bayesian bounds. Let B(ρ) = Eg∼ρr(g) +

12



√
K(ρ,π)+log(4nε−1)

2n−1
. McAllester’s bound implies that for any distribution ρ ∈ M,

we have Eg∼ρR(g) ≤ B(ρ). From this, one can deduce that there exists λ̂ ∈
[λ1, λ2] s.t. B(π−λ̂r) = minρB(ρ) with λ1 =

√
4(2n− 1) log(4nε−1) and λ2 =

2λ1+4(2n−1). Besides, the parameter λ̂which can be called inverse temperature
parameter by analogy with the Boltzmann distribution in statistical mechanics
satisfies

λ̂ =
√

4(2n− 1)[K(π−λ̂r, π) + log(4nε−1)]

and λ̂ ∈ argmin
λ>0

{
− 1

λ
logEg∼πe

−λr(g) + λ
4(2n−1)

+ log(4nε−1)
λ

}
.

The posterior distribution is thus a distribution which concentrates on low em-
pirical risk functions, but is still a bit diffuse since to avoid a high KL complexity
term, the optimal parameter λ̂ cannot be larger than Cn. The next section shows
how to reduce the complexity term by tuning the prior distribution.

2.2.3. LOCALIZED PAC-BAYESIAN BOUNDS. Without prior knowledge, one
may want to choose a prior distribution π which is rather “flat”. Now for a
particular choice of posterior distribution ρ̂, from the equality EZn

1
K(ρ̂, π) =

EZn
1
K(ρ̂,EZn

1
[ρ̂]) + K(EZn

1
[ρ̂], π), the prior distribution (recall that it is not al-

lowed to depend on the training set) which minimize the expectation of the KL
divergence is EZn

1
ρ̂, where the expectation is taken with respect to the training

set distribution3. Now using such a prior distribution does not lead to empirical
bound. To alleviate this issue and since the typical posterior distributions have the
form π−λr for some λ > 0 (as seen in the previous section), one may consider the
prior distribution π−βR for some β > 0, use the expansion

K(ρ, π−βR) = K(ρ, π) + βEg∼ρR(g) + log
(
Eg∼πe

−βR(g)
)
,

and obtain an empirical bound by controlling the last non-observable term by its
empirical version.

This leads to the following localized PAC-Bayesian bound which was obtained
by Catoni in [40]: for any ε > 0, λ > 0 and ξ ≥ 0 such that (1+ξ)λ

(1−ξ)n
Ψ(λ

n
) < 1, with

probability at least 1− ε, for any ρ ∈M, we have

Eg∼ρR(g) ≤
Eg∼ρr(g)

1− (1+ξ)λ
(1−ξ)n

Ψ(λ
n
)
+
K(ρ, π−ξλr) + (1 + ξ) log(2ε−1)

(1− ξ)λ[1− (1+ξ)λ
(1−ξ)n

Ψ(λ
n
)]

. (C3)

3As noted by Catoni, EZn
1
K(ρ̂,EZn

1
[ρ̂]) is exactly the mutual information of the random vari-

able ĝ drawn according to the posterior distribution ρ̂ and the training sample Zn
1 . This makes a

nice connexion between the learning rate of a randomized estimator and information theory.
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The parameter ξ characterizes the localization. For ξ = 0, we recover (C1) (up to
a minor difference on the confidence level). For ξ > 0, the KL term is (potentially
much) smaller when considering the posterior distribution π−γr with γ ≥ ξλ.

We use similar ideas in the case of the comparison of the risks of two ran-
domized estimators as we will see in Section 2.3. Zhang [136, 137] localizes by
using πh with h(g) = α logEZe

−λℓ(Y,g(X)) instead of π−βR. The argument there is
slightly different and does not lead to empirical bounds on the risk of the random-
ized estimator with posterior distribution of the form π−λr. Nevertheless, it was
sufficient to prove tight theoretical bounds for this estimator in different contexts:
density estimation, classification and least squares regression.

Ambroladze, Parrado-Hernández and Shawe-Taylor [6] proposed a different
way to reduce the influence of a “flat” prior distribution. Their localization scheme
is based on cutting the training set into two parts and learn from the first part
the prior distribution to be used on the second part of the training set. Catoni
[41] uses π−n log[1+(eβ/n−1)R] to obtain tighter localized bounds in the classification
setting. Alquier [4, 5] uses π−βR for general unbounded losses with application to
regression and density estimation.

2.3. COMPARISON OF THE RISK OF TWO RANDOMIZED ESTIMATORS

2.3.1. RELATIVE PAC-BAYESIAN BOUNDS. My PhD (its second chapter) used
relative bounds which compare the risk of two randomized estimators to design
new (randomized) estimators. The rationale behind developing this type of bounds
is that the fluctuations of R(g2)−R(g1)+ r(g1)− r(g2) can be much smaller than
the fluctuations of R(g2)− r(g2), and this can lead to significantly tighter bounds.
Technically speaking, relative bounds are deduced from standard bounds by re-
placing G by G × G, taking the loss ℓ(y, (g1, g2)(x)) = ℓ(y, g2(x)) − ℓ(y, g1(x))
(with a slight abuse of notation) and by considering product distributions on G×G,
i.e. ρ = ρ1 ⊗ ρ2 with ρ1 and ρ2 distributions on G(X;Y). This standard argument
transforms (A) into the following assertion holding for losses taking values in
[0, 1]. For any λ > 0 and (prior) distributions π1 and π2 in M, with probability at
least 1− ε, for any ρ1 ∈M and ρ2 ∈M,

Eg2∼ρ2R(g2)−Eg1∼ρ1R(g1) ≤ Eg2∼ρ2r(g2)− Eg1∼ρ1r(g1)

+
λ

n
Ψ

(
λ

n

)
Eg2∼ρ2Eg1∼ρ1EZ

(
[ℓ(Y, g1(X))− ℓ(Y, g2(X))]2

)
+
K(ρ2, π2) +K(ρ1, π1) + log(ε−1)

λ
. (2.3.1)

Getting empirical relative bounds calls for controlling the variance term. This is
achieved by plugging the following inequality, which holds with probability at
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least 1− ε, into the previous one

Eg2∼ρ2Eg1∼ρ1EZ [ℓ(Y, g1(X))− ℓ(Y, g2(X))]2

≤
(
1 +

λ

2n

)
Eg2∼ρ2Eg1∼ρ1

1

n

n∑
i=1

[ℓ(Yi, g1(Xi))− ℓ(Yi, g2(Xi))]
2

+

(
1 +

λ

2n

)2
K(ρ2, π2) +K(ρ1, π1) + log(ε−1)

λ
.

Now, the localization argument described in Section 2.2.3 no longer works as
it would change the left-hand side of (2.3.1) into (1 + ξ2)Eg2∼ρ2R(g2) − (1 −
ξ1)Eg1∼ρ1R(g1) for some positive constants ξ1 and ξ2, and would therefore fail
to produce relative bounds. To solve this issue, I proved the following uniform
empirical upper bound on the KL divergence with respect to a localized prior: for
any ϵ > 0 and 0 < λ ≤ 0.19n, with probability at least 1 − 2ε, for any ρ ∈ M,
we have

K
(
ρ, π−λR

)
≤ 2K

(
ρ, π−λr

)
+ 2 logEg1∼π−λr

e
4λ2

n
Eg2∼ρ

1
n

∑n
i=1[ℓ(Yi,g1(Xi))−ℓ(Yi,g2(Xi))]

2

+ log(ε−1),

and get the following localized empirical PAC-Bayesian relative bound: for any
λ > 0 and 0 < λ1, λ2 ≤ 0.19n, with probability at least 1− ε,

Eg2∼ρ2R(g2)−Eg1∼ρ1R(g1) ≤ Eg2∼ρ2r(g2)− Eg1∼ρ1r(g1)

+ a(λ)Eg2∼ρ2Eg1∼ρ1

1

n

n∑
i=1

[ℓ(Yi, g1(Xi))− ℓ(Yi, g2(Xi))]
2

+ b(λ)

[
K(ρ2, π−λ2r) +K(ρ1, π−λ1r) + 2 log(6ε−1)

+ logEg1∼π−λ2r
e

4λ22
n

Eg2∼ρ2
1
n

∑n
i=1[ℓ(Yi,g1(Xi))−ℓ(Yi,g2(Xi))]

2

+ logEg1∼π−λ1r
e

4λ21
n

Eg2∼ρ1
1
n

∑n
i=1[ℓ(Yi,g1(Xi))−ℓ(Yi,g2(Xi))]

2

]
.

(2.3.2)

with a(λ) = λ
n
Ψ(λ

n
)
(
1 + λ

2n

)
and b(λ) = 2

λ

[
1 + λ

n
Ψ(λ

n
)
(
1 + λ

2n

)2]
.

2.3.2. FROM THE EMPIRICAL RELATIVE BOUND TO THE ESTIMATOR. In view
of Section 2.2.2, it is natural to concentrate our effort on Gibbs estimators of the
form π−λr for λ > 0. Introduce for any 0 ≤ j ≤ log n and ε > 0,

λj = 0.19
√
ne

j
2
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C(j) = logEg1∼π−λjr
e

4λ2j
n

Eg2∼π−λjr
1
n

∑n
i=1[ℓ(Yi,g1(Xi))−ℓ(Yi,g2(Xi))]

2

L = log[3 log2(en)ε−1]

and for any 0 ≤ i < j ≤ log n and ε > 0,

S(i, j) = a(λj)Eg1∼π−λir
Eg2∼π−λjr

1

n

n∑
i=1

[ℓ(Yi, g1(Xi))− ℓ(Yi, g2(Xi))]
2

+ b(λj)
[
C(i) + C(j) + 2L

]
.

Inequality (2.3.2) implies that with probability at least 1− ε, for any 0 ≤ i < j ≤
log n, we have

Eg2∼π−λjr
R(g2)− Eg1∼π−λir

R(g1) ≤ Eg2∼π−λjr
r(g2)− Eg1∼π−λir

r(g1) + S(i, j).

This leads me to consider in the chapter 2 of my PhD thesis the following choice
of the temperature/complexity parameter in the classification setting.

Algorithm 1. Let u(0) = 0. For any k ≥ 1, define λ̂k−1 = λu(k−1) and u(k)
as the smallest integer j ∈]u(k − 1); log n] such that

Eg2∼π−λjr
r(g2)− Eg1∼π−λ̂k−1r

r(g1) + S
(
u(k − 1), j

)
≤ 0.

Classify using a function drawn according to the posterior distribution associated
with the last u(k).

This algorithm can be viewed in the following way: it “ranks” the estimator
in the model by increasing complexity (if we consider that K(π−λjr, π) is the
complexity of the estimator associated with π−λjr), picks the “first” function in
this list and takes at each step the function of smallest complexity such that its
risk is smaller than the one at the previous step. This is possible since we have
empirical relative bounds. Subsequently to this work, different iterative schemes
based on empirical relative PAC-Bayesian bounds have been proposed [4, 5, 41].
The interest of the procedure lies in the following theoretical guarantee.

THEOREM 1 The iterative scheme is finite: there exists K ∈ N such that u(K)
exists but not u(K + 1). With probability at least 1− ε, for any k ∈ {1, . . . , K},
we have

Eg∼π−λ̂kr
R(g) ≤ Eg∼π−λ̂k−1r

R(g),

and

Eg∼π−λ̂Kr
R(g) ≤ min

1≤j≤logn

{
Eg∼π−λj−1R

R(g) + C
log[log(en)ε−1]

λj

+
1

λj
sup
0≤i≤j

{
logEg1∼π−λiR

Eg2∼π−λiR
e

Cλ2i
n

P[g1(X )̸=g2(X)]

}}
.
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To illustrate this last theoretical guarantee, let us consider complexity and mar-
gin assumptions similar to the ones used in the pioneering work of Mammen and
Tsybakov [97]. To detail these assumptions, let d be the (pseudo-)distance on
G(X;Y) defined by

d(g1, g2) = P[g1(X) ̸= g2(X)].

Let G ⊂ G(X;Y). For u > 0, the set N ⊂ G(X;Y) is called a u-covering net of
G if we have G = ∪g∈N

{
g′ ∈ G; d(g, g′) ≤ u

}
. Let H(u) denote the u-covering

entropy, i.e. the logarithm of the smallest u-covering net of G. The complexity
assumption is that there exist C ′ > 0 and q > 0 such that H(u) ≤ C ′u−q for any
u > 0. Let

g∗ = argming∈GR(g).

Without great loss of generality, we assume the existence of such a function. The
margin assumption is that there exist c′′, C ′′ > 0 and κ ∈ [1,+∞] such that for
any function g ∈ G,

c′′
[
R(g)−R(g∗)

] 1
κ ≤ P[g(X) ̸= g∗(X)] ≤ C ′′[R(g)−R(g∗)] 1

κ . (2.3.3)

For any k ∈ N∗, introduce πk the uniform distribution on the smallest 2−k covering
net.

THEOREM 2 For the prior distribution π =
∑

k≥1
πk

k(k+1)
, the randomized estima-

tor defined in Algorithm 1 (p.16) satisfies

Eg∼π−λ̂Kr
R(g)−R(g∗) ≤ Cn− κ

2κ−1+q ,

for some positive constant C.

We also proved in [7, Chap.3, Theorem 3.3] that the right-hand side is the minimax
optimal convergence rates under such assumptions. Since the algorithm does not
require the knowledge of the margin parameter κ, it is adaptive to this parameter.

Note that Assumption (2.3.3) is stronger than the usual assumption as the lat-
ter does not assume the left inequality. In fact, to achieve minimax optimal rates
under the usual margin assumption, while still assuming polynomial covering en-
tropies requires the chaining argument [7, Chap.3]. This leads us to study how to
combine the chaining argument with the PAC-Bayesian approach and make the
connexion with majorizing measures from the generic chaining argument devel-
oped by Fernique and Talagrand [120], which we detail in the next section.

2.4. COMBINING PAC-BAYESIAN AND GENERIC CHAINING BOUNDS

There exist many different risk bounds in statistical learning theory. Each of
these bounds contains an improvement over the others for certain situations or
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algorithms. In [10], Olivier Bousquet and I underline the links between these
bounds, and combine several different improvements into a single bound. In par-
ticular, we combine the PAC-Bayes approach with the optimal union bound pro-
vided by the generic chaining technique developed by Fernique and Talagrand, in
a way that also takes into account the variance of the combined functions. We
also show how this connects to Rademacher based bounds. The interest in generic
chaining rather than just Dudley’s chaining [55] comes from the fact that it cap-
tures better the behaviour supremum of a Gaussian process [120]. In statistical
learning theory, the process of interest and which is asymptotically Gaussian is
g 7→ R(g)− r(g).

I hereafter give a simplified version of the main results of [10]. Let me first
introduce the notation. We still consider a set G ⊂ G(X;Y), g∗ = argming∈GR(g),
and that losses take their values in [0, 1]. We consider a sequence of nested par-
titions (Aj)j∈N of the set G, that is (i) Aj is a partition of G either countable or
equal to the set of all singletons of G, and (ii) the Aj are nested: each element of
Aj+1 is contained in an element of Aj , and A0 = {G}. For the partition Aj and
for g ∈ G, we denote by Aj(g) the unique element of Aj containing g. Given a
sequence of nested partitions (Aj)j∈N, we can build a collection (Sj)j∈N of ap-
proximating subsets of G in the following way: for each j ∈ N, for each element
A of Aj , choose a unique element of G contained in A and define Sj as the set of
all chosen elements. We have |S0| = 1 and denote by pj(g) the unique element of
Sj contained in Aj(g). Finally, we also consider that for each j ∈ N, we have a
distribution π(j) on G at our disposal.

Our bound will depend on the specific choices of the distributions π(j), the
nested partitions (Aj), the associated sequence of approximating sets (Sj), and
the corresponding approximating functions pj(g), g ∈ G. Denote δg the Dirac
measure on g. For a probability distribution ρ on G, define its j-th projection as

[ρ]j =
∑
g∈Sj

ρ[Aj(g)]δg,

when Sj is countable and [ρ]j = ρ otherwise. For any ε > 0 and ρ ∈ M, define
the complexity of ρ at scale j by

Kj(ρ) = K([ρ]j, [π
(j)]j) + log[j(j + 1)ε−1],

and introduce the average distance between the (j − 1)-th and j-th projections by

Dj(ρ) = Eg∼ρ

{
1

2
EZ∼P

{
ℓ
(
Y, [pj(g)](X)

)
− ℓ
(
Y, [pj−1(g)](X)

)}2

+
1

2n

n∑
i=1

{
ℓ
(
Yi, [pj(g)](Xi)

)
− ℓ
(
Yi, [pj−1(g)](Xi)

)}2
}
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THEOREM 3 If the following condition holds

lim
j→+∞

sup
g∈G

{
R(g)−R[pj(f)]− r(g) + r[pj(f)]

}
= 0, a.s. (2.4.1)

then for any 0 < β ≤ 0.7, with probability at least 1− ε, for any ρ ∈M, we have

Eg∼ρR(g)−R(g∗) ≤ Eg∼ρr(g)− r(g∗) +
4√
n

+∞∑
j=1

√
Dj(ρ)Kj(ρ)

+
4√
n

+∞∑
j=1

√
Dj(ρ)

Kj(ρ)
log log

(
4e2

Kj(ρ)

Dj(ρ)

)
.

(2.4.2)

Assumption (2.4.1) is not very restrictive. For instance, it is satisfied when
one of the following condition holds:

• there exists J ∈ N∗ such that SJ = G,

• almost surely limj→+∞ supg∈G,x∈X,y∈Y |ℓ
(
y, g(x)

)
− ℓ
(
y, [pj(g)](x)

)
| = 0

(it is in particular the case when the bracketing entropy of the set G is finite
for any radius and when the Sj’s and pj’s are appropriately built on the
bracketing nets of radius going to 0 when j → +∞).

The bound (2.4.2) combines several previous improvements. It contains an
optimal union bound, both in the sense of optimally taking into account the met-
ric structure of the set of functions (via the majorizing measure approach) and
in the sense of taking into account the averaging distribution. It is sensitive to
the variance of the functions and consequently will lead to fast convergence rates
(that is faster than 1/

√
n), under margin assumptions such as the ones considered

in the works of Nédélec and Massart [100] or Mammen and Tsybakov [97]. It
holds for randomized classifiers but contrarily to usual PAC-Bayesian bounds, it
remains finite when the averaging distribution is concentrated at a single predic-
tion function. On the negative side, there still remains work in order to get a fully
empirical bound (it is not the case here since Dj(ρ) is not observable) and to better
understand the connection with Rademacher averages.

Independently of the generic chaining argument, we use a carefully weighted
union bound argument, which is at the origin of the log log term in (2.4.2) and
leads to the following corollary of the main result in [10].

THEOREM 4 For any ε > 0, with probability at least 1 − ε, for any ρ ∈ M, we
have

Eg∼ρR(g)− Eg∼ρr(g) ≤ C

√
K(ρ, π) + log(2ε−1)

n
,
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for some numerical constant C > 0 [10, Section 4.3].

This result means that neither the log(n) term in (McA) (p.10) or the Shan-
non’s entropy term in (2.1.3) (p.8) is needed if we are allowed to have a numerical
factor slightly larger in front of the square root term.
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Chapter 3

The three aggregation problems

3.1. INTRODUCTION

Aggregation is about combining different prediction functions in order to get a
better prediction. It has become popular and has been intensively studied these last
two decades partly thanks to the success of boosting algorithms, and principally
of the AdaBoost algorithm, introduced by Freund and Schapire [58]. These algo-
rithms use linear combination of a large number of simple functions to provide a
classification decision rule.

In this chapter, we focus on the least squares setting, in which the outputs are
real numbers and the risk of a prediction function g : X→ R is

R(g) = E[Y − g(X)]2.

Our results are nevertheless of interest for classification also as any estimate of the
conditional expectation of the output knowing the input leads by thresholding to
a classification decision rule, and the quality of this plug-in estimator is directly
linked to the quality of the least squares regression estimator (see [53, Section 6.2],
[16] and specifically the comparison lemmas of its section 5, and also [95, 27, 28]
for consistency results in classification using other surrogate loss functions).

Boosting type classification methods usually aggregate simple functions, but
the aggregation is also of interest when some potentially complicated functions
are aggregated. More precisely, when facing the data, the statistician has often to
choose several models which are likely to be relevant for the task. These mod-
els can be of similar structures (like embedded balls of functional spaces) or on
the contrary of very different nature (e.g., based on kernels, splines, wavelets or
on parametric approaches). For each of these models, we assume that we have a
learning scheme which produces a ’good’ prediction function in the sense that its
risk is as small as the risk of the best function of the model up to some small ad-
ditive term1. Then the question is to decide on how we use or combine/aggregate
these schemes. One possible answer is to split the data into two groups, use the
first group to train the prediction function (i.e. compute the estimator) associated
with each model, and then use the second group to build a prediction function
which is as good as (i) the best of the previously learnt prediction functions, (ii)
the best convex combination of these functions or (iii) the best linear combination
of these functions, in terms of risk, up to some small additive term. The three
aggregation problems we will focus on in this chapter concern the second part

1The learning procedure could differ for each model, or on the contrary, be the same but using
different values of a tuning parameter.
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of this scheme. The idea of mixing (or combining or aggregating) the estimators
originally appears in [110, 71, 132, 133].

We hereafter treat the initial estimators as fixed functions, which means that
the results hold conditionally on the data set on which they have been obtained,
this data set being independent of the n input-output observations Zn

1 . Specifi-
cally, let g1,. . . ,gd be d prediction functions, with d ≥ 2. Introduce

g∗MS ∈ argmin
g∈{g1,...,gd}

R(g),

g∗C ∈ argmin
g∈{

∑d
j=1 θjgj ;θ1≥0,...,θd≥0,

∑d
j=1 θj=1}

R(g),

and
g∗L ∈ argmin

g∈{
∑d

j=1 θjgj ;θ1∈R,...,θd∈R}
R(g).

The model selection aggregation task (MS) is to find an estimator ĝ based on the
observed data Zn

1 for which the excess risk R(ĝ) − R(g∗MS) is guaranteed to be
small. Similarly, the convex (resp. linear) aggregation task (C) (resp. (L)) is to
find an estimator ĝ for which the excess risk R(ĝ)−R(g∗C) (resp. R(ĝ)−R(g∗L))
is guaranteed to be small.

The minimax optimal rates of aggregation are given in [123] and references
within. Under suitable assumptions, it is shown that there exist estimators ĝMS, ĝC
and ĝL such that

ER(ĝMS)−R(g∗MS) ≤ Cmin

(
log d

n
, 1

)
, (3.1.1)

ER(ĝC)−R(g∗C) ≤ Cmin

(√
log(1 + d/

√
n)

n
,
d

n
, 1

)
,

ER(ĝL)−R(g∗L) ≤ Cmin

(
d

n
, 1

)
,

where ĝL (and for d ≤ n, ĝC) require the knowledge of the input distribution. We
recall that C is a positive constant that may differ from line to line. Tsybakov
[123] has shown that these rates cannot be uniformly improved in the following
sense. Let σ > 0, L > 0 and Let Pσ,L be the set of probability distributions on
X × R such that we almost surely have Y = g(X) + ξ, with ∥g∥∞ ≤ L, and ξ a
centered Gaussian random variable independent of X and with variance σ2. For
appropriate choices of g1, . . . , gd, the following lower bounds hold:

inf
ĝ

sup
P∈Pσ,L

{
ER(ĝ)−R(g∗MS)

}
≥ Cmin

(
log d

n
, 1

)
,
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inf
ĝ

sup
P∈Pσ,L

{
ER(ĝ)−R(g∗C)

}
≥ Cmin

(√
log(1 + d/

√
n)

n
,
d

n
, 1

)
,

inf
ĝ

sup
P∈Pσ,L

{
ER(ĝ)−R(g∗L)

}
≥ Cmin

(
d

n
, 1

)
,

where the infimum is taken over all estimators. The three aggregation tasks have
also been studied in the least squares regression with fixed design, where similar
rates are obtained [36, 50, 51].

This chapter will provide my contributions to the aggregation problems (in the
random design setting) summarized as follows.

• The expected excess risk ER(ĝ) − R(g∗MS) of the empirical risk minimizer
on {g1, . . . , gd} (or its penalized variants) cannot be uniformly smaller than

C
√

log d
n

. Since the minimax optimal rate is log d
n

, this shows that these esti-
mators are inappropriate for the model selection task (Section 3.2.1).

• Catoni [39] and Yang [131] have independently shown that the optimal rate
log d
n

in the model selection problem is achieved for the progressive mixture
rule. In [9], I provide a variant of this estimator coming from the field of
sequential prediction of nonrandom sequences, and called the progressive
indirect mixture rule. It has the benefit of satisfying a tighter excess risk
bound in a bounded setting (outputs in [−1, 1]). I also study the case when
the outputs have heavy tails (much thicker than exponential tails), and show
how the noise influences the minimax optimal convergence rate. I also pro-
vide refined lower bounds of Assouad’s type with tight constants (Section
3.2.2).

• In [8], I show a limitation of the algorithms known to satisfy (3.1.1): despite
having an expected excess risk of order 1/n (if we drop the dependence in
d), the excess risk of the progressive (indirect or not) mixture rule suffers
deviations of order 1/

√
n (Section 3.2.3).

• This last result leads me to define a new estimator ĝ which does not suffer
from this drawback: the deviations of the excess risk ER(ĝ)−R(g∗MS) is of
order log d

n
(Section 3.2.4).

• In my PhD (its first chapter), I provide an estimator ĝ based on empirical
bounds of any aggregation procedures for which with high probability

R(ĝ)−R(g∗C) ≤

{
C
√

log(d logn)
n

always,

C log(d logn)
n

if R(g∗MS) = R(g∗C).
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This means that for n
1
2
+δ ≤ d ≤ en with δ > 0, the estimator has the

minimax optimal rate of task (C), and is adaptive to the extent that it has
also the minimax optimal rate of task (MS) whenR(g∗MS) = R(g∗C) (Section
3.3).

• Finally, Olivier Catoni and I [14] provide minimax results for (L), and con-
sequently also for (C) when d ≤

√
n. The strong point of these results

is that it does not require the knowledge of the input distribution, nor uni-
formly bounded exponential moments of the conditional distribution of the
output knowing the input and has no extra logarithmic factor unlike previous
results. In particular, provided that we knowH and σ such that ∥g∗L∥∞ ≤ H
and supx∈X E

{
[Y − g∗L(X)]2

∣∣X = x
}
≤ σ2, we propose an estimator ĝ

satisfying ER(ĝ)−R(g∗L) ≤ 68(σ +H)2 d+2
n

(Section 3.4).

I should conclude this introductory section by emphasizing that we will not
assume that the regression function g(reg) : x 7→ E(Y |X = x), which minimizes
the risk functional, is in the linear span of {g1, . . . , gd}. This means that bounds
of the form

ER(ĝ)−R(g∗) ≤ c[R(g(reg))−R(g∗)] + residual term, (3.1.2)

with c > 1 are not of interest in our setting2, as they would not provide the mini-
max learning rate when R(g(reg))≫ R(g∗).

3.2. MODEL SELECTION TYPE AGGREGATION

3.2.1. SUBOPTIMALITY OF EMPIRICAL RISK MINIMIZATION. Any empirical
risk minimizer and any of its penalized variants are really poor algorithms in
this task since their expected convergence rate cannot be uniformly faster than√
(log d)/n. The following lower bound comes from [8] (see [92], [39, p.14],

[90, 72, 106] for similar results and variants).

THEOREM 5 For any training set size n, there exist d prediction functions g1, . . . , gd
taking their values in [−1, 1] such that for any learning algorithm ĝ producing a
prediction function in {g1, . . . , gd} there exists a probability distribution generat-
ing the data for which Y ∈ [−1, 1] almost surely, and

ER(ĝ)−R(g∗MS) ≥ min
(√⌊log2 d⌋

4n
, 1
)
,

2These last bounds, which are relatively common in the literature, are nonetheless useful in a
nonparametric setting in which the statistician is allowed to take {g1, . . . , gd} large enough so that
R(g(reg))−R(g∗) is of the same order as the residual term.
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where ⌊log2 d⌋ denotes the largest integer smaller or equal to the logarithm in
base 2 of d.

3.2.2. PROGRESSIVE INDIRECT MIXTURE RULES. The result of the previous
section shows that, to obtain the minimax optimal rate given in (3.1.1), an estima-
tor has to look at an enlarged set of prediction functions. Until our work, the only
known optimal estimator was based on a Cesaro mean of Bayesian estimators,
also referred to as progressive mixture rule.

To define it, let π be the uniform distribution on the finite set {g1, . . . , gd}. For
any i ∈ {0, . . . , n}, the cumulative loss suffered by the prediction function g on
the first i pairs of input-output, denoted Zi

1 for short, is

Σi(g) =
i∑

k=1

[Yk − g(Xk)]
2,

where by convention we take Σ0 identically equal to zero. Let λ > 0 be a parame-
ter of the estimator. Recall that π−λΣi

is the distribution on {g1, . . . , gd} admitting
a density with respect to π that is proportional to e−λΣi .

The progressive mixture rule (PM) predicts according to 1
n+1

∑n
i=0 Eg∼π−λΣi

g.
In other words, for a new input x, the predicted output is

1

n+ 1

n∑
i=0

∑d
j=1 gj(x)e

−λΣi(gj)∑d
j=1 e

−λΣi(gj)
.

A specificity of PM is that its proof of optimality is not achieved by the most
prominent tool in statistical learning theory: bounds on the supremum of empirical
processes (see [125], and refined works as [26, 80, 99, 34] and references within).
The idea of the proof, which comes back to Barron [24], is based on a chain rule
and appeared to be successful for least squares and entropy losses [38, 39, 25, 131]
and for general loss in [72].

Here my first contribution was to take ideas coming from the field of sequential
prediction of nonrandom sequences (see e.g. [107, 46] for a general overview and
[65, 44, 45, 134] for more specific results with sharp constants) and propose a
slight generalization of progressive mixture rules, that I called progressive indirect
mixture rules.

The progressive indirect mixture rule (PIM) is also parameterized by a real
number λ > 0, and is defined as follows. For any i ∈ {0, . . . , n}, let ĥi be a
prediction function such that

[Y − ĥi(X)]2 ≤ −1

λ
logEg∼π−λΣi

e−λ[Y−g(X)]2 a.s. (3.2.1)
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If one of the ĥi does not exist, the algorithm is said to fail. Otherwise it predicts
according to 1

n+1

∑n
i=0 ĥi.

This estimator is a direct transposition from the sequential prediction algo-
rithm proposed and studied in [126, 65, 127] to our “batch” setting. The functions
ĥi do not necessarily exist, but are also not necessarily unique when they exist.
A technical justification of (3.2.1) comes from the analysis of PM synthetically
written in Appendix D.

When max
(
|Y |, |g1(X)|, . . . , |gd(X)|

)
≤ B a.s. for some B > 0 and for λ

large enough, the functions ĥi exist (so the algorithm does not fail). Still in this
uniformly bounded setting, it can be shown that PM is a PIM for λ large enough.
On the other hand, there exists λ > 0 small enough for which the algorithm
does not fail and such that PM is not a particular case of PIM, that is one cannot
take ĥi = Eg∼π−λΣi

g to satisfy (3.2.1) (see [65, Example 3.13]). In fact, it is
also shown there that PIM will not generally produce a prediction function in
the convex hull of {g1, . . . , gd} unlike PM. The following amazingly sharp upper
bound on the excess risk of PIM holds.

THEOREM 6 Assume that |Y | ≤ 1 a.s. and ∥gj∥∞ ≤ 1 for any j ∈ {1, . . . , d}.
Then, for λ ≤ 1

2
, PIM does not fail and its expected excess risk is upper bounded

by log d
λ(n+1)

, that is

EZn
1
R

(
1

n+ 1

n∑
i=0

ĥi

)
−R(g∗MS) ≤

log d

λ(n+ 1)
. (3.2.2)

It essentially comes from a result in sequential prediction and the fact that
results expressed in cumulative loss can be transposed to our setting since the
expected risk of the randomized procedure based on sequential predictions is pro-
portional to the expectation of the cumulative loss of the sequential procedure.
Precisely, the following statement holds.

LEMMA 7 Let A be a learning algorithm which produces the prediction function
A(Zi

1) at time i+1, i.e. from the data Z i
1 = (Z1, . . . , Zi). Let L be the randomized

algorithm which produces a prediction function L(Zn
1 ) drawn according to the

uniform distribution on {A(∅),A(Z1), . . . ,A(Zn
1 )}. The (doubly) expected risk

of L is equal to 1
n+1

times the expectation of the cumulative loss of A on the
sequence Z1, . . . , Zn+1, where Zn+1 denotes a random variable independent of
the training set Zn

1 = (Z1, . . . , Zn) and with the same distribution P .

My second contribution to model selection aggregation in [9] is to provide a
different viewpoint of the progressive mixture rule from the one in [72], leading to
a slight improvement in the moment condition of the initial version of [72]. The
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result is the following and is extended to the Lq loss functions for q ≥ 1 in [9,
Section 7].

THEOREM 8 Assume that ∥gj∥∞ ≤ 1 for any j ∈ {1, . . . , d}, and E|Y |s ≤ A for
some s ≥ 2 and A > 0. For λ = C1

(
log d
n

)2/(s+2) with C1 > 0, the expected excess

risk of PM is upper bounded by C
(
log d
n

)s/(s+2), that is

EZn
1
R

(
1

n+ 1

n∑
i=0

Eg∼π−λΣi
g

)
−R(g∗MS) ≤ C

(
log d

n

)s/(s+2)

,

for a quantity C which depends only on C1, A and s.

The convergence rate cannot be improved in a minimax sense [9, Section
8.3.2]. These results show how heavy output tails influence the learning rate:
for the limiting case s = 2, the bounds are of order n−1/2 while for s going to in-
finity, it is of order of n−1, that is the rate in the bounded case, or in the uniformly
bounded conditional exponential moment setting.

The lower bounds developed to prove the minimax optimality of the above
result are based on a refinement of Assouad’s lemma, which allows to get much
tighter constants. For instance, they improve the lower bounds for Vapnik-Cervo-
nenkis classes [53, Chapter 14] by a factor greater than 1000, and lead to the
following simple bound.

THEOREM 9 Let F be a set of binary classification functions of VC-dimension V .
For any classification rule f̂ trained on a data set of size n ≥ V

4
, there exists a

probability distribution generating the data for which

ER(f̂)− inf
f∈F

R(f) ≥ 1

8

√
V

n
. (3.2.3)

3.2.3. LIMITATION OF PROGRESSIVE INDIRECT MIXTURE RULES. Let ĝλ de-
note a progressive indirect mixture rule (it could be a progressive mixture or not)
for some λ > 0. Under boundedness assumptions (and even under some ex-
ponential moment assumptions) and appropriate choice of λ, ĝλ satisfies an ex-
pected excess risk bound of order log d

n
. Then one would also expect the excess

risk R(ĝ)−R(g∗MS) to be of order log d
n

with high probability. In fact, this does not
necessarily happen as the following theorem holds for d = 2.

THEOREM 10 Let g1 and g2 be the constant functions respectively equal to 1 and
−1. For any λ > 0 and any training set size n large enough, there exist ε > 0 and
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a distribution generating the data for which Y ∈ [−1, 1] almost surely, and with
probability larger than ε, we have

R(ĝλ)−R(g∗MS) ≥ c

√
log(eε−1)

n

where c is a positive constant only depending on λ.

More precisely, in [8], it is shown that for large enough n, and some constants
c1 > 1/2 and c2 > 0 only depending on λ, with probability at least 1/nc1 , we
have R(ĝλ) − R(g∗MS) ≥ c2

√
(log n)/n. Since c1 > 1/2, there is naturally no

contradiction with the fact that, in expectation, the excess risk is of order log d
n

.

3.2.4. GETTING ROUND THE PREVIOUS LIMITATION. I now present the algo-
rithm introduced in [8], and called the empirical star estimator, which has both
expectation and deviation convergence rate of order log d

n
. The empirical risk of a

prediction function g : X→ R is defined by

r(g) =
1

n

n∑
i=1

[Yi − g(Xi)]
2.

Let ĝ(erm) be an empirical risk minimizer among the reference functions:

ĝ(erm) ∈ argmin
g∈{g1,...,gd}

r(g).

For any prediction functions g, g′, let [g, g′] denote the set of functions which are
convex combination of g and g′: [g, g′] =

{
αg + (1 − α)g′ : α ∈ [0, 1]

}
. The

empirical star estimator ĝ(star) minimizes the empirical risk over a star-shaped set
of functions, precisely:

ĝ(star) ∈ argmin
g∈[ĝ(erm),g1]∪···∪[ĝ(erm),gd]

r(g).

The main result concerning this estimator is the following.

THEOREM 11 Assume that |Y | ≤ B almost surely and ∥gj∥∞ ≤ B for any j ∈
{1, . . . , d}. Then the empirical star algorithm satisfies: for any ε > 0, with
probability at least 1− ε,

R(ĝ(star))−R(g∗MS) ≤
200B2 log[3d(d− 1)ε−1]

n
≤ 600B2 log(dε−1)

n
.

Consequently, we also have

ER(ĝ(star))−R(g∗MS) ≤
400B2 log(3d)

n
.
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An additional advantage of this empirical star estimator is that it does not
need to know the constant B. In other words, it is adaptive to the smallest value
of B for which the boundedness assumptions hold. This was not the case of the
progressive mixture rules in which we need to take λ ≤ 1/(2B2) for the indirect
ones and λ ≤ 1/(8B2) for the “direct” one in order to state Inequality (3.2.2).
On the negative side, the theoretical guarantee on the expected excess risk is 200
times larger than the one stated for the best PIM. However, this is more an artefact
of the intricate proof of Theorem 11 than a drawback of the algorithm.

Another difference between progressive mixture rules is that the function out-
put by the estimator is inside ∪1≤j<k≤d[gj, gd], which is not in general the case
for the progressive (indirect) mixture rules. We have already seen in Section 3.2.1
that the empirical risk minimizer on {g1, . . . , gd} has not the minimax optimal
rate. A natural question in view of the empirical star algorithm is whether empir-
ical risk minimization on ∪1≤j<k≤d[gj, gd] would reach the (log d)/n rate. It can
be proved for d = 3 that, even under boundedness assumptions, the rate cannot
be better than n−2/3 for an adequate choice of the functions and the distribution
(proof omitted by lack of interest in negative results).

Interestingly, Lecué and Mendelson [91] proposed a variant of the empirical
star algorithm, which also uses the empirical risk minimizer ĝ(erm) to define a set
of functions on which the empirical risk is minimized. Precisely, for a confidence
level ε > 0, let Ĝ be the set of functions g ∈ {g1, . . . , gd} satisfying

r(g) ≤ r(ĝ(erm)) + CB

√
log(2dε−1)

n

√∑n
i=1[g(Xi)− ĝ(erm)(Xi)]2

n

+ C
B2 log(2dε−1)

n
.

where C is a positive constant. The final estimator is the empirical risk minimizer
in the convex hull of Ĝ. It is also shown there that the selection of a subset of func-
tions Ĝ before taking the convex hull is necessary to achieve the minimax conver-
gence rate since the empirical risk minimizer on the convex hull of {g1, . . . , gd}
has an excess risk at least of order 1/

√
n for an appropriate distribution and d of

order
√
n.

The advantage of the empirical star algorithm over the empirical risk mini-
mizer on the convex hull of Ĝ is its adaptivity to both the confidence level and
the constant B, and a theoretical guarantee of the form C log(dε−1)

n
instead of

C log(d) log(ε−1)
n

for the empirical risk minimizer on the convex hull of Ĝ.
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3.3. CONVEX AGGREGATION

When d ≤
√
n, the minimax learning rate for problem (C) and (L) are both of

order d
n

, meaning that estimators solving problem (L) are solutions to problem (C)
for d ≤

√
n. So, estimators for d ≤

√
n are given in the section devoted to linear

aggregation (Section 3.4), and this section focuses on the case when d ≥ n
1
2
+δ.

The literature contains few results for problem (C) with constant c = 1 in
(3.1.2) and minimax optimal residual term for d ≥ n

1
2
+δ, with δ > 0. The first

type of results is to apply the progressive mixture rule on an appropriate grid of
the simplex [123]. Another solution is to use the exponentiated gradient algorithm
introduced and studied by Kivinen and Warmuth [74] in the context of sequential
prediction for the quadratic loss, and then extended to general loss functions by
Cesa-Bianchi [43]. Lemma 7 has to be invoked to convert these algorithms and
the bounds to our statistical framework. Juditsky, Nazin, Tsybakov and Vayatis
[73] has viewed the resulting algorithm as a stochastic version of the mirror de-
scent algorithm, and proposed a different choice of the temperature parameter,
while still reaching the optimal convergence rate. All the above results hold in
expectation, and it is not clear that the deviations of the excess risk bounds are
sub-exponential. The estimator presented hereafter does not share this drawback.

To address problem (C) (defined in page 22), the first chapter of my PhD
thesis establishes empirical excess risk bounds for any estimator that produces a
prediction function in the convex hull of g1, . . . , gd whatever the empirical data
are. Any such estimator ĝ can be associated with a function ρ̂ mapping a training
set to a distribution on {g1, . . . , gd} such that ĝ(Zn

1 ) = Eg∼ρ̂(Zn
1 )
g. Conversely, any

mapping ρ̂ from Zn (the set of training sets of size n) to the set M of distributions
on {g1, . . . , gd} defines an estimator

ĝ = Eg∼ρ̂g,

where we have dropped the training set Zn
1 for sake of compactness. Similarly,

there exists a distribution ρ∗C on {g1, . . . , gd} such that

g∗C = Eg∼ρ∗C
g.

The assumptions are boundedness of the functions g1, . . . , gd and of the re-
gression function g(reg) : x 7→ E(Y |X = x) and uniform boundedness of the con-
ditional exponential moments of the output knowing the input. Precisely, there
exist B > 0, α > 0, and M > 0 such that for any g′, g′′ in {g(reg), g1, . . . , gd},
∥g′ − g′′∥∞ ≤ B and for any x ∈ X,

E
(
eα|Y−g(reg)(X)|∣∣X = x

)
≤M.
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THEOREM 12 Under the above assumptions, there exist C1, C2 > 0 depending
only on the constant M and the product αB such that for any (prior) distribution
π ∈M, any ε > 0, and any aggregating procedure ρ̂ : Zn →M, with probability
at least 1− ϵ,

R(Eg∼ρ̂g)−R(g∗C) ≤ min
λ∈[0,C1]

{
(1 + λ)

[
r(Eg∼ρ̂g)− r(g∗C)

]
+

2λ

n

n∑
i=1

Varg∼ρ̂ g(Xi) + C2
B2

n

K(ρ̂, π) + log(2 log(2n)ε−1)

λ

}
.

(3.3.1)

This bound comes from the PAC-Bayesian analysis, and consequently, the
complexity of an aggregating procedure is measured by the Kullback-Leibler di-
vergence of ρ̂ with respect to some prior distribution π on {g1, . . . , gd}. In ab-
sence of prior knowledge, π is chosen as the uniform distribution, which allows
to bound uniformly the KL divergence by log d. Besides the usual empirical ex-
cess risk, Inequality (3.3.1) depends on the empirical variance of g(x) when g is
drawn according to ρ̂. Unlike the Kullback-Leibler term, this term is small for
concentrated posterior distributions.

All previous results of this chapter were easily generalizable to loss of quadratic
type under boundedness assumptions, that is loss with second derivative with re-
spect to its second argument uniformly lower and upper bounded by positive con-
stants. To my knowledge, the generalization cannot be done here as the analysis
strongly relies on the remarkable identity3

R(Eg∼ρg) = E(g′,g′′)∼ρ⊗ρE[Y − g′(X)][Y − g′′(X)], (3.3.2)

which is specific to the quadratic loss and allows to apply the PAC-Bayesian anal-
ysis for distributions on the product space {g1, . . . , gd} × {g1, . . . , gd}.

Let ρ̂C be the distribution minimizing the right-hand side of (3.3.1) with π
the uniform distribution on {g1, . . . , gd} and where −(1 + λ)r(g∗C) is replaced
by its upper bound −r(g∗C) − λming∈{

∑d
j=1 θjgj ;θ1≥0,...,θd≥0,

∑d
j=1 θj=1} r(g). When

defining ρ̂C, for sake of computability of the estimator [7, Chap.1, Theorem 4.2.2],
one can also replace the minimum over [0, C1] by a minimum over a geometric
grid of the interval [n−1, C1] without altering the validity of the following theorem.

THEOREM 13 For any ε > 0, with probability at least 1− ϵ, we have

R(Eg∼ρ̂Cg)−R(g∗C) ≤ CB

√
log(d log(2n)ε−1)

n
EVarg∼ρ∗C

g(X)

3To be precise, [7, Chap.1] usedR(Eg∼ρg) = Eg∼ρR(g)− 1
2Eg′∼ρEg′′∼ρE[g′(X)−g′′(X)]2,

but it would have been more direct to use (3.3.2).
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+ CB2 log(d log(2n)ε
−1)

n
,

for some constant C > 0 depending only on αB and M .

Since EVarg∼ρ∗C
g(X) ≤ B2/4, the excess risk is at most of order

√
log(d log(2n))

n
,

that is the minimax convergence rate of the convex aggregation task for d ≥ n
1
2
+δ,

with δ > 0. Besides, when the best convex combination occurs to be a vertex of
the simplex defined by {g1, . . . , gd} the variance term equals zero, and thus, the
convergence rate is log(d log(2n))

n
, that is the minimax convergence rate of model

selection type aggregation (at least for d ≥ log(2n)).

3.4. LINEAR AGGREGATION

To handle problems (C) and (L) in the same framework and also to incorpo-
rate other possible constraints on the coefficients of the linear combination, let us
consider Θ a closed convex subset of Rd, and define

G =

{ d∑
j=1

θjgj; (θ1, . . . , θd) ∈ Θ

}
.

Introduce the vector-valued function g⃗ : x 7→ (g1(x), . . . , gd(x))
T . The function∑d

j=1 θjgj can then be simply written ⟨θ, g⃗⟩ with θ = (θ1, . . . , θd)
T . Let

g∗ ∈ argmin
g∈G

R(g).

Thus, when Θ is the simplex of Rd, we have g∗ = g∗C and when Θ = Rd, we have
g∗ = g∗L.

Aggregating linearly functions to design a prediction function with low quadratic
risk is just the problem of linear least squares regression. It is a central task in
statistics, since both linear parametric models and nonparametric estimation with
linear approximation spaces (piecewise polynomials based on a regular partition,
wavelet expansions, trigonometric polynomials, . . . ) are popular. It has thus been
widely studied.

Classical statistical textbooks often only state results for the fixed design set-
ting as a bound of order d/n can be rather easily obtained in this case. This can be
misleading since it does not imply a d/n upper bound in the random design set-
ting. For the truncated ordinary least squares estimator, Györfi, Kohler, Krzyżak
and Walk [63, Theorem 11.3] give a bound of the form of (3.1.2, page 24) with

32



residual term of order d logn
n

and c = 8. When the input distribution is known, Tsy-
babov [123] provides a bound of order d/n on the expected risk of a projection es-
timator on an orthonormal basis of G for the dot product (f, g) 7→ E[f(X)g(X)].

Catoni [37, Proposition 5.9.1] and Alquier [5] have used the PAC-Bayesian
approach to prove high probability excess risk bounds of order d/n involving
the conditioning of the Gram matrix Q = E

[
g⃗(X)g⃗(X)T

]
. Both results require at

least exponential moments on the conditional distribution of the output Y knowing
the input vector g⃗(X).

It can be derived from the work of Birgé and Massart [31] an excess risk
bound for the empirical risk minimizer of order at worst d logn

n
, and asymptoti-

cally of order d/n. It holds with high probability, for a bounded set Θ and re-
quires bounded input vectors and conditional exponential moments of the output.
Localized Rademacher complexities [80, 26] also allows to study the empirical
risk minimizer on a bounded set of functions. They lead to a high probability
d/n convergence rate of the empirical risk minimizer under strong assumptions:
uniform boundedness of the input vector, the output and the parameter set Θ.

Penalized least squares estimators using the L2-norm of the vector of coeffi-
cients, or more recently, its L1-norm have also been widely studied. A common
characteristic of the excess risk bounds obtained for these estimators is that it is
of order d/n only under strong assumptions on the eigenvalues (of submatrices)
of Q.

In [14], Olivier Catoni and I provide new risk bounds for the ridge estima-
tor and the ordinary least squares estimator (Section 3.4.1). We also propose a
min-max estimator which has non-asymptotic guarantee of order d/n under weak
assumptions on the distributions of the output Y and the random variables gj(X),
j = 1, . . . , d (Section 3.4.2). Finally, we propose a sophisticated PAC-Bayesian
estimator which satisfies a simpler d/n bound (Section 3.4.3).

The key common surprising factor of these results is the absence of expo-
nential moment condition on the output distribution while achieving exponential
deviations. All risk bounds are obtained through a PAC-Bayesian analysis on trun-
cated differences of losses. Our results tend to say that truncation leads to more
robust algorithms. Local robustness to contamination is usually invoked to advo-
cate the removal of outliers, claiming that estimators should be made insensitive
to small amounts of spurious data. Our work leads to a different theoretical expla-
nation. The observed points having unusually large outputs when compared with
the (empirical) variance should be down-weighted in the estimation of the mean,
since they contain less information than noise. In short, huge outputs should be
truncated because of their low signal to noise ratio.
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3.4.1. RIDGE REGRESSION AND EMPIRICAL RISK MINIMIZATION. The ridge
regression estimator on G is defined by ĝ(ridge) = ⟨θ̂(ridge), g⃗⟩ with

θ̂(ridge) ∈ argmin
θ∈Θ

r(⟨θ, g⃗⟩) + λ∥θ∥2,

where λ is some nonnegative real parameter and r(⟨θ, g⃗⟩) is the empirical risk of
the function ⟨θ, g⃗⟩. In the case when λ = 0, the ridge regression ĝ(ridge) is nothing
but the empirical risk minimizer ĝ(erm).

In the same way we consider the optimal ridge function optimizing the ex-
pected ridge risk: g̃ = ⟨θ̃, g⃗⟩ with

θ̃ ∈ argmin
θ∈Θ

{
R(⟨θ, g⃗⟩) + λ∥θ∥2

}
.

Our first result is of asymptotic nature. It is stated under weak hypotheses,
taking advantage of the weak law of large numbers.

THEOREM 14 Let us assume that

E
[
∥g⃗(X)∥4

]
< +∞, (3.4.1)

and E
{
∥g⃗(X)∥2

[
g̃(X)− Y

]2}
< +∞. (3.4.2)

Let ν1, . . . , νd be the eigenvalues of the Gram matrix Q = E
[
g⃗(X)g⃗(X)T

]
,

and let Qλ = Q+ λI be the ridge regularization of Q. Let us define the effective
ridge dimension

D =
d∑

i=1

νi
νi + λ

1Iνi>0 = Tr
[
(Q+ λI)−1Q

]
= E

[
∥Q−1/2

λ g⃗(X)∥2
]
.

When λ = 0, D is equal to the rank of Q and is otherwise smaller. For any ε > 0,
there is nε, such that for any n ≥ nε, with probability at least 1− ε,

R(ĝ(ridge)) + λ∥θ̂(ridge)∥2 ≤ min
θ∈Θ

{
R(⟨θ, g⃗⟩) + λ∥θ∥2

}
+ C ess supE

{
[Y − g̃(X)]2

∣∣X} D + log(3ε−1)

n
,

for some numerical constant C > 0.

This theorem shows that the ordinary least squares estimator (obtained when
Θ = Rd and λ = 0), as well as the empirical risk minimizer on any closed
convex set, asymptotically reach a d/n speed of convergence under very weak
hypotheses. It shows also the regularization effect of the ridge regression. There
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emerges an effective dimension D, where the ridge penalty has a threshold effect
on the eigenvalues of the Gram matrix.

On the other hand, the weakness of this result is its asymptotic nature : nε

may be arbitrarily large under such weak hypotheses, and this shows even in the
simplest case of the estimation of the mean of a real-valued random variable by
its empirical mean, which is the case when d = 1 and g⃗(X) ≡ 1 [42]. Typically,
the proof of Theorem 14 shows that nε is of order 1/ε. To avoid this limitation,
we were conducted to consider more involved algorithms as described in the fol-
lowing two sections.

3.4.2. A MIN-MAX ESTIMATOR FOR ROBUST ESTIMATION. This section pro-
vides an alternative to the empirical risk minimizer with non asymptotic expo-
nential risk deviations of order d/n for any confidence level. Moreover, we will
assume only a second order moment condition on the output and cover the case
of unbounded inputs, the requirement on the random variables gj(X) being only
a finite fourth order moment. On the other hand, we assume that the set Θ of the
vectors of coefficients is bounded. (This still allows to solve problem (L) as soon
as we know a bounded set in which g∗L lies for sure.)

Let α > 0 and consider the truncation function:

T (x) =


− log

(
1− x+ x2/2

)
0 ≤ x ≤ 1,

log(2) x ≥ 1,

−T (−x) x ≤ 0,

For any g, g′ ∈ G, introduce

D(g, g′) =
n∑

i=1

T
(
α
[
Yi − g(Xi)

]2 − α[Yi − g′(Xi)
]2)

.

Let us assume in this section that for any j ∈ {1, . . . , d},

E
{
gj(X)2[Y − g∗(X)]2

}
< +∞, (3.4.3)

and
E
[
g4j (X)

]
< +∞. (3.4.4)

Define

S = {g ∈ span{g1, . . . , gd} : E[g(X)2] = 1}, (3.4.5)

σ =
√

E
{
[Y − g∗(X)]2

}
=
√
R(g∗), (3.4.6)

χ = max
g∈S

√
E[g(X)4], (3.4.7)
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κ =

√
E
{
[⃗g(X)TQ−1g⃗(X)]2

}
E
[
g⃗(X)TQ−1g⃗(X)

] , (3.4.8)

κ′ =

√
E
{
[Y − g∗(X)]4

}
E
{
[Y − g∗(X)]2

} =

√
E
{
[Y − g∗(X)]4

}
σ2

, (3.4.9)

R = max
g′,g′′∈G

√
E
{
[g′(X)− g′′(X)]2

}
. (3.4.10)

THEOREM 15 Let us assume that (3.4.3) and (3.4.4) hold. For some numerical
constants c and c′, for

n > cκχd,

by taking

α =
1

2χ
[
2
√
κ′σ +

√
χR
]2(1− cκχd

n

)
, (3.4.11)

for any estimator ĝ satisfying ĝ ∈ G a.s., for any ε > 0, with probability at least
1− ε, we have

R(ĝ)−R(g∗) ≤ 1

nα

(
max
g′∈G

D(ĝ, g′)− inf
g∈G

max
g′∈G

D(g, g′)

)
+
cκκ′dσ2

n
+

8χ
(
log(ϵ−1)

n
+ c′κ2d2

n2

)[
2
√
κ′σ +

√
χR
]2

1− cκχd
n

.

The above theorem suggest to look for function realizing the min-max of
(g, g′) 7→ D(g, g′). More precisely, an estimator such that

max
g′∈G

D(ĝ, g′) < inf
g∈G

max
g′∈G

D(g, g′) + σ2 d

n
,

has a non asymptotic bound for the excess risk with a d/n convergence rate and
an exponential tail even when neither the output Y nor the input vector g⃗(X)
has exponential moments. This stronger non asymptotic bound compared to the
bounds of the previous section comes at the price of replacing the empirical risk
minimizer by a more involved estimator. Nevertheless, reasonable heuristics can
be developed to compute it approximately [14, Section 3], and leads to a signifi-
cantly better estimator of g∗L than the ordinary least squares estimator when there
is some heavy-tailed noise (see Appendix G).

3.4.3. A SIMPLE TIGHT RISK BOUND FOR A SOPHISTICATED PAC-BAYES AL-
GORITHM. A disadvantage of the min-max estimator proposed in the previous
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section is that its theoretical guarantee depends (implicitly) on kurtosis like coef-
ficients. We provide in [14, Section 4] a more sophisticated estimator, having the
following simple excess risk bound independent of these kurtosis like quantities,
and still of order d

n
. It holds under stronger assumption on the input vector g⃗(X)

(precisely, uniform boundedness), still assumes that the set Θ is bounded, and
holds under a second order moment condition on the output.

THEOREM 16 Assume that G has a diameter H for L∞-norm:

sup
g′,g′′∈G,x∈X

|g′(x)− g′′(x)| = H (3.4.12)

and that, for some σ > 0,

sup
x∈X

E
{
[Y − g∗(X)]2

∣∣X = x
}
≤ σ2 < +∞.

There exists an estimator ĝ such that for any ε > 0, with probability at least 1−ε,
we have

R(ĝ)−R(g∗) ≤ 17(2σ +H)2
d+ log(2ε−1)

n
.

On the negative side, when the target is to solve problem (L), it requires
the knowledge of a L∞-bounded ball in which f∗

lin lies and an upper bound on
supx∈X E

{
[Y − f∗

lin(X)]2
∣∣X = x

}
. The looser this knowledge is, the bigger the

constant in front of d/n is. On the positive side, the convergence rate is of order
d/n, without neither extra logarithmic factor, nor constant factors involving the
conditioning of the Gram matrix Q or some Kurtosis like coefficients.

To conclude this section, let us add that, when the output admits uniformly
bounded conditional exponential moments, a relatively simple Gibbs estimator
also achieves the d/n convergence rate. Precisely we have the following theorem.

THEOREM 17 Assume that (3.4.12) holds for H < +∞, and that there exist
α > 0 and M > 0 such that for any x ∈ X,

E
(
eα|Y−g∗L(X)|∣∣X = x

)
≤M.

Consider the probability distribution π̂ on G defined by its density with respect to
the uniform distribution π on G:

π̂

π
(g) =

e−λ
∑n

i=1[Yi−g(Xi)]
2

Eg′∼πe−λ
∑n

i=1[Yi−g′(Xi)]2
,

where λ > 0 is appropriately chosen (depending on α, H and M ). For any ε > 0,
with probability at least 1− ε, we have

R(Eg∼π̂g)−R(g∗) ≤ C
d+ log(2ε−1)

n
,

where the quantity C > 0 only depends on α, H and M .
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3.5. HIGH-DIMENSIONAL INPUT AND SPARSITY

From the minimax rates of the three aggregation problems, we see that for
n ≪ d ≪ en, one can predict as well as the best convex combination up to a

small additive term, which is at most of order
√

log d
n

, but one cannot expect to
predict in general as well as the best linear combination up to a small additive
term. In this setting, one may want to reduce its target by trying to predict as well
as (still up to a small additive term) the best linear combination of at most s≪ d
functions, that is the function

g∗ ∈ argmin
g∈{

∑d
j=1 θjgj ;θ1∈R,...,θd∈R,

∑d
j=1 1Iθj ̸=0≤s}

R(g). (3.5.1)

It is well-established that L1 regularization allows to perform this task. The pro-
cedure is known as Lasso [122, 113] and is defined by f̂ (lasso) = ⟨θ̂(lasso), g⃗⟩ with

θ̂(lasso) ∈ argmin
θ∈Rd

1

n

n∑
i=1

(
Yi − ⟨θ, g⃗(Xi)⟩

)2
+ λ∥θ∥1,

where λ > 0 is a parameter to be tuned to retrieve the desired number of relevant
variables/functions4. As the L2 penalty used in ridge regression, the L1 penalty
shrinks the coefficients. The difference is that for coefficients which tend to be
close to zero, the shrinkage makes them equal to zero. This allows to select rele-
vant variables/functions (i.e., find the j’s such that θ∗j ̸= 0).

If we assume that the regression function g(reg) is a linear combination of only
s ≪ d variables among {g1, . . . , gd}, the typical result is to prove that the ex-
pected excess risk of the Lasso estimator for λ of order

√
(log d)/n is of order

(s log d)/n [36, 124, 105, 93]. Since this quantity is much smaller than d/n, this
makes a huge improvement (provided that the sparsity assumption is true). This
kind of results usually requires strong conditions on the eigenvalues of submatri-
ces of Q, essentially assuming that the functions gj are near orthogonal. Here we
will argue that by combining the estimators solving (MS) and (L), one can achieve
minimax optimal learning rate without requiring such conditions. The guarantees
presented here are also stronger than the ones associated with L0-regularization
(penalization proportional to the number of nonzero coefficient) whatever crite-
rion (Mallows’Cp [96], AIC [3] or BIC [116]) is used to tune the penalty constant.
Recent advances on theoretical guarantees ofL0-regularization can be found in the
works of Bunea, Tsybakov and Wegkamp [36] and of Birgé and Massart [32] for

4The functions g1, . . . , gd can be called the explanatory variables of the output. Note also
that we can consider without loss of generality that the input space is Rd and that the functions
g1, . . . , gd are the coordinate functions.
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the fixed design setting and in the work of Raskutti, Wainwright and Yu [114]
for the random design setting considered here. These results for L0-regularization
are not as good for the ones for the estimator described in this section since the
(s log d)/n excess risk bound holds only when the conditional expectation of the
output knowing the input is inside the model.

Precisely, let us assume5 that for some B > 0, ∥g∗∥∞ ≤ B and |Y | ≤ B.
Let L1 denote the first half of the training set {Z1, . . . , Zn/2}, and L2 denote
the second half of the training set {Zn/2+1, . . . , Zn}, where for simplicity we have
assumed that n is even. For any I ⊂ {1, . . . , d} of size s, let ĝI be the sophisticated
estimator that satisfies Theorem 16 trained on L1 and associated with the set GI ={
⟨θ, g⃗⟩ : ∥⟨θ, g⃗⟩∥∞ ≤ B, θj = 0 for any j /∈ I

}
. (One can alternatively consider

the Gibbs estimator of Theorem 17.) Let ĝ be the empirical star estimator (defined
in Section 3.2.4) trained on L2 and associated with the

(
d
s

)
functions ĝI (that are

non-random given L1). This two-stage estimator satisfies the following theorem.

THEOREM 18 For any ε > 0, with probability at least 1− ε,

R(ĝ)−R(g∗) ≤ CB2 s log(d/s) + log(2ε−1)

n
, (3.5.2)

for some numerical constant C > 0.

PROOF. From Theorem 11, since we have
(
d
s

)
≤
(
ed/s

)s, with probability at least
1− ε/2, we have

R(ĝ)− min
I⊂{1,...,d}:|I|=s

R(ĝI) ≤ 1200B2 s log(ed/s) + log(2ε−1)

n
.

Let I∗ be a set of s variables containing the set of at most s variables involved in
g∗. From Theorem 16, with probability at least 1− ε/2, we have

R(ĝI∗)−R(g∗) ≤ 1224B2 s+ log(4ε−1)

n
.

By using an union bound, we obtain

R(ĝ)−R(g∗) ≤ 1224B2

(
s log(ed/s) + log(2ε−1)

n
+
s+ log(4ε−1)

n

)
.

which gives the desired result. �
5We make boundedness assumptions for sake of simplicity. The results can be generalized to

outputs having exponential conditional moments since both building blocks of the estimator can
handle this type of noisy outputs: for the empirical star algorithm, see the supplemental material
of [8]. Further generalizations are open problems.
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Due to the particular structure of the empirical star algorithm, the estimator ĝ
can be written as a linear combination of at most 2s functions among {g1, . . . , gd},
so that the estimator can be used for variable selection. The functions involved in
g∗ do not necessarily belong to this set of at most 2s functions. I do not believe that
achieving such identifiability of these particular relevant variables should be the
goal, since pursuing this target would definitely require that the different variables
are not too much correlated, a situation which will rarely occurs in practice.

Adaptivity with respect to the sparsity level of g∗ can also be obtained. Indeed,
let s∗ be the number of nonzero coefficients of the function g∗ defined by (3.5.1).
By using a three-stage estimator procedure using successively the empirical star
algorithm at a given level of sparsity and then on the s functions thus designed,
it is easy that (3.5.2) still holds with s replaced by s∗. Note that g∗ defined in
(3.5.1) depends on a sparsity level s, which can be taken equal to d. Then we
have g∗ = g∗L, and the three-stage procedure is adaptive to the sparsity level of
g∗L. In the fixed design setting, Bunea, Tsybakov and Wegkamp [36] have shown
that these rates are minimax optimal, and it is natural to consider that their lower
bound extends to our random design case.

Another possible use of the algorithms solving problems (MS) and (L) is when
we consider sparsity with group structure. This occurs when the variables are
naturally organized into groups: in computer vision, this naturally occurs since
there exist different families of image descriptors, and the grouping can be done
by family, scale and/or position. Let I1, . . . , ID ⊂ {1, . . . , d} beD sets of grouped
variables. For a vector θ, let us say that a group Ik is active if there exists j ∈ Ik
such that θj ̸= 0. let S(θ) be the number of active groups among I1, . . . , ID.

For a given sparsity level s ∈ {1, . . . , D}, the target is

g(group) ∈ argmin
g∈{⟨θ,g⃗⟩;θ∈Rd,S(θ)≤s}

R(g).

There exist only
(
D
s

)
different sets of s groups that could be active. So a two-stage

estimator ĝ(group) similar to the one described before satisfies that with probability
at least 1− ε,

R(ĝ(group))−R(g(group)) ≤ CB2 s log(D/s) + J + log(2ε−1)

n
,

where J denotes the number of nonzero coefficients in the linear combination
defining g(group). This type of results has not been obtained yet for the group Lasso
[135] even when assuming low correlation between the variables, except for the
fixed design setting [69, 94].

We have presented in this section an example of theoretical results easily ob-
tainable from the estimators solving problems (MS) and (L). The results are ex-
pressed in terms of sub-exponential excess risk bounds, which were not obtainable
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before the introduction of the empirical star algorithm. An advantage of the ap-
proach is its genericity: it is not restricted to particular families of estimators.

There are yet some limitations. First, there is no variable selection consis-
tency with this approach, but as stated before, this stronger type of results would
require strong assumptions on the input vector distribution, that are often not met
in practice. In the fixed design setting, for overlapping groups, Jenatton, Bach and
I [70] have proved a high dimensional variable consistency result extending the
corresponding result for the Lasso [138, 128].

Second, the approach does not extend easily to the case of generalized additive
models, in which linear combinations of a fixed number of functions are replaced
by functional spaces [104], such as reproducing kernel Hilbert spaces in the cases
of multiple kernel learning [86, 23, 111, 108, 22, 81].

Finally, the most important limitation, which is often encountered when us-
ing classical model selection approach, is its computational intractability. So this
leaves open the following fundamental problem: is it possible to design a com-
putationally efficient algorithm with the above guarantees (i.e., without assuming
low correlation between the explanatory variables)?
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Chapter 4

Multi-armed bandit problems

4.1. INTRODUCTION

Bandit problems illustrate the fundamental difficulty of decision making in the
face of uncertainty: a decision maker must choose between following what seems
to be the best choice in view of the past (“exploiting”) or testing (“exploring”)
some alternative, hoping to discover a choice that beats the current best choice.
More precisely, in the multi-armed bandit problem, at each stage, an agent (or
decision maker) chooses one action (or arm), and receives a reward from it. The
agent aims at maximizing his rewards. Since he does not know the process gen-
erating the rewards, he needs to explore (try) the different actions and yet, exploit
(concentrate its draws on) the seemingly most rewarding arms.

The multi-armed bandit problem is the simplest setting where one encoun-
ters the exploration-exploitation dilemma. It has a wide range of applications
including advertizement [21, 52], economics [29, 85], games [59] and optimiza-
tion [77, 48, 76, 35]. It can be a central building block of larger systems, like in
evolutionary programming [68] and reinforcement learning [119], in particular in
large state space Markovian Decision Problems [79]. The name “bandit” comes
from imagining a gambler in a casino playing with K slot machines, where at
each round, the gambler pulls the arm of any of the machines and gets a payoff as
a result. The seminal work of Robbins [115] casts the bandit problem in a stochas-
tic setting in which essentially the rewards obtained from an arm are independent
and identically distributed random variables that are also independent from the
rewards obtained from the other arms. Since the work of Auer, Cesa-Bianchi,
Freund and Schapire [19], it was also studied in an adversarial setting.

To set the notation, let K ≥ 2 be the number of actions (or arms) and n ≥ K
be the time horizon. A K-armed bandit problem is a game between an agent and
an environment in which, at each time step t ∈ {1, . . . , n}, (i) the agent chooses a
probability distribution pt on a finite set {1, . . . , K}, (ii) the environment chooses
a reward vector gt = (g1,t, . . . , gK,t) ∈ [0, 1]K (possibly through some external
randomization), and simultaneously (independently), the agent draws the arm It
according to the distribution pt, (iii) the agent only gets to see his own reward gIt,t.
The goal of the decision maker is to maximize his cumulative reward

∑n
t=1 gIt,t.

In the stochastic bandit problem, the environment cannot choose any reward
vectors: the reward vectors gt have to be independent and identically distributed,
and its components should be independent random variables1. So an environment

1The independence of the components is always made in the literature, but is not fundamentally
useful (up to rare modifications of the numerical constants).

43



is just parameterized by a K-tuple of probability distributions (ν1, . . . , νK) on
[0, 1]. Note that the term “stochastic bandit” can be a bit misleading since the
assumption is not just stochasticity but rather an i.i.d. assumption.

In the adversarial bandit problem, no such restriction is put so that past gains
have no reason to be representative of future ones. This contrasts with the stochas-
tic setting in which confidence bounds on the mean reward of the arms can be
deduced from the rewards obtained so far.

A policy is a strategy for choosing the drawing probability distribution pt
based on the history formed by the past plays and the associated rewards. So
it is a function that maps any history to a probability distribution on {1, . . . , K}.
We define the regret of a policy with respect to the best constant decision as

Rn = max
i=1,...,K

n∑
t=1

(
gi,t − gIt,t

)
. (4.1.1)

To compare to the best constant decision is a reasonable target since it is well-
known that (i) there exist randomized policies ensuring that ERn/n tends to zero
as n goes to infinity, (ii) this convergence property would not hold if the maximum
and the sum would be inverted in the definition of Rn. This chapter will first
present my contributions to the stochastic bandit problems, essentially:

• how to use empirical variance estimates in upper confidence based policies?
(Section 4.2.4)

• how thin is the tail distribution of the regret of standard policies, and how
can we improve it? (Section 4.2.5)

• provide a minimax optimal policy (Section 4.2.6),

• propose a model and an arm-increasing rule to deal with bandit problems
with more arms than draws: K ≥ n (Section 4.2.7),

• design and use a Bernstein’s bound with estimated variances to have better
stopping rules (Section 4.2.8),

• provide a policy to identify the best arm at the end of the n time steps
(Section 4.2.9).

Sébastien Bubeck and I [12] contribute to the adversarial setting by designing a
new type of weighted average forecaster characterized by an implicit normaliza-
tion of the weights, and for which a new type of analysis can be developed. The
advantage of the policy and the analysis is that it allows to bridge the long open
logarithmic gap in the characterization of the minimax rate for the multi-armed
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bandit problem, and to have a common framework for addressing other sequen-
tial prediction problems (full information, label efficient, tracking the best expert)
(Section 4.3).

4.2. THE STOCHASTIC BANDIT PROBLEM

4.2.1. NOTATION. Let Ti(t) denote the number of times arm i is chosen by
the policy during the first t plays. Define µi =

∫
xνi(dx) the expectation and

Vi =
∫
(x−µi)

2νi(dx) the variance of the distribution νi characterizing arm i. Let
i∗ ∈ argmini∈{1,...,K}µi denote an index of an optimal arm. The suboptimality of
an arm i is measured by:

∆i = max
j=1,...,K

µj − µi = µi∗ − µi.

Let Xi,t be the t-th reward obtained from arm i if Ti(n) ≥ t, and for t > Ti(n), let
Xi,t be other independent realizations of νi. For any i ∈ {1, . . . , K} and s ∈ N,
introduce X i,s and V̄i,s the empirical mean and variance of Xi,1, . . . , Xi,s.

X i,s =
1

s

s∑
j=1

Xi,j and V̄i,s =
1

s

s∑
j=1

(Xi,j −X i,s)
2.

4.2.2. REGRET NOTION. Previous works in the stochastic bandit problem do
not use the regret defined by (4.1.1), which is a regret with respect to the best
constant decision, but a (pseudo-)regret that compares the reward of the policy to
the reward of an optimal arm in expectation, that is i∗ ∈ argmini∈{1,...,K}µi:

Rn =
n∑

t=1

(
gi∗,t − gIt,t

)
≤ Rn.

Results concerning this regret are easier to state, and we will follow hereafter
the trend of previous works to state the results in terms of Rn. In this section,
we gather results showing how to go from an upper bound on Rn to an upper
bound onRn. The following lemma shows that logarithmic regret bounds on ERn

extend to logarithmic regret bounds on ERn when the optimal arm is unique, that
is µi < µi∗ for any i ̸= i∗. Besides, unlike known upper bounds for ERn, the ones
on ERn depends on the variance Vi∗ of the reward distribution of the optimal arm.
(When there are several optimal arms, it is the smallest variance of the optimal
arms distributions which appears in the expected regret bound.)
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LEMMA 19 ([12]) For a given δ ≥ 0, let I =
{
i ∈ {1, . . . , K} : ∆i ≤ δ

}
be the

set of arms “δ-close” to the optimal ones, and J = {1, . . . , K} \ I the remaining
set of arms. In the stochastic bandit game, we have

ERn − ERn ≤
√
n log |I|

2
+
∑
i∈J

1

2∆i

exp(−n∆2
i ),

and also

ERn−ERn ≤
√
n log |I|

2
+
∑
i∈J

2Vi∗ + 2Vi + 2∆i/3

∆i

exp

(
− n∆2

i

2Vi∗ + 2Vi + 2∆i/3

)
.

In particular when there exists a unique arm i∗ such that ∆i∗ = 0, we have

ERn − ERn ≤ 2
∑
i̸=i∗

Vi∗ + Vi +∆i/3

∆i

,

and also for any t > 0

P
(
Rn −Rn > t

)
≤
∑
i̸=i∗

exp

(
− (t+ n∆i)

2

nmin(1, 2Vi∗ + 2Vi + 2(t/n+∆i)/3)

)
.

The uniqueness of the optimal arm is really needed to have logarithmic (in n)
bounds on the expected regret. This can be easily seen by considering a two-armed
bandit in which both reward distributions are identical (and non degenerated). In
this case, the expected pseudo-regret is equal to zero while the expected regret will
be at least of order

√
n for any forecaster. This reveals a fundamental difference

between the expected regret and the pseudo-regret.
Previous works on stochastic bandits use the expected pseudo-regret criterion

since it satisfies

ERn =
K∑
i=1

∆iETi(n),

meaning that one has only to control the expected sampling times of suboptimal
arms to understand how the expected pseudo-regret behaves.

4.2.3. INTRODUCTION TO UPPER CONFIDENCE BOUNDS POLICIES. Early pa-
pers have studied stochastic bandit problems under Bayesian assumptions (e.g.,
Gittins [61]). On the contrary, Lai and Robbins [84] have considered a parametric
minimax framework. They have introduced an algorithm that follows what is now
called the “optimism in the face of uncertainty principle”. At time t ≡ kt (modK)
with kt ∈ {1, . . . , K}, their policy compares an upper confidence bound (UCB)
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of the mean reward µkt of arm kt to a reasonable target defined as the highest
empirical mean of “sufficiently” drawn arms. If the upper confidence bound ex-
ceeds the target, arm kt is drawn, and otherwise, the arm defining the reasonable
target is drawn. Lai and Robbins proved that the expected regret of this policy
increases at most at a logarithmic rate with the number of trials and that the al-
gorithm achieves the smallest possible regret up to some sub-logarithmic additive
term (for the considered family of distributions). Agrawal [2] proposed computa-
tionally easier UCB algorithms in a more general setting that have also logarithmic
expected regret (at the price of a higher numerical constant in the upper bound on
the regret). More recently, Auer, Cesa-Bianchi and Fischer [18] have proposed
even simpler policies achieving logarithmic regret uniformly over time rather than
just for a fixed number n of rounds known in advance by the agent. Besides,
unlike previous works, they have provided non asymptotic bounds.

Upper confidence bounds policies can be described as follows. From time 1 to
K, draw each arm once. At time t ≥ K+1, draw the arm maximizing Bi,Ti(t−1),t,
where Bi,s,t is a high probability bound on µi computed from the i.i.d. sample
Xi,1, . . . , Xi,s. The confidence level of this high probability bound might depend
on the current round t. For instance, the UCB1 policy of Auer, Cesa-Bianchi and
Fischer [18] uses

Bi,s,t = X i,s +

√
2 log t

s
,

which is an upper bound on µi holding with probability at least 1− t−4 according
to Hoeffding’s inequality.

Auer, Cesa-Bianchi and Fischer [18] also noted that plugging an upper confi-
dence bound of the variance in the square root term performs empirically substan-
tially better than UCB1. Precisely, their experiments used

Bi,s,t = X i,s +

√
min

(
V̄i,s +

√
2 log t

s
,
1

4

)
log t

s
. (4.2.1)

My first contribution to the multi-armed bandit problem was to provide a theoret-
ical justification of these empirical findings, as described in the following section.

4.2.4. UCB POLICY WITH VARIANCE ESTIMATES. Rémi Munos, Csaba Sze-
pesvári and I [15] have proposed the following slight modification of the arm
indexes given by (4.2.1):

Bi,s,t = X i,s +

√
2ζV̄i,s log t

s
+

3ζ log t

s
, (4.2.2)

with ζ > 1. The associated policy achieves a logarithmic regret as UCB1 with
a constant factor potentially much smaller than the one of UCB1. Indeed, from

47



[18], UCB1 satisfies

ERn ≤
∑

i:∆i>0

10

∆i

log n, (4.2.3)

whereas our algorithm, called UCB-V (V for variance), satisfies for ζ > 1,

ERn ≤ cζ
∑

i:∆i>0

(
σ2
k

∆k

+ 2

)
log n, (4.2.4)

with cζ > 0 a function of ζ satisfying c1.2 ≤ 10 and cζ ≤ C
(∑+∞

t=1 t
−ζ + ζ

)
for

some numerical constant C > 0. We also proved that for specific distributions of
the rewards, UCB-V with ζ < 1 suffers a polynomial expected (pseudo-)regret,
that is ERn ≥ CnC for some C > 0. The argument proving this later assertion
also implies that using exactly the upper bound (4.2.1) can dramatically fail in
some specific situations2.

4.2.5. DEVIATION OF THE REGRET OF UCB POLICIES. In this section, we
consider that there is a unique optimal arm i∗. In [15], we show that the UCB-V
policy defined by (4.2.2) satisfies

P(Rn ≥ C log n) ≤
(

C ′

log n

)ζ/2

. (4.2.5)

for quantities C and C ′ depending on K, ζ, σ1, . . . , σK ,∆1, . . . ,∆K , but not on
n. The “polynomial” rate in (4.2.5) is not due to the looseness of the bound. It
can be shown that as soon as the essential infimum of the optimal arm’s distri-
bution µ̃ = sup{v ∈ R : νi∗([0, v)) = 0} is smaller than the mean reward of
the second best arm, the pseudo-regret admits a polynomial tail only: there ex-
ists C ′ > 0 (depending on the distributions ν1, . . . , νK) such that for any C > 0,
there exists n0 > 0 such that for any n ≥ n0, P

(
Rn > C log n

)
≥
(

1
C′C logn

)C′
.

In particular, there is no positive quantities C,C ′ for which for any n, we have3

P
(
Rn > C log n

)
≤ C′

n
.

The regret concentration, although it improves as ζ grows, is thus pretty slow.
The slow concentration happens when the first draws Ω of the optimal arm are
unlucky (yielding small rewards) in which case the optimal arm will not be se-
lected any more during roughly the first eΩ steps. As a result, the distribution of

2For instance, when the optimal arm concentrates its rewards on 0 and 1 (Bernoulli distribution
with parameter 1/2), and when the other arms always provide a reward equal to 1/2− 1/n1/6, the
expected regret is lower bounded by Cn1/7.

3An entirely analogous result holds for UCB1: using the variance estimates or not does not
change the form of the tail distribution of the regret.
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the regret can be seen as a mixture of a peaky mode corresponding to situations in
which the optimal arm has a “normal” behaviour (with small variations due to the
suboptimal arms) and a very thick-tailed mode corresponding to the unlucky start
described above. Our theoretical study shows that the mass of this mode decays
only at a polynomial rate controlled by ζ . Recall that the larger ζ is, the more all
arms are explored, the larger the bound on the expected regret is (see (4.2.4)). In
our experiments, this mode does appear (see Figure 4.1).
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Figure 4.1: Distribution of the pseudo-regret for UCB-V (ζ = 1) for horizon
n = 16, 384 (l.h.s. figure) and n = 524, 288 (r.h.s. figure). The bandit problem
is defined by K = 2, a Bernoulli distribution with parameter 0.5 and a Dirac
distribution at 0.495.

When the time horizon n is known, one may consider the UCB policy with

Bi,s,t = X i,s +

√
6V̄i,s log n

s
+

9 log n

s
, (4.2.6)

which is an upper bound on µi which holds with probability at least 1 − n−3.
The associated UCB policy, called hereafter UCB-Horizon, concentrates its ex-
ploration phase at the beginning of the plays, and then switches to the exploitation
mode. On the contrary, the UCB-V induced by (4.2.2), which looks deceptively
similar to UCB-Horizon (with ζ = 3), explores and exploits at any time during
the interval [1, n]. Both policies have similar guarantee on their expected regret.
However, on the one hand, UCB-Horizon always satisfies

P
(
Rn > C log n

)
≤ C ′

n
, (4.2.7)

where C and C ′ are quantities depending only on K, ζ, σ1, . . . , σK ,∆1, . . . ,∆K ,
which contrasts with the significantly worse tail distribution of UCB-V. On the
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other hand, unlike UCB-Horizon, UCB-V has the anytime property: the policy
satisfies the logarithmic expected regret bound for any time horizon n (since its
pulling strategy does not depend on the time horizon). The open question here is
thus: could we have both properties? In other words, is there an algorithm that
does not need to know the time horizon and which regret has a tail distribution
satisfying (4.2.7)? We conjecture that the answer is no.

4.2.6. DISTRIBUTION-FREE OPTIMAL UCB POLICY. The inequalities (4.2.3)
and (4.2.4) may have surprised the reader since the right-hand sides diverge for ∆i

going to 0. For ∆i = o(n−1/2), this is an artefact of the bounds, which is easily
rectifiable. For instance, for UCB1, the more general bound (but less readable
one) is

ERn ≤ max
ti≥0,

∑
i ti=n

∑
i:∆i>0

min

(
10

∆i

log n , ti∆i

)
.

In the worst case
(
i.e., ∆1 = 0 and ∆2 = · · · = ∆K =

√
10K(log n)/n

)
,

the right-hand side of the bound is equal to
√
10n(K − 1) log n. This has to be

compared with the following lower bound of Auer, Cesa-Bianchi, Freund and
Schapire [19]:

inf supERn ≥
1

20

√
nK,

where the infimum is taken over all policies and the supremum is taken over all
K-tuple of probability distributions on [0, 1]. We thus observe a logarithmic gap.
In [11, 12], Sébastien Bubeck and I close this logarithmic gap, by using a different
UCB policy based on

Bi,s,t = X i,s +

√
logmax( n

Ks
, 1)

s
,

which, for s < n/K, is an upper bound on µi which holds with probability at
least 1 − (Ks/n)−2 according to Hoeffding’s inequality. In this policy, an arm
that has been drawn more than n/K times has an index equal to the empirical
mean of the rewards obtained from the arm, and when it has been drawn close to
n/K times, the logarithmic term is much smaller than the one of UCB1, implying
less exploration of this already intensively drawn arm. For this policy, we prove

THEOREM 20 For ∆ = min
i∈{1,...,K}:∆i>0

∆i, the above policy satisfies

Rn ≤
23K

∆
log

(
max

(
110n∆2

K
, 104

))
, (4.2.8)

and
ERn ≤ 24

√
nK. (4.2.9)
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This means that this UCB policy has the minimax rate
√
nK, while still having

a distribution-dependent bound increasing logarithmically in n.

4.2.7. UCB POLICY WITH AN INFINITE NUMBER OF ARMS. When the num-
ber of arms is infinite (or larger than the available number of experiments), the
exploration of all the arms is impossible: if no additional assumption is made, it
may be arbitrarily hard to find a near-optimal arm. In [129], Yizao Wang, Rémi
Munos and I consider a stochastic assumption on the mean-reward of any new
selected arm. When a new arm i is pulled, its mean-reward µi is assumed to be an
independent sample from a fixed distribution. Our assumptions essentially char-
acterize the probability of pulling near-optimal arms. That is, given µ∗ ∈ [0, 1] as
the best possible mean-reward and β ≥ 0 a parameter of the mean-reward distri-
bution, the probability that a new arm is δ-optimal is of order δβ for small δ, i.e.
P(µk ≥ µ∗ − δ) = Θ(δβ) for δ → 04. In contrast with the previous many-armed
bandits [30, 121], our setting allows general reward distributions for the arms,
under a simple assumption on the mean-reward.

When there is more arms than the available number of experiments, the ex-
ploration takes two forms: discovery (pulling a new arm that has never been tried
before) and sampling (pulling an arm already discovered in order to gain informa-
tion about its actual mean-reward).

Numerous applications can be found e.g. in [30]. It includes labor markets
(a worker has many opportunities for jobs), mining for valuable resources (such
as gold or oil) when there are many areas available for exploration (the miner
can move to another location or continue in the same location, depending on re-
sults), and path planning under uncertainty in which the path planner has to decide
among a route that has proved to be efficient in the past (exploitation), or a known
route that has not been explored many times (sampling), or a brand new route that
has never been tried before (discovery).

In [129], we propose an arm-increasing rule policy. It has the anytime property
and consists in adding a new arm from time to time into the set of sampled arms. It
is done such that at time t, the number of sampled arms is of order nβ/2 if µ∗ < 1
and β < 1, and of order nβ/(1+β) otherwise. It uses a modified version of the
UCB-V policy on this set of arms: specifically, the policy associated with

Bi,s,t = X i,s +

√
4V̄i,s log(10 log t)

s
+

6 log(10 log t)

s
.

The pseudo-regret of this policy is still defined as the difference between the
rewards we would have obtained by drawing an optimal arm (an arm having a

4We write f(δ) = Θ(g(δ)) for δ → 0 when ∃c1, c2, ε0 > 0 such that ∀δ ≤ δ0, c1g(δ) ≤
f(δ) ≤ c2g(δ).
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mean-reward equal to µ∗) and the rewards we did obtain during the time steps
1, . . . , n, hence, from the tower rule, ERn = nµ∗ −

∑n
t=1 µIt . Its behaviour

depends on whether µ∗ = 1 or µ∗ < 1. Let us write vn = Õ(un) when for some
n0, C > 0, vn ≤ Cun(log(un))

2, for all n ≥ n0. For µ∗ = 1, our algorithms are
such that ERn = Õ(nβ/(1+β)). For µ∗ < 1, we have ERn = Õ(nβ/(1+β)) if β > 1,
and (only) ERn = Õ(n1/2) if β ≤ 1. Moreover we derive the lower bound: for
any β > 0, µ∗ ≤ 1, any algorithm satisfies ERn ≥ Cnβ/(1+β) for some C > 0.

In continuum-armed bandits (see e.g. [1, 78, 20]), an infinity of arms is also
considered. The arms lie in some Euclidean (or metric) space and their mean-
reward is a deterministic and smooth (e.g. Lipschitz) function of the arms. This
setting is different from ours since our assumption is stochastic and does not con-
sider regularities of the mean-reward w.r.t. the arms. However, if we choose an
arm-pulling strategy which consists in selecting randomly the arms, then our set-
ting encompasses continuum-armed bandits. For example, consider the domain
[0, 1]d and a mean-reward function µ assumed to be locally equivalent to a Hölder
function (of order α ∈ [0,+∞)) around any maximum x∗ (the number of maxima
is assumed to be finite), i.e.

µ(x∗)− µ(x) = Θ(∥x∗ − x∥α) when x→ x∗. (4.2.10)

Pulling randomly an arm X according to the Lebesgue measure on [0, 1]d, we
have: P(µ(X) > µ∗ − ε) = Θ(P(∥X − x∗∥α < ε)) = Θ(εd/α), for ε → 0. Thus
our assumption holds with β = d/α, and our results say that if µ∗ = 1, we have
ERn = Õ(nβ/(1+β)) = Õ(nd/(α+d)).

For d = 1, under the assumption that µ is α-Hölder (i.e. |µ(x) − µ(y)| ≤
c ∥x− y∥α for 0 < α ≤ 1), [78] provides upper and lower bounds on the pseudo-
regret Rn = Θ(n(α+1)/(2α+1)). Our results gives ERn = Õ(n1/(α+1)) which is
better for all values of α. The reason for this apparent contradiction is that the
lower bound in [78] is obtained by the construction of a very irregular function,
which actually does not satisfy our local assumption (4.2.10).

Now, under assumptions (4.2.10) for any α > 0 (around a finite set of max-
ima), [20] provides the rate ERn = Õ(

√
n). Our result gives the same rate when

µ∗ < 1 but in the case µ∗ = 1 we obtain the improved rate ERn = Õ(n1/(α+1))
which is better whenever α > 1 (because we are able to exploit the low variance
of the good arms). Note that like our algorithm, the algorithms in [20] as well as
in [78], do not make an explicit use (in the procedure) of the smoothness of the
function. They just use a “uniform” discretization of the domain.

On the other hand, the zooming algorithm of [75] adapts to the smoothness
of µ (more arms are sampled at areas where µ is high). For any dimension d,
they obtain ERn = Õ(n(d′+1)/(d′+2)), where d′ ≤ d is their “zooming dimension”.
Under assumptions (4.2.10) we deduce d′ = α−1

α
d using the Euclidean distance as
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metric, thus their pseudo-regret is ERn = Õ(n(d(α−1)+α)/(d(α−1)+2α)). For locally
quadratic functions (i.e. α = 2), their rate is Õ(n(d+2)/(d+4)), whereas ours is
Õ(nd/(2+d)). Again, we have a smaller pseudo-regret although we do not use the
smoothness of µ in our algorithm. Here the reason is that the zooming algorithm
does not make full use of the fact that the function is locally quadratic (it considers
a Lipschitz property only). However, in the case α < 1, our rates are worse than
algorithms specifically designed for continuum armed bandits.

Hence, the comparison between the many-armed and continuum-armed ban-
dits settings is not easy because of the difference in nature of the basis assump-
tions. Our setting is an alternative to the continuum-armed bandit setting which
does not require the existence of an underlying metric space in which the mean-
reward function would be smooth. Our assumption naturally deals with possibly
very complicated functions where maxima may be located in any part of the space.
For the continuum-armed bandit problems when there are relatively many near-
optimal arms, our algorithm will be also competitive compared to the specifically
designed continuum-armed bandit algorithms. This result matches the intuition
that in such cases, a random selection strategy will perform well.

Another contribution of our work is to show that, for infinitely many-armed
bandits, we need much less exploration of each arm than for finite-armed ban-
dits: as shown in the next section, the index Bi,s,t is an upper bound on µi which
holds with probability at least 1 − [log(10t)]−2. The use of this low confidence
upper bound (compared to the ones of UCB1 and UCB-V for instance) can be
explained by the fact that many sampled arms have a mean really close to the op-
timal one, and consequently exploiting not the best one but just one of the best
arms is enough to achieve the minimax pseudo-regret.

4.2.8. THE EMPIRICAL BERNSTEIN INEQUALITY. A key lemma to analyze
the policies using variance estimates as UCB-V and the one used in the previous
section is the following maximal inequality, which in particular implies that the
arm index (4.2.2) of UCB-V is an upper bound on µi which holds with probability
at least 1 − 3t−ζ . The interest of the lemma goes beyond the particular setting
of the multi-armed bandit problems as it provides a non asymptotic confidence
interval on the expectation of a distribution for which we observe a sample (and
for which we know a bounded interval containing its support).

LEMMA 21 Let U,U1, . . . , Un be independent and identically distributed random
variables taking their values in [0, 1]. Let

Ūt =
1

t

t∑
i=1

Ui and V̄t =
1

t

t∑
i=1

(Ui − Ūt)
2.
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1. For any ε > 0, with probability at least 1 − ε, for any t ∈ {1, . . . , n} and
ℓt =

n log(2ε−1)
t2

, we have

Ūt−EU < min

(√
2ℓt(V̄t + ℓt)+ ℓt

(1
3
+
√
1− 3V̄t

)
,

√
ℓt
2

)
. (4.2.11)

2. For any ε > 0, with probability at least 1 − ε, for any t ∈ {1, . . . , n} and
ℓ̃t =

n log(3ε−1)
t2

, we have

∣∣Ūt−EU
∣∣ < min

(√
2ℓ̃t(V̄t + ℓ̃t)+ ℓ̃t

(1
3
+
√
1− 3V̄t

)
,

√
ℓ̃t
2

)
. (4.2.12)

In particular, for any ε > 0, with probability at least 1− ε, for any t ∈ {1, . . . , n},
we have ∣∣Ūt − EU

∣∣ <√2nV̄t log(3ε−1)

t2
+

3n log(3ε−1)

t2
. (4.2.13)

Inequality (4.2.13) is the one used in [15, 109], but its tighter version (4.2.12)
should be preferred. The proof of this lemma is given in Appendix E. Fot t = n,
the lemma is an empirical version of Bernstein’s inequality, which differs from the
latter to the following extent: the true variance has been replaced by its empirical
estimate (at the price of having log(3ε−1) terms instead of log(ε−1), and a factor 3
in the last term in the right-hand side instead of 1/3. Inequality (4.2.13) relies on
the following empirical upper bound of the variance V ofU , which simultaneously
holds with probability at least 1− ε: for any t ∈ {1, . . . , n}, we have

V ≤

(√
V̄t +

n log(3ε−1)

t2
+

√
n log(3ε−1)

2t2
(1− 3V̄t)

)2

.

This bound can be seen as an improvement of Inequality (5.27) of Blanchard [33].
For t = n ≥ 2, i.e. without the stopping time argument due to Freedman [57]
allowing to have the inequality uniformly over time, Maurer and Pontil [101] im-
proves on the constants of the above inequality when the empirical variance is
close to 0. Considering the unbiased variance estimator V̄ ′

t = 1
t−1

∑t
s=1(Us −

Ūt)
2 = t

t−1
V̄t, they obtain that with probability at least 1− ε,

V ≤

(√
V̄ ′
t +

log(ε−1)

2(t− 1)
+

√
log(ε−1)

2(t− 1)

)2

.
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Combined with Bernstein’s bound, this gives that with probability at least 1− ε,

∣∣Ūt − EU
∣∣ ≤√2 log(3ε−1)

t

(
V̄ ′
t +

log(3ε−1)

2(t− 1)

)
+

4 log(3ε−1)

3(t− 1)
,

where the gain is on the factor of the logarithmic term when the empirical variance
is much smaller than log(3ε−1)/t.

Volodymyr Mnih, Csaba Szepesvári and I [109] have used Lemma 21 to ad-
dress the problem of stopping the sampling of an unknown distribution ν as soon
as we can output an estimate µ̂ of the mean µ of ν with relative error δ with
probability at least 1− ε, that is

P
(
|µ̂− µ| ≤ δ|µ|

)
≥ 1− ε, (4.2.14)

For a distribution ν supported by [a, a+1] for some a ∈ R, we have proposed
the empirical Bernstein stopping algorithm described in Figure 4.2. It uses a ge-
ometric grid and parameters ensuring that the event E = {

∣∣Ūt − µ
∣∣ ≤ ct, t ≥ t1}

occurs with probability at least 1 − ε. It operates by maintaining a lower bound,
LB, and an upper bound, UB, on the absolute value of the mean of the random
variable being sampled, terminates when (1 + δ)LB < (1 − δ)UB, and returns
the mean estimate µ̂ = sign(Ūt)

(1+δ)LB+(1−δ)UB
2

. We prove that this output indeed
satisfies (4.2.14) and that the stopping time T of the algorithm is upper bounded
by

T ≤ C ·max

(
σ2

δ2µ2
,

1

δ|µ|

)(
log

(
2

ε

)
+ log

(
log

3

δ|µ|

))
.

Up to the log log term, this is optimal according to the work of Dagum, Karp,
Luby and Ross [49].

Besides, our experimental simulations show that it significantly outperforms
previously known stopping rules, in particular AA [49] and the Nonmonotonic
Adaptive Sampling (NAS) algorithm due to Domingo, Gavalda and Watanabe
[130, 54]. Figure 4.3 shows the results of running different stopping rules for the
distribution ν of the average of 10 uniform random variables on [µ−1/2, µ+1/2]
with varying µ and also on Bernoulli distributions. The experience is repeated
a hundred times so that the differences observed in Figure 4.3 are statistically
significant.

We also use the empirical Bernstein bound in the context of racing algorithms.
Racing algorithms aim to reduce the computational burden of performing tasks
such as model selection using a hold-out set by discarding poor models quickly
[98, 112]. The context of racing algorithms is the one of multi-armed bandit
problems. Let ε > 0 be the confidence level parameter. A racing algorithm either
terminates when it runs out of time (i.e. at the end of the n-th round) or when it
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Parameters of the problem: δ, ε and the unknown distribution ν.
Parameters of the algorithm: q > 0, t1 ≥ 1 and α > 1 defining the geometric grid
tk = ⌈αtk−1⌉. (In our simulations, we take q = 0.1, t1 = 20 and α = 1.1.)

Initialization:
c = 3

εtq1(1−α−q)

LB← 0
UB←∞

For t = 1, . . . , t1 − 1,
sample Ut from ν

End For

For k = 1, 2, . . . ,
For t = tk, . . . , tk+1 − 1,

sample Ut from ν and compute the empirical mean Ūt =
1
t

∑t
s=1 Us

ℓt =
tk+1

t2
log(ctqk).

ct = min
(√

2ℓt(V̄t + ℓt) + ℓt

(
1
3 +

√
1− 3V̄t

)
,
√

ℓt
2

)
LB← max(LB, |Ūt| − ct)
UB← min(UB, |Ūt|+ ct)
If (1 + δ)LB < (1− δ)UB, Then

stop simulating U and return the mean estimate sign(Ūt)
(1+δ)LB+(1−δ)UB

2
End If

End For
End For

Figure 4.2: Empirical Bernstein stopping (EBGStop* in our experiments).

can say that with probability at least 1 − ε, it has found the best option, i.e. an
option i∗ ∈ argmaxi∈{1,...,K}µi.

The Hoeffding race introduced by [98] is an algorithm based on discarding
options which are likely to have smaller mean than the optimal one until only one
option remains. Precisely, for each time step and each distribution, δ

nK
-confidence

intervals are constructed for the mean. Options with upper confidence smaller than
the lower confidence bound of another option are discarded. The algorithm sam-
ples one by one all the options that have not been discarded yet. Our empirical and
theoretical study show that replacing the Hoeffding’s inequality by the empirical
Bernstein bound leads to significant improvement. In particular, Table 4.1 shows
the percentage of work saved by each method (1− number of samples taken by
method divided by Kn), as well as the number of options remaining after termi-
nation (see [109] for a more detailed description of the experiments).
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Figure 4.3: Comparison of stopping rules on (l.h.s. figure) averages of uniform
random variables with varying means and (r.h.s. figure) Bernoulli random vari-
ables with means 0.99, 0.9, 0.5, 0.1, 0.05, and 0.01, averaged over 100 runs. The
average number of samples is shown in log scale.

Table 4.1: Percentage of work saved / number of options left after termination.

Data set Hoeffding Empirical Bernstein
SARCOS 0.0% / 11 44.9% / 4
Covertype2 14.9% / 8 29.3% / 5
Local 6.0% / 9 33.1% / 6

4.2.9. BEST ARM IDENTIFICATION. Racing algorithms [98] try to identify the
best action at a given confidence level while consuming the minimal number of
pulls. They essentially try to optimize the exploration “budget” for a given con-
fidence level. In some applications, the budget size is fixed (say n rounds), and
one may want to predict the best arm at the end of the n-th round. A motivating
example concerns channel allocation for mobile phone communications. During
a very short time before the communication starts, a cellphone can explore the set
of channels to find the best one to operate. Each evaluation of a channel is noisy
and there is a limited number of evaluations before the communication starts. The
connection is then launched on the channel which is believed to be the best.

More formally, the setting of identifying the best arm is summarized in Fi-
gure 4.4. It differs from the traditional multi-armed bandit problem by its target:
the cumulative regret is no longer appropriate to measure the performance of a
policy. The aim is rather to minimize the simple regret:

rn = ∆Jn ,

where Jn is the final recommendation of the algorithm and ∆i still denotes the gap
between the mean reward of the best arm or the mean reward of the selected arm.
Let i∗ still denote the optimal arm. The simple regret is linked to the probability
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Parameters available to the forecaster: the number of rounds n and the number of
arms K.

Parameters unknown to the forecaster: the reward distributions ν1, . . . , νK of the
arms.

For each round t = 1, 2, . . . , n;

(1) the forecaster chooses It ∈ {1, . . . ,K},

(2) the environment draws the reward XIt,TIt (t)
from νIt and independently of the

past given It.

At the end of the n rounds, the forecaster outputs a recommendation Jn ∈
{1, . . . ,K}.

Figure 4.4: Best arm identification in multi-armed bandits.

of error
en = P(Jn ̸= i∗),

since, from Ern =
∑

i̸=i∗ P(Jn = i)∆i, we have mini:∆i>0∆ien ≤ Ern ≤ en.

In [13], Sébastien Bubeck, Rémi Munos and I prove that UCB policies can
still be used provided that the exploration term is taken much larger: precisely, for
H =

∑
i:∆i>0∆

−2
i and a numerical constant c > 0, we introduce the UCB-E (E

for exploration) policy characterized by

Bi,s,t = X i,s +

√
cn

2sH
,

which is an extremely high confidence upper bound on µi (probability at least
1 − exp(− cn

H
), hence much higher than the confidence level of UCB1 and UCB-

V), and by taking Jn as the arm with the largest empirical mean. We also propose
a new algorithm, called SR, based on successive rejects. We show that these algo-
rithms are essentially optimal since their simple regret decreases exponentially at
a rate which is, up to a logarithmic factor, the best possible. However, while the
UCB policy needs the tuning of a parameter depending on the unobservable hard-
ness of the task, the successive rejects policy benefits from being parameter-free,
and also independent of the scaling of the rewards. As a by-product of our anal-
ysis, we show that identifying the best arm (when it is unique) requires a number
of samples of order H (up to a log(K) factor). This generalizes the well-known
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Figure 4.5: Probability of error of different algorithms for n = 6000 (l.h.s.) and
n = 12000 (r.h.s.), and K = 30 arms having Bernoulli distributions with param-
eters 0.5 (one arm), 0.45 (five arms), 0.43 (fourteen arms), 0.38 (ten arms). Each
bar represents a different algorithm and the bar’s height represents the probability
of error of this algorithm. “Unif” is the uniform sampling strategy, “HR” is the
Hoeffding Race algorithm (run for three different values of the confidence level
parameter), UCB-E is tested for four different values of c: 2, 4, 8, 16, Adaptive
UCB-E is tested for five different values of its parameter. More extensive exper-
iments are presented in [13] and confirm the ranking of algorithms observed on
these simulations: Ad UCB-E > SR > HR > Unif, where ’>’ means ’has better
performance than’. (UCB-E is not ranked as it requires the knowledge of H .)

fact that one needs of order of 1/∆2 samples to differentiate the means of two dis-
tributions with gap ∆. A precise understanding of both SR and the UCB-E policy
leads us to define a new algorithm, Adaptive UCB-E. It comes without guaran-
tee of optimal rates, but performs slightly better than SR in practice as shown in
Figure 4.5.

Another variant of the best arm identification task is the problem of mini-
mal sampling times required to identify an ϵ-optimal arm with a given confidence
level, see in particular [54] and [56]. In [62], Steffen Grünewälder, Manfred Op-
per, John Shawe-Taylor and I also study a non-cumulative regret notion, but in
the context of a continuum of arms. Precisely, we consider the scenario in which
the reward distribution for arms is modelled by a Gaussian process and there is no
noise in the observed reward, and provide upper and lower bounds under reason-
able assumptions about the covariance function defining the Gaussian process.

4.3. SEQUENTIAL PREDICTION

This section summarizes my work with Sébastien Bubeck [12]. It starts with
the adversarial bandit problem, and goes on with the extension to other sequential
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prediction games.

4.3.1. ADVERSARIAL BANDIT. In the general bandit problem, the environment
is not constrained to generate the reward vectors independently as in the stochastic
bandit problem. However, the target is still to minimize the regret

Rn = max
i=1,...,K

n∑
t=1

(
gi,t − gIt,t

)
.

In the most general form of the game, called the non-oblivious/adaptive adver-
sarial game, the adversary may choose the reward vector gt as a function of the
past decisions I1, . . . , It−1. Upper bounds on the regret Rn for this type of adver-
sary have a less straightforward interpretation since the target cumulative reward
is now depending on the agent’s policy! I will not provide here results for this
type of adversary but the extension of the results presented hereafter can be found
in [12].

Thus we will focus on the oblivious adversarial bandit game, in which the
reward vector gt is not a function of the past decisions I1, . . . , It−1. The environ-
ment is then simply defined by a distribution on [0, 1]nK , while the agent’s policy
is still defined by a mapping, denoted φ from ∪t∈{1,...,n−1}

(
{1, . . . , K} × [0, 1]

)t
to the set of distributions of {1, . . . , K}. Now we can see the game a bit dif-
ferently. The “master” of the game draws a matrix (gi,t)1≤i≤K,1≤t≤n from the
distribution defining the environment, and at each time step t, draws the arm
It according to the distribution pt = φ(Ht) chosen by the agent, where Ht =
{(I1, gI1,1), . . . , (It−1, gIt−1,t−1)} is the past information. The regret Rn is a ran-
dom variable since it depends on the draw of the reward matrix and the draws
from the distributions pt’s.

In [19], Auer, Cesa-Bianchi, Freund and Schapire have shown that a fore-
caster based on exponentially weighted averages has a regret upper bounded by
2.7
√
nK logK. As stated before, they also show that this is optimal up to the

logarithmic factor: precisely, there is no forecaster satisfying ERn ≤ 1
20

√
nK,

for any environment. In [11, 12], we close the logarithmic gap between the above
upper and lower bounds by introducing a new class of randomized policies. To
define it, consider a function ψ : R∗

− → R∗
+ such that

ψ increasing and continuously differentiable,
ψ′/ψ nondecreasing,
limu→−∞ ψ(u) < 1/K, and limu→0 ψ(u) ≥ 1.

(4.3.1)

It can be easily shown that there exists a continuously differentiable function C :
RK

+ → R satisfying for any x = (x1, . . . , xK) ∈ RK
+ ,

max
i=1,...,K

xi < C(x) ≤ max
i=1,...,K

xi − ψ−1 (1/K) , (4.3.2)
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Parameter: function ψ : R∗
− → R∗

+ satisfying (4.3.1)
Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Compute the estimated gain for each arm: g̃i,t =
gi,t
pi,t

1IIt=i anda update the

estimated cumulative gain: G̃i,t =
∑t

s=1 g̃i,s.

(3) Compute the normalization constant Ct = C(G̃t) where G̃t =
(G̃1,t, . . . , G̃K,t).

(4) Compute the new probability distribution pt+1 = (p1,t+1, . . . , pK,t+1) where

pi,t+1 = ψ(G̃i,t − Ct).

aIt estimates gi,t even when gi,t is not observed since Eg̃i,t = gi,t.

Figure 4.6: INF (Implicitly Normalized Forecaster) for the adversarial bandit.

and

K∑
i=1

ψ(xi − C(x)) = 1. (4.3.3)

So we can define the implicitly normalized forecaster (INF) as detailed in Figure
4.6. Indeed, Equality (4.3.3) makes the fourth step in Figure 4.6 legitimate. From
(4.3.2), C(G̃t) is roughly equal to maxi=1,...,K G̃i,t. This means that INF chooses
the probability assigned to arm i as a function of the (estimated) regret. In spirit,
it is similar to the traditional weighted average forecaster, see e.g. Section 2.1
of [46], where the probabilities are proportional to a function of the difference
between the (estimated) cumulative reward of arm i and the cumulative reward
of the policy, which should be, for a well-performing policy, of order C(G̃t).
Weigthed average forecasters and implicitly normalized forecasters are in fact two
different classes of forecasters which intersection contains exponentially weighted
average forecasters such as the one considered in [19]. The interesting feature of
the implicit normalization is the following argument, which allows to recover the
result of [19] and more interestingly to propose a policy having a regret of order√
nK. It starts with an Abel transformation and consequently is “orthogonal”

to the usual argument which, for sake of comparison, has been reproduced in
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Appendix F.2. Letting G̃0 = 0 ∈ RK . We have

n∑
t=1

gIt,t =
n∑

t=1

K∑
i=1

pi,tg̃i,t

=
n∑

t=1

K∑
i=1

pi,t(G̃i,t − G̃i,t−1)

=
K∑
i=1

pi,n+1G̃i,n +
K∑
i=1

n∑
t=1

G̃i,t(pi,t − pi,t+1)

=
K∑
i=1

pi,n+1

(
ψ−1(pi,n+1) + Cn

)
+

K∑
i=1

n∑
t=1

(ψ−1(pi,t+1) + Ct)(pi,t − pi,t+1)

= Cn +
K∑
i=1

pi,n+1ψ
−1(pi,n+1) +

K∑
i=1

n∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1),

(4.3.4)

where the remarkable simplification in the last step is closely linked to our specific
class of randomized algorithms. The equality is interesting since, from (4.3.2), Cn

approximates the maximum estimated cumulative reward maxi=1,...,K G̃i,n, which
should be close to the cumulative reward of the optimal arm maxi=1,...,K Gi,n,
where Gi,n =

∑n
t=1 gi,t. Besides, the last term in the right-hand side is roughly

equal to
K∑
i=1

n∑
t=1

∫ pi,t+1

pi,t

ψ−1(u)du =
K∑
i=1

∫ pi,n+1

1/K

ψ−1(u)du

To make this precise, we use a Taylor-Lagrange expansion and technical argu-
ments to control the residual terms. Putting this together, we roughly have

max
i=1,...,K

Gi,n −
n∑

t=1

gIt,t / −
K∑
i=1

pi,n+1ψ
−1(pi,n+1) +

K∑
i=1

∫ pi,n+1

1/K

ψ−1(u)du.

The right-hand side is easy to study: it depends only on the final probability vector
and has simple upper bounds for adequate choices of ψ. For instance, for ψ(x) =
exp(ηx) + γ

K
with η > 0 and γ ∈ [0, 1), the right-hand side is smaller than

1−γ
η

log
(

K
1−γ

)
+ γCn. For ψ(x) =

(
η
−x

)q
+ γ

K
with η > 0, q > 1 and γ ∈ [0, 1),

it is smaller than q
q−1

ηK1/q + γCn. For sake of simplicity, we have been hiding
the residual terms but these terms when added together (nK terms!) are not that
small, and in fact constrain the choice of the parameters γ and η if one wishes to
get the tightest bound. Our main result is the following.
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Parameters: the number of arms (or actions) K and the number of rounds n with
n ≥ K ≥ 2.

For each round t = 1, 2, . . . , n

(1) The forecaster chooses an arm It ∈ {1, . . . ,K}, possibly with the help of an
external randomization.

(2) Simultaneously the adversary chooses the reward vector

gt = (g1,t, . . . , gK,t) ∈ [0, 1]K

(3) The forecaster receives the gain gIt,t (without systematically observing it). He
observes

– the reward vector (g1,t, . . . , gK,t) in the full information game,

– the reward vector (g1,t, . . . , gK,t) if he asks for it with the global con-
straint that he is not allowed to ask it more than m times for some fixed
integer number 1 ≤ m ≤ n. This prediction game is the label efficient
game,

– only gIt,t in the bandit game,

– only his obtained reward gIt,t if he asks for it with the global constraint
that he is not allowed to ask it more than m times for some fixed integer
number 1 ≤ m ≤ n. This prediction game is the bandit label efficient
game.

Goal : The forecaster tries to maximize his cumulative gain
∑n

t=1 gIt,t.

Figure 4.7: The four prediction games considered in this section.

THEOREM 22 The INF algorithm with ψ(x) =
(
3
√
n

−x

)2
+ 1√

nK
satisfies

ERn ≤ 11
√
nK.

4.3.2. EXTENSIONS TO OTHER SEQUENTIAL PREDICTION GAMES. Let us now
describe a more general setting, in which the feedback received by the forecaster
after drawing an arm differs from game to game. The four games are detailed in
Figure 4.7. As for the weighted average forecasters, the INF forecaster can be
adapted to the different games by simply modifying the estimates g̃i,t of gi,t. The
resulting slightly modified INF forecaster is given in Figure 4.8. Interestingly, we
can provide a unified analysis of these games for the INF forecaster. It allows to
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essentially recover the known minimax bounds, while sometimes improving the
best known upper bound by a logarithmic term. It also leads to high probability
bounds on the regret holding for any confidence level, which contrasts with previ-
ously known results. Let us now detail the main results for the last three games of
Figure 4.8 and for the tracking the best expert scenario.

INF (Implicitly Normalized Forecaster):

Parameters:

• the continuously differentiable function ψ : R∗
− → R∗

+ satisfying (4.3.1)

• the estimates g̃i,t of gi,t based on the (drawn arms and) observed rewards at
time t (and before time t)

Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It from the probability distribution pt.

(2) Use the (potentially) observed reward(s) to build the estimate g̃t =
(g̃1,t, . . . , g̃K,t) of (g1,t, . . . , gK,t) and let: G̃t =

∑t
s=1 g̃s = (G̃1,t, . . . , G̃K,t).

(3) Compute the normalization constant Ct = C(G̃t).

(4) Compute the new probability distribution pt+1 = (p1,t+1, . . . , pK,t+1) where

pi,t+1 = ψ(G̃i,t − Ct).

Figure 4.8: The proposed policy for the four prediction games.

The label efficient game. This game was introduced by [66]: as explained in
Figure 4.7, the forecaster observes the reward vector only if he asks for it, and
he is not allowed to ask it more than m times for some fixed integer number
1 ≤ m ≤ n. Following the work of Cesa-Bianchi, Lugosi and Stoltz [47], we
consider the following policy for requesting the reward vector. At each round, we
draw a Bernoulli random variable Zt, with parameter δ = 3m

4n
, to decide whether

we ask for the rewards or not. To fulfil the game requirement, we naturally do not
ask for the rewards if

∑t−1
s=1 Zs ≥ m.

THEOREM 23 Let ψ(x) = exp
(√

m logK
n

x
)

and g̃i,t =
gi,t
δ
Zt with δ = 3m

4n
. Then,
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for any ε > 0, with probability at least 1− ε, INF satisfies:

Rn ≤ 2n

√
logK

m
+ n

√
27 log(2Kε−1)

m
,

hence

ERn ≤ 8n

√
log(6K)

m
.

This theorem is similar to Theorem 6.2 of [46]. The main difference and
novelty is that the policy does not depend on the confidence level, so the high
probability bound is valid for any confidence level for the same policy, and the

expected regret of this policy has also the minimax optimal rate, i.e. n
√

log(K)
m

.

High probability bounds for the bandit game. Here the main difference with
Section 4.3 is to use the biased estimates g̃i,t =

gi,t
pi,t

1IIt=i+
β
pi,t

for some appropriate
small β > 0. It may appear surprising as it introduces a bias in the estimate of
gi,t. However this modification allows to have high probability upper bounds with
the correct rate on the difference

∑n
t=1 gi,t −

∑n
t=1 g̃i,t. A second reason for this

modification (but useless for this particular section) is that it allows to track the
best expert (see Section 4.3.2). For sake of simplicity, the following theorem
concerns deterministic adversaries (which is defined by a fixed matrix of the nK
rewards).

THEOREM 24 For a deterministic adversary, The INF algorithm with ψ(x) =(
3
√
n

−x

)2
+ 1√

nK
and g̃i,t =

gi,t
pi,t

1IIt=i +
1

pi,t
√
nK

satisfies: for any ε > 0, with proba-
bility at least 1− ε,

Rn ≤ 10
√
nK + 2

√
nK log(ε−1).

(Consequently, it also satisfies ERn ≤ 12
√
nK.)

The novelty of the result, which is similar to Theorem 6.10 of [46], is both
the absence of the logK factor and that the high probability bound is valid for the
same policy at any confidence level.

Label efficient and bandit game (LE bandit). In this game first considered by
György and Ottucsák [64] and which is a combination of two previously seen
games, the forecaster observes the reward of the arm he selected only if he asks
for it, and he is not allowed to request it more than m times for some fixed integer
number 1 ≤ m ≤ n. We consider a similar policy for requesting the reward
vector as in the label efficient game. At each round, we draw a Bernoulli random
variable Zt, with parameter δ = 3m

4n
, to decide whether we ask for the obtained
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reward or not. To fulfil the game requirement, we do not ask for the rewards if∑t−1
s=1 Zs ≥ m.

THEOREM 25 For ψ(x) =
(

3n
−
√
mx

)2
+ 1√

nK
and g̃i,t = gi,t

1IIt=i

pi,t

Zt

δ
, the INF algo-

rithm satisfies

ERn ≤ 40n

√
K

m
.

As for the bandit game, the use of the INF forecaster allows to get rid of the
logK factor which was appearing in previous works.

Tracking the best expert in the bandit game. In the previous sections, the cumu-
lative gain of the forecaster was compared to the cumulative gain of the best sin-
gle expert. Here, it will be compared to more flexible strategies that are allowed
to switch actions. A switching strategy is described by a vector (i1, . . . , in) ∈
{1, . . . , K}n. Its size is defined by

S(i1, . . . , in) =
n−1∑
t=1

1Iit+1 ̸=it ,

and its cumulative gain is

G(i1,...,in) =
n∑

t=1

git,t.

The regret of a forecaster with respect to the best switching strategy with S
switches is then given by:

RS
n = max

(i1,...,in): S(i1,...,in)≤S
G(i1,...,in) −

n∑
t=1

gIt,t.

As in Section 4.3.2, we use the estimates

g̃i,t = gi,t
1IIt=i

pi,t
+

β

pi,t
,

and 0 < β ≤ 1. The β term, which, as already stated, introduces a bias in the
estimate of gi,t, constrains the differences maxi=1,...,K G̃i,t−minj=1,...,K G̃j,t to be
relatively small. This is the key property in order to track the best switching strat-
egy, provided that the number of switches is not too large. We have the following
result for the INF forecaster using the above estimates and an exponential func-
tion ψ (recall that for exponential ψ, the INF forecaster reduces to the traditional
exponentially weighted forecasters).
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THEOREM 26 Let s = S log
(
enK
S

)
+ log(2K) with e = exp(1) and the natural

convention S log(enK/S) = 0 for S = 0. Consider ψ(x) = exp(ηx) + γ
K

with

γ = min
(

1
2
,
√

Ks
n

)
and η =

√
s

20nK
, and the estimates g̃i,t = gi,t

1IIt=i

pi,t
+ β

pi,t
with

β = 2
√

s
nK

. For these choices, for any 0 ≤ S ≤ n − 1, for any ε > 0, with
probability at least 1− ε, INF satisfies:

RS
n ≤ 9

√
nKs+

√
nK

s
log(ε−1),

and
ERS

n ≤ 10
√
nKs.
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Appendix A

Some basic properties of the Kullback-Leibler
divergence

The KL divergence between two distributions on some measurable space G

K(ρ, π) =

{
Eg∼ρ log(

ρ
π
(g)) if ρ≪ π

+∞ otherwise (A.1)

satisfies for ρ ≪ π, K(ρ, π) = Eg∼πχ
(
ρ
π
(g)
)
, with χ the function defined on

(0,+∞) by χ(u) 7→ u log(u) + 1 − u. Since the function χ is nonnegative and
equals zero only at 1, we have

K(ρ, π) ≥ 0, (A.2)

and
K(ρ, π) = 0⇔ ρ = π. (A.3)

Let h : G→ R s.t. Eg∼πe
h(g) < +∞. Define

πh(dg) =
eh(g)

Eg′∼πeh(g
′)
· π(dg)

By expanding the definition of the KL divergence K(ρ, πh), we get

K(ρ, πh) = K(ρ, π)− Eg∼ρh(g) + logEg∼πe
h(g),

which implies from (A.2) and (A.3)

sup
ρ

{
Eg∼ρh(g)−K(ρ, π)

}
= logEg∼πe

h(g), (A.4)

and
argmaxρ

{
Eg∼ρh(g)−K(ρ, π)

}
= πh. (A.5)

By differentiating, one may note that the function λ 7→ K(πλh, π) is nondecreas-
ing on [0,+∞). Finally, if G is finite and π is the uniform distribution on G, we
have

K(ρ, π) = log(|G|)−H(ρ) ≤ log(|G|), (A.6)

where H(ρ) = −
∑

g∈G ρ(g) log ρ(g) is the Shannon entropy of ρ.
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Appendix B

Proof of McAllester’s PAC Bayesian bound

McAllester’s bound (McA) (p.10) states that with probability at least 1 − ε, for
any ρ ∈M, we have

Eg∼ρR(g)− Eg∼ρr(g) ≤
√
K(ρ, π) + log(2n) + log(ε−1)

2n− 1
. (B.1)

Here is a short proof of this statement that essentially follows the one proposed by
Seeger.

Let us first recall that a real-valued random variable V such that EeV ≤ 1
satisfies: for any ε > 0, with probability at least 1− ε, we have V ≤ log(ε−1). So
to prove (B.1), we only need to check that the random variable

V = sup
ρ

{
(2n− 1)

[
max

(
Eρ(df)R(f)− Eρ(df)r(f), 0

)]2 −K(ρ, π)− log(4n)
}

satisfies EeV ≤ 1.
From Jensen’s inequality applied to the convex function x 7→

[
max(x, 0)

]2
and the Legendre transform of the KL divergence (A.4), we have

V ≤ sup
ρ

{
(2n− 1)Eρ(df)[max

(
R(f)− r(f), 0

)
]2 −K(ρ, π)− log(2n)

}
= − log(2n) + logEπ(df)e

(2n−1)[max(R(f)−r(f),0)]2 ,

hence

EeV ≤ 1

2n
EEπ(df)e

(2n−1)[max(R(f)−r(f),0)]2

=
1

2n
Eπ(df)

(
1 + E

{
e(2n−1)[max(R(f)−r(f),0)]2 − 1

})
from Fubini’s theorem

=
1

2n
Eπ(df)

(
1 +

∫ +∞

0

P(e(2n−1)[max(R(f)−r(f),0)]2 − 1 > t)dt

)
=

1

2n
Eπ(df)

(
1 +

∫ +∞

0

P
(
R(f)− r(f) >

√
log(t+ 1)

2n− 1

)
dt

)

≤ 1

2n
Eπ(df)

(
1 +

∫ +∞

0

e−2n
log(t+1)
2n−1 dt

)
from Hoeffding’s inequality

=
1

2n
Eπ(df)

(
1 +

∫ +∞

0

(t+ 1)−
2n

2n−1dt

)
= 1,

which ends the proof.
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Appendix C

Proof of Seeger’s PAC Bayesian bound

Here we sketch the proof of (S) (p.10), which states that with probability at least
1− ε, for any ρ ∈M, we have

K(Eg∼ρr(g)||Eg∼ρR(g)) ≤
K(ρ, π) + log(2

√
nε−1)

n
, (C.1)

where K(q||p) = K(Be(q),Be(p)) with Be(q) and Be(p) denoting the Bernoulli
distributions of parameter q and p. The proof follows the same line as the one of
(McA). We introduce

V = sup
ρ

{
nK(Eρ(df)r(f))||Eρ(df)R(f))−K(ρ, π)− log(2

√
n)
}
,

and as in the previous proof, we only need to check that EeV ≤ 1. This is done
by using Jensen’s inequality for the convex function (q, p) 7→ K(q||p) and using
the Legendre transform of the KL divergence (A.4). We have

EeV ≤ Eesupρ
{
nEρ(df)K(r(f)||R(f))−K(ρ,π)−log(2

√
n)
}

=
1

2
√
n
EEπ(df)e

nK(r(f))||R(f))

=
1

2
√
n
Eπ(df)

n∑
k=0

P(nr(f) = k)
( k

nR(f)

)k( n− k
n[1−R(f)]

)n−k

=
1

2
√
n
Eπ(df)

n∑
k=0

(
n

k

)(k
n

)k(n− k
n

)n−k

≤ 1,

where the last inequality is obtained from computations using Stirling’s approxi-
mation.

The same procedure can be used to prove the other PAC-Bayesian bounds of
Chapter 2, Section 2.2. A similar way of approaching PAC-Bayesian theorems is
given in [60].
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Appendix D

Proof of the learning rate
of the progressive mixture rule

Here is the proof in a concise form under the boundedness assumptions of The-
orem 6 that the expected excess risk of the progressive mixture rule is upper
bounded by log d

λ(n+1)
for λ ≥ 1

8
. The condition on λ guarantees that for any

y ∈ [−1, 1], the function y′ 7→ e−λ(y−y′)2 is concave on [−1, 1]. Thus we can
write

ER
(

1

n+ 1

n∑
i=0

Eg∼π−λΣi
g

)
≤ 1

n+ 1

n∑
i=0

ER
(
Eg∼π−λΣi

g
)

(D.1)

=
1

n+ 1

n∑
i=0

EZi+1
1

[Yi+1 − Eg∼π−λΣi
g(Xi+1)]

2 (D.2)

=
1

n+ 1
EZn+1

1

n∑
i=0

[Yi+1 − Eg∼π−λΣi
g(Xi+1)]

2 (D.3)

≤ 1

n+ 1
EZn+1

1

n∑
i=0

{
− 1

λ
logEg∼π−λΣi

e−λ[Yi+1−g(Xi+1)]
2

}
(D.4)

=
1

λ(n+ 1)
EZn+1

1

n∑
i=0

log

(
Eg∼π e

−λΣi(g)

Eg∼π e−λΣi+1(g)

)
=− 1

λ(n+ 1)
EZn+1

1
logEg∼π e

−λΣn+1(g) (D.5)

≤− 1

λ(n+ 1)
EZn+1

1
log

(
e−λΣn+1(g∗MS)

d

)
=R(g∗MS) +

log d

λ(n+ 1)
,

where (D.1) comes from Jensen’s inequality on the convex function y′ 7→ (y −
y′)2, (D.2) uses that the distribution π−λΣi

depends only on Zi
1, (D.4) comes from

Jensen’s inequality on the concave function y′ 7→ e−λ(y−y′)2 , and (D.5) is the core
of the proof and explains why PM is based on a Cesaro mean. The steps (D.2) and
(D.3) are exactly the two steps of the proof of Lemma 7. Note that this analysis
gives a result similar to the one in Theorem 6, except that the factor 2 is replaced
by 1

λ
≥ 8. For the progressive indirect mixture rule, Eg∼π−λΣi

are replaced by ĥi,
and the step (D.4) is still valid from the very definition (3.2.1) of ĥi.
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Appendix E

The empirical Bernstein’s inequality

The goal of the empirical Bernstein’s inequality is to provide confidence bounds
on the expectation of a distribution with bounded support, say in [0, 1], given
a sample from it. Let U,U1, U2, . . . be independent and identically distributed
random variables taking their values in [0, 1]. Let

Ūt =
1

t

t∑
i=1

Ui and V̄t =
1

t

t∑
i=1

(Ui − Ūt)
2.

Here we prove the empirical Bernstein’s inequality (Lemma 21, p.53), which
states that for any ε > 0, with probability at least 1 − 2ε, for any t ∈ {1, . . . , n}
and ℓ̄t =

n log(ε−1)
t2

, we have

Ūt − EU < min

(√
2ℓ̄t(V̄t + ℓ̄t) + ℓ̄t

(1
3
+
√

1− 3V̄t

)
,

√
ℓ̄t
2

)
. (E.1)

PROOF. Let Λ(λ) = logEeλ(U−EU) be the log-Laplace transform of the random
variable U − EU . Let St =

∑t
i=1(Ui − EUi) with the convention S0 = 0. From

Inequality (2.17) of [67], we have1

P
(
max
1≤t≤n

St ≥ s
)
≤ inf

λ>0
e−λs+nΛ(λ).

Let V = VarU . Hoeffding’s inequality and Bennett’s inequality implies

Λ(λ) ≤ min
(λ2
8
, (eλ − 1− λ)V

)
,

which by standard computations (see, e.g., Inequality (45) of [15]) gives that for
any ε > 0, with probability at least 1− ε,

max
1≤t≤n

St < min

(√
n log(ε−1)

2
,
√

2nV log(ε−1) +
log(ε−1)

3

)
. (E.2)

1This comes from a martingale argument due to Doob. For any λ > 0, the se-
quence (eλSt−tΛ(λ))t≥0 is a martingale with respect to the filtration

(
σ(U1, . . . , Ut)

)
t≥0

since

E(eλSt−tΛ(λ)|U1, . . . , Ut−1) = eλSt−1−(t−1)Λ(λ). Introduce the stopping time T = min
(
n +

1,min{t ∈ N : St ≥ s}
)
. From the optional stopping theorem, for any λ > 0, we have

1 = EeλST−TΛ(λ) ≥ P(T ≤ n)eλs−nΛ(λ),

hence
P
(
max
1≤t≤n

St ≥ s
)
= P(T ≤ n) ≤ inf

λ>0
e−λs+nΛ(λ).
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LetW = (U−EU)2 andWi = (Ui−EUi)
2 for i ≥ 1. Let S ′

t =
∑t

i=1(−Wi+EWi)
and Λ′(λ) = logEeλ(−W+EW ). As above, from Inequality (2.17) of [67], we have

P
(
max
1≤t≤n

S ′
t ≥ s

)
≤ inf

λ>0
e−λs+nΛ′(λ).

Now using that e−u ≤ 1 − u + u2

2
for u ≥ 0 and log(1 + u) ≤ u from u ≥ −1,

we have logEe−λW ≤ logE(1 − λW + λ2W 2

2
) ≤ −λEW + λ2

2
E(W 2), hence

Λ′(λ) ≤ λ2

2
E(W 2). Optimizing with respect to λ gives that for any ε > 0, with

probability at least 1− ε,

max
1≤t≤n

S ′
t <

√
2nE(W 2) log(ε−1). (E.3)

Now we use the following lemma to bound E(W 2).

LEMMA 27 A random variable U taking its values in [0, 1] satisfies

E[(U − EU)4] ≤ V (1− 3V ), (E.4)

where V = E[(U − EU)2] is the variance of U . If U admits a Bernoulli distribu-
tion, one can put an equality in (E.4).

PROOF. We have

E[(U − EU)4]− V (1− 3V ) = E
(
[U3−U + E(U)][U − E(U)]

)
+ 3
(
[E(U2)]2 − E(U)E(U3)

)
.

From Chebyshev’s association inequality (also referred to as the Fortuin-Kasteleyn-
Ginibre inequality), both terms in the right-hand side are nonpositive. An alterna-
tive proof consists in expanding the terms in Lemma 8 of [101] and noticing that
this exactly gives (E.4). The result for Bernoulli distributions comes from direct
computations. �

Combining the above lemma with (E.3), we get that with probability at least
1− ε,

max
1≤t≤n

S ′
t <

√
2nV (1− 3V ) log(ε−1). (E.5)

We now work on the event E of probability at least 1 − 2ε on which both (E.5)
and (E.2) hold. The variance decomposition gives V̄t = 1

t

∑t
i=1(Ui − Ūt)

2 =

−(EU − Ūt)
2 + 1

t

∑t
i=1Wi, hence S ′

t = t(V − V̄t) − t(EU − Ūt)
2. For any

1 ≤ t ≤ n, we have

Ūt − EU < min

(√
ℓ̄t
2
,
√
2V ℓ̄t +

ℓ̄t
3

)
, (E.6)
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and
V − V̄t <

√
2V (1− 3V )ℓ̄t + (Ūt − EU)2 (E.7)

If Ūt < EU , then (E.1) is trivial. If V̄t ≥ V , (E.1) is a direct consequence of (E.6)
(since 4

3
− 3V̄t ≥ 4

3
− 3

4
> 1

3
). Therefore, from now and on, we consider Ūt ≥ EU

and V̄t < V . Then (E.6) implies (Ūt − EU)2 ≤ ℓ̄t/2, and (E.7) leads to

V̄t > V −
√
2V (1− 3V̄t)ℓ̄t − ℓ̄t/2 =

(
√
V −

√
ℓ̄t(1− 3V̄t)

2

)2

− ℓ̄t(2− 3V̄t)

2
,

hence

√
V <

√
V̄t +

ℓ̄t(2− 3V̄t)

2
+

√
ℓ̄t(1− 3V̄t)

2
≤
√
V̄t + ℓ̄t +

√
ℓ̄t(1− 3V̄t)

2
.

By plugging this inequality into (E.6), we get (E.2). For the two-sided inequality
(4.2.12), one just needs to add the same inequality as (E.6) for −Ūt. At the end,
three maximal inequalities are used (corresponding to Ui, −Ui and −Wi), so that
the result holding with probability at least 1− ε contains log(3ε−1) terms. �
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Appendix F

On Exploration-Exploitation with Exponential
weights (EXP3)

F.1. THE VARIANTS OF EXP3

Parameters: η ∈ (0, 1/K] and γ ∈ [0, 1].
Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . ,

(1) Draw an arm It according to the probability distribution pt.

(2) Compute the estimated gain for each arm:

g̃i,t =



gi,t
pi,t

1IIt=i for the reward-magnifying version of EXP3

1− 1−gi,t
pi,t

1IIt=i for the loss-magnifying version of EXP3
gi,t
pi,t

1IIt=i +
β
pi,t

for the tracking version of EXP3
gi,t(1+β

gi,t
pi,t

)

pi,t
1IIt=i for the tightly biased version of EXP3

and update the estimated cumulative gain: G̃i,t =
∑t

s=1 g̃i,s.

(3) Compute the new probability distribution over the arms:

pt+1 = γp1 + (1− γ)qt+1,

with

qi,t+1 =
exp

(
ηG̃i,t

)
∑K

k=1 exp
(
ηG̃k,t

) .

Figure F.1: EXP3 (Exploration-Exploitation with Exponential weights) for the
adversarial bandit problem.

There are several variants of EXP3. They differ by the way gi,t is estimated
as shown in Figure F.1. For deterministic adversaries, the loss-magnifying ver-
sion of EXP3 has the advantage to provide the best known constant in front of
the
√
nK logK term, that is

√
2 (note that our work succeeds in removing the

logK term but at the price of a larger numerical constant factor). For determinis-
tic adversaries, the reward-magnifying version of EXP3 (which is the one in the
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seminal paper of Auer, Cesa-Bianchi, Freund and Schapire [19] for γ = Kη) has
the advantage that the factor n in

√
nK logK can be replaced by maxi=1,...,nGi,n,

where Gi,n =
∑n

t=1 gi,t. The tracking version of EXP3 is the one proposed in
Section 6.8 of [46] (and the one presented in Section 4.3.2). It (slightly) overesti-
mates the rewards since we have EIt∼pt g̃i,t = gi,t +

β
pi,t

. This idea was introduced
in [17] for tracking the best expert. In [12], we have introduced the tightly biased
version of EXP3 to achieve regret bounds depending on the performance of the
optimal arm. Contrarily to the reward-magnifying version of EXP3, these bounds
hold for any adversary and high probability regret bounds are also obtained.

F.2. PROOF OF THE LEARNING RATE OF THE REWARD-MAGNIFYING EXP3

Here we give an analysis of the reward-magnifying EXP3 (defined in Fig-
ure F.1), which is an improvement (in terms of constant only) of the one in [19,
Section 3].

THEOREM 28 Let Gmax = maxi=1,...,K Gi,n. For deterministic adversaries, if
4ηK ≤ 5γ, the expected regret of the reward-magnifying EXP3 satisfies

ERn ≤
logK

η
+ γGmax.

In particular, if η =
√

5 logK
4nK

and γ = min
(√

4K logK
5n

, 1
)

, we have

ERn ≤
√

16

5
nK log(K).

PROOF. The condition 4ηK ≤ 5γ is put to guarantee that Ψ
(
ηK
γ

)
≤ γ

ηK
,

where Ψ : u 7→ eu−1−u
u2 is an increasing function. For any adversary, we have

n∑
t=1

gIt,t =
n∑

t=1

Ek∼pt g̃k,t

=
1− γ
η

n∑
t=1

(
logEi∼qte

ηg̃i,t − log
[
e−

η
1−γ

Ek∼pt
g̃k,tEi∼qte

ηg̃i,t
])

=
1− γ
η

(
S −

n∑
t=1

log(Dt)

)
,

where

S =
n∑

t=1

logEi∼qte
ηg̃i,t =

n∑
t=1

log

(
Ei∼p1e

ηG̃i,t

Ei∼p1e
ηG̃i,t−1

)
= logEi∼p1e

ηG̃i,n
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and

Dt = e−
η

1−γ
Ek∼pt

g̃k,tEi∼qte
ηg̃i,t

≤ e−
η

1−γ
Ek∼pt

g̃k,tEi∼qt

(
1 + ηg̃i,t +Ψ

(ηK
γ

)
η2g̃2i,t

)
(F.1)

= e−
η

1−γ
Ek∼pt

g̃k,t

(
1 + η

Ei∼pt g̃i,t − γEi∼p1 g̃i,t
1− γ

+Ψ
(ηK
γ

)
η2Ei∼qt g̃

2
i,t

)
≤ e−

η
1−γ

Ek∼pt
g̃k,t

(
1 +

η

1− γ
Ei∼pt g̃i,t −

ηγ

1− γ
Ei∼p1 g̃i,t +

Ψ(ηK
γ
)η2K

1− γ
Ei∼p1 g̃i,t

)
(F.2)

≤ e−
η

1−γ
Ek∼pt

g̃k,t

(
1 +

η

1− γ
Ei∼pt g̃i,t

)
(F.3)

≤ 1.

To get (F.1), we used that Ψ is an increasing function and that ηg̃i,t ≤ η
pi,t
≤ ηK

γ
.

For (F.2), we used (1− γ)Ei∼qt g̃
2
i,t ≤ Ei∼pt g̃

2
i,t =

g2It,t
pIt,t
≤
∑K

i=1 g̃i,t = KEi∼p1 g̃i,t.

For (F.3), we used ηKΨ
(
ηK
γ

)
≤ γ. We have thus proved

n∑
t=1

gIt,t ≥
1− γ
η

logEi∼p1e
ηG̃i,n (F.4)

For a deterministic adversary, we have EG̃i,n = EGi,n = Gi,n, so that

E
n∑

t=1

gIt,t ≥
1− γ
η

E logEi∼p1e
ηG̃i,n

≥ 1− γ
η

logEi∼p1e
ηEG̃i,n (F.5)

=
1− γ
η

logEi∼p1e
ηGi,n ≥ −(1− γ) logK

η
+ (1− γ) max

i=1,...,K
Gi,n,

where Inequality (F.5) which moves the expectation sign inside the exponential
can be viewed as an infinite dimensional Jensen’s inequality (see Lemma 3.2 of
[9]). For a deterministic adversary, we have proved

ERn = max
i=1,...,K

Gi,n − E
n∑

t=1

gIt,t ≤
(1− γ) logK

η
+ γ max

i=1,...,K
Gi,n,

hence the first claimed result.
The second result is trivial when

√
4K logK/(5n) ≥ 1 since the upper bound

is then larger than n. Otherwise, we have γ =
√
4K logK/(5n) < 1 and 4ηK =

5γ so that the result follows from the first one. �
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Appendix G

Experimental results for the min-max truncated
estimator defined in Section 3.4.2

In Section G.1, we detail the different kinds of noises we work with. Then, Sec-
tions G.2, G.3 and G.4 describe the three types of functional relationships between
the input, the output and the noise involved in our experiments. A motivation for
choosing these input-output distributions was the ability to compute exactly the
excess risk, and thus to compare easily estimators. Section G.5 presents the ex-
perimental results.

G.1. NOISE DISTRIBUTIONS

In our experiments, we consider different types of noise that are centered and
with unit variance:

• the standard Gaussian noise: W ∼ N(0, 1),

• a heavy-tailed noise defined by: W = sign(V )/|V |1/q, with V ∼ N(0, 1) a
standard Gaussian random variable and q = 2.01 (the real number q is taken
strictly larger than 2 as for q = 2, the random variable W would not admit
a finite second moment).

• an asymmetric heavy-tailed noise defined by:

W =

{
|V |−1/q if V > 0,
− q

q−1
otherwise,

with q = 2.01 with V ∼ N(0, 1) a standard Gaussian random variable.

• a mixture of a Dirac random variable with a low-variance Gaussian ran-
dom variable defined by: with probability p, W =

√
(1− ρ)/p, and with

probability 1− p, W is drawn from

N
(
−
√
p(1− ρ)
1− p

,
ρ

1− p
− p(1− ρ)

(1− p)2

)
.

The parameter ρ ∈ [p, 1] characterizes the part of the variance of W ex-
plained by the Gaussian part of the mixture. Note that this noise admits
exponential moments, but for n of order 1/p, the Dirac part of the mixture
generates low signal to noise points.
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G.2. INDEPENDENT NORMALIZED COVARIATES (INC(n, d))

In INC(n, d), the input-output pair is such that

Y = ⟨θ∗, X⟩+ σW,

where the components of X are independent standard normal distributions, θ∗ =
(10, . . . , 10)T ∈ Rd, and σ = 10.

G.3. HIGHLY CORRELATED COVARIATES (HCC(n, d))

In HCC(n, d), the input-output pair is such that

Y = ⟨θ∗, X⟩+ σW,

where X is a multivariate centered normal Gaussian with covariance matrix Q
obtained by drawing a (d, d)-matrix A of uniform random variables in [0, 1] and
by computing Q = AAT , θ∗ = (10, . . . , 10)T ∈ Rd, and σ = 10. So the only
difference with the setting of Section G.2 is the correlation between the covariates.

G.4. TRIGONOMETRIC SERIES (TS(n, d))

Let X be a uniform random variable on [0, 1]. Let d be an even number. Let

g⃗(X) =
(
cos(2πX), . . . , cos(dπX), sin(2πX), . . . , sin(dπX)

)T
.

In TS(n, d), the input-output pair is such that

Y = 20X2 − 10X − 5

3
+ σW,

with σ = 10. One can check that this implies

θ∗ =

(
20

π2
, . . . ,

20

π2(d
2
)2
,−10

π
, . . . ,− 10

π(d
2
)

)T

∈ Rd.

G.5. RESULTS

Tables G.1 and G.2 give the results for the mixture noise. Tables G.3, G.4 and
G.5 provide the results for the heavy-tailed noise and the standard Gaussian noise.
Each line of the tables has been obtained after 1000 generations of the training
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set. These results show that the min-max truncated estimator ĝ is often equal to
the ordinary least squares estimator ĝ(ols), while it ensures impressive consistent
improvements when it differs from ĝ(ols). In this latter case, the number of points
that are not considered in ĝ, i.e. the number of points with low signal to noise
ratio, varies a lot from 1 to 150 and is often of order 30. Note that not only the
points that we expect to be considered as outliers (i.e. very large output points)
are erased, and that these points seem to be taken out by local groups: see Figures
G.1 and G.2 in which the erased points are marked by surrounding circles.

Besides, the heavier the noise tail is (and also the larger the variance of the
noise is), the more often the truncation modifies the initial ordinary least squares
estimator, and the more improvements we get from the min-max truncated es-
timator, which also becomes much more robust than the ordinary least squares
estimator (see the confidence intervals in the tables).

Table G.1: Comparison of the min-max truncated estimator ĝ with the ordinary
least squares estimator ĝ(ols) for the mixture noise (see Section G.1) with ρ = 0.1
and p = 0.005. In parenthesis, the 95%-confidence intervals for the estimated
quantities.
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INC(n=200,d=1) 1000 419 405 0.567(±0.083) 0.178(±0.025) 1.191(±0.178) 0.262(±0.052)
INC(n=200,d=2) 1000 506 498 1.055(±0.112) 0.271(±0.030) 1.884(±0.193) 0.334(±0.050)
HCC(n=200,d=2) 1000 502 494 1.045(±0.103) 0.267(±0.024) 1.866(±0.174) 0.316(±0.032)
TS(n=200,d=2) 1000 561 554 1.069(±0.089) 0.310(±0.027) 1.720(±0.132) 0.367(±0.036)
INC(n=1000,d=2) 1000 402 392 0.204(±0.015) 0.109(±0.008) 0.316(±0.029) 0.081(±0.011)
INC(n=1000,d=10) 1000 950 946 1.030(±0.041) 0.228(±0.016) 1.051(±0.042) 0.207(±0.014)
HCC(n=1000,d=10) 1000 942 942 0.980(±0.038) 0.222(±0.015) 1.008(±0.039) 0.203(±0.015)
TS(n=1000,d=10) 1000 976 973 1.009(±0.037) 0.228(±0.017) 1.018(±0.038) 0.217(±0.016)
INC(n=2000,d=2) 1000 209 207 0.104(±0.007) 0.078(±0.005) 0.206(±0.021) 0.082(±0.012)
HCC(n=2000,d=2) 1000 184 183 0.099(±0.007) 0.076(±0.005) 0.196(±0.023) 0.070(±0.010)
TS(n=2000,d=2) 1000 172 171 0.101(±0.007) 0.080(±0.005) 0.206(±0.020) 0.083(±0.012)
INC(n=2000,d=10) 1000 669 669 0.510(±0.018) 0.206(±0.012) 0.572(±0.023) 0.117(±0.009)
HCC(n=2000,d=10) 1000 669 669 0.499(±0.018) 0.207(±0.013) 0.561(±0.023) 0.125(±0.011)
TS(n=2000,d=10) 1000 754 753 0.516(±0.018) 0.195(±0.013) 0.558(±0.022) 0.131(±0.011)
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Table G.2: Comparison of the min-max truncated estimator ĝ with the ordinary
least squares estimator ĝ(ols) for the mixture noise (see Section G.1) with ρ = 0.4
and p = 0.005. In parenthesis, the 95%-confidence intervals for the estimated
quantities.
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|ĝ
̸=
ĝ
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INC(n=200,d=1) 1000 234 211 0.551(±0.063) 0.409(±0.042) 1.211(±0.210) 0.606(±0.110)
INC(n=200,d=2) 1000 195 186 1.046(±0.088) 0.788(±0.061) 2.174(±0.293) 0.848(±0.118)
HCC(n=200,d=2) 1000 222 215 1.028(±0.079) 0.748(±0.051) 2.157(±0.243) 0.897(±0.112)
TS(n=200,d=2) 1000 291 268 1.053(±0.079) 0.805(±0.058) 1.701(±0.186) 0.851(±0.093)
INC(n=1000,d=2) 1000 127 117 0.201(±0.013) 0.181(±0.012) 0.366(±0.053) 0.207(±0.035)
INC(n=1000,d=10) 1000 262 249 1.023(±0.035) 0.902(±0.030) 1.238(±0.081) 0.777(±0.054)
HCC(n=1000,d=10) 1000 201 192 0.991(±0.033) 0.902(±0.031) 1.235(±0.088) 0.790(±0.067)
TS(n=1000,d=10) 1000 171 162 1.009(±0.033) 0.951(±0.031) 1.166(±0.098) 0.825(±0.071)
INC(n=2000,d=2) 1000 80 77 0.105(±0.007) 0.099(±0.006) 0.214(±0.042) 0.135(±0.029)
HCC(n=2000,d=2) 1000 44 42 0.102(±0.007) 0.099(±0.007) 0.187(±0.050) 0.120(±0.034)
TS(n=2000,d=2) 1000 47 47 0.101(±0.007) 0.099(±0.007) 0.147(±0.032) 0.103(±0.026)
INC(n=2000,d=10) 1000 116 113 0.511(±0.016) 0.491(±0.016) 0.611(±0.052) 0.437(±0.042)
HCC(n=2000,d=10) 1000 110 105 0.500(±0.016) 0.481(±0.015) 0.602(±0.056) 0.430(±0.044)
TS(n=2000,d=10) 1000 101 98 0.511(±0.016) 0.499(±0.016) 0.601(±0.054) 0.486(±0.051)
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Table G.3: Comparison of the min-max truncated estimator ĝ with the ordinary
least squares estimator ĝ(ols) with the heavy-tailed noise (see Section G.1).

nb
of

ite
ra

tio
ns

nb
of

ite
r.

w
ith

R
(ĝ
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ĝ

(o
ls

) )
|ĝ
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INC(n=200,d=1) 1000 163 145 7.72(±3.46) 3.92(±0.409) 30.52(±20.8) 7.20(±1.61)
INC(n=200,d=2) 1000 104 98 22.69(±23.14) 19.18(±23.09) 45.36(±14.1) 11.63(±2.19)
HCC(n=200,d=2) 1000 120 117 18.16(±12.68) 8.07(±0.718) 99.39(±105) 15.34(±4.41)
TS(n=200,d=2) 1000 110 105 43.89(±63.79) 39.71(±63.76) 48.55(±18.4) 10.59(±2.01)
INC(n=1000,d=2) 1000 104 100 3.98(±2.25) 1.78(±0.128) 23.18(±21.3) 2.03(±0.56)
INC(n=1000,d=10) 1000 253 242 16.36(±5.10) 7.90(±0.278) 41.25(±19.8) 7.81(±0.69)
HCC(n=1000,d=10) 1000 220 211 13.57(±1.93) 7.88(±0.255) 33.13(±8.2) 7.28(±0.59)
TS(n=1000,d=10) 1000 214 211 18.67(±11.62) 13.79(±11.52) 30.34(±7.2) 7.53(±0.58)
INC(n=2000,d=2) 1000 113 103 1.56(±0.41) 0.89(±0.059) 6.74(±3.4) 0.86(±0.18)
HCC(n=2000,d=2) 1000 105 97 1.66(±0.43) 0.95(±0.062) 7.87(±3.8) 1.13(±0.23)
TS(n=2000,d=2) 1000 101 95 1.59(±0.64) 0.88(±0.058) 8.03(±6.2) 1.04(±0.22)
INC(n=2000,d=10) 1000 259 255 8.77(±4.02) 4.23(±0.154) 21.54(±15.4) 4.03(±0.39)
HCC(n=2000,d=10) 1000 250 242 6.98(±1.17) 4.13(±0.127) 15.35(±4.5) 3.94(±0.25)
TS(n=2000,d=10) 1000 238 233 8.49(±3.61) 5.95(±3.486) 14.82(±3.8) 4.17(±0.30)
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Table G.4: Comparison of the min-max truncated estimator ĝ with the ordinary
least squares estimator ĝ(ols) with the asymmetric heavy-tailed noise (see Section
G.1).
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INC(n=200,d=1) 1000 87 77 5.49(±3.07) 3.00(±0.330) 35.44(±34.7) 6.85(±2.48)
INC(n=200,d=2) 1000 70 66 19.25(±23.23) 17.4(±23.2) 37.95(±13.1) 11.05(±2.87)
HCC(n=200,d=2) 1000 67 66 7.19(±0.88) 5.81(±0.397) 31.52(±10.5) 10.87(±2.64)
TS(n=200,d=2) 1000 76 68 39.80(±64.09) 37.9(±64.1) 34.28(±14.8) 9.21(±2.05)
INC(n=1000,d=2) 1000 101 92 2.81(±2.21) 1.31(±0.106) 16.76(±21.8) 1.88(±0.69)
INC(n=1000,d=10) 1000 211 195 10.71(±4.53) 5.86(±0.222) 29.00(±21.3) 6.03(±0.71)
HCC(n=1000,d=10) 1000 197 185 8.67(±1.16) 5.81(±0.177) 20.31(±5.59) 5.79(±0.43)
TS(n=1000,d=10) 1000 258 233 13.62(±11.27) 11.3(±11.2) 14.68(±2.45) 5.60(±0.36)
INC(n=2000,d=2) 1000 106 92 1.04(±0.37) 0.64(±0.042) 4.54(±3.45) 0.79(±0.16)
HCC(n=2000,d=2) 1000 99 90 0.90(±0.11) 0.66(±0.042) 3.23(±0.93) 0.82(±0.16)
TS(n=2000,d=2) 1000 84 81 1.11(±0.66) 0.60(±0.042) 6.80(±7.79) 0.69(±0.17)
INC(n=2000,d=10) 1000 238 222 6.32(±4.18) 3.07(±0.147) 16.84(±17.5) 3.18(±0.51)
HCC(n=2000,d=10) 1000 221 203 4.49(±0.98) 2.98(±0.091) 9.76(±4.39) 2.93(±0.22)
TS(n=2000,d=10) 1000 412 350 5.93(±3.51) 4.59(±3.44) 6.07(±1.76) 2.84(±0.16)
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Table G.5: Comparison of the min-max truncated estimator ĝ with the ordinary
least squares estimator ĝ(ols) for standard Gaussian noise.
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INC(n=200,d=1) 1000 20 8 0.541(±0.048) 0.541(±0.048) 0.401(±0.168) 0.397(±0.167)
INC(n=200,d=2) 1000 1 0 1.051(±0.067) 1.051(±0.067) 2.566 2.757
HCC(n=200,d=2) 1000 1 0 1.051(±0.067) 1.051(±0.067) 2.566 2.757
TS(n=200,d=2) 1000 0 0 1.068(±0.067) 1.068(±0.067) – –
INC(n=1000,d=2) 1000 0 0 0.203(±0.013) 0.203(±0.013) – –
INC(n=1000,d=10) 1000 0 0 1.023(±0.029) 1.023(±0.029) – –
HCC(n=1000,d=10) 1000 0 0 1.023(±0.029) 1.023(±0.029) – –
TS(n=1000,d=10) 1000 0 0 0.997(±0.028) 0.997(±0.028) – –
INC(n=2000,d=2) 1000 0 0 0.112(±0.007) 0.112(±0.007) – –
HCC(n=2000,d=2) 1000 0 0 0.112(±0.007) 0.112(±0.007) – –
TS(n=2000,d=2) 1000 0 0 0.098(±0.006) 0.098(±0.006) – –
INC(n=2000,d=10) 1000 0 0 0.517(±0.015) 0.517(±0.015) – –
HCC(n=2000,d=10) 1000 0 0 0.517(±0.015) 0.517(±0.015) – –
TS(n=2000,d=10) 1000 0 0 0.501(±0.015) 0.501(±0.015) – –
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Figure G.1: Surrounding points are the points of the training set generated several
times from TS(1000, 10) (with the mixture noise with p = 0.005 and ρ = 0.4)
that are not taken into account in the min-max truncated estimator (to the extent
that the estimator would not change by removing simultaneously all these points).
The min-max truncated estimator x 7→ f̂(x) appears in dash-dot line, while x 7→
E(Y |X = x) is in solid line. In these six simulations, it outperforms the ordinary
least squares estimator.
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Figure G.2: Surrounding points are the points of the training set generated several
times from TS(200, 2) (with the heavy-tailed noise) that are not taken into account
in the min-max truncated estimator (to the extent that the estimator would not
change by removing these points). The min-max truncated estimator x 7→ f̂(x)
appears in dash-dot line, while x 7→ E(Y |X = x) is in solid line. In these six
simulations, it outperforms the ordinary least squares estimator. Note that in the
last figure, it does not consider 64 points among the 200 training points.
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