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2 IMAGINE Université Paris-Est, CSTB, Sophia-Antipolis, France

Abstract

In this paper, we propose a method for creating a high-
quality spatio-temporal texture atlas from a dynamic 3-D
model and a set of calibrated video sequences. By adopting
an actual spatio-temporal perspective, beyond independent
frame-by-frame computations, we fully exploit the very high
redundancy in the input video sequences. First, we drasti-
cally cut down on the amount of texture data, and thereby
we greatly enhance the portability and the rendering effi-
ciency of the model. Second, we gather the numerous dif-
ferent viewpoint/time appearances of the scene, so as to re-
cover from low resolution, grazing views, highlights, shad-
ows and occlusions which affect some regions of the spatio-
temporal model. Altogether, our method allows the synthe-
sis of novel views from a small quantity of texture data, with
an optimal visual quality throughout the sequence, with
minimally visible color discontinuities, and without flick-
ering artifacts. These properties are demonstrated on real
datasets.

1. Introduction

Motivation. In the recent years, several effective methods
for the automatic generation of spatio-temporal models of
dynamic scenes from video have been proposed [1, 3, 7, 8,
10, 11, 15, 17, 18, 19, 21]. However, capturing, processing
and displaying the visual attributes, such as color, of such
models, has been quite overlooked so far.

Surely, the case of static scenes, i.e. 3-D modeling from
photographs, has been extensively studied: there exist sev-
eral established technique [4, 13, 14, 20] for creating image-
based texture atlases, while avoiding visual artifacts such as
color discontinuities, ghosting or blurring, which typically
arise from photometric and geometric inaccuracies (varying
light conditions and camera responses, non-Lambertian re-
flectance, imperfect camera calibration, approximate shape,
. . . ).

But the case of spatio-temporal models presents addi-
tional challenges. As the reflectance properties of the scene
typically remain constant through time, the time redun-
dancy in the input video sequences is very high. Fully ex-
ploiting this redundancy requires to adopt an actual spatio-
temporal perspective, beyond independent frame-by-frame
texture atlases. While the latter involve a prohibitively huge
amount of texture data, spatio-temporal texture atlases are
expected to be much more concise. Potentially, they could
also take advantage of time redundancy to recover from am-
biguities and deficiencies in the input data.

Previous work. To our knowledge, there are only a few
notable works on spatio-temporal texture atlases. In [17]
the authors propose to warp all images in a common pla-
nar parameterization of the animated mesh, in order to re-
cover spatially varying surface reflectance properties. How-
ever, this parameterization-based approach involves image
resampling and loss of visual detail, and requires to care-
fully position cuts on the surface to avoid unacceptable dis-
tortion. In contrast, in the vein of several successful static
3-D methods [4, 13, 14, 20], we take advantage of the pro-
jective transformations from the moving surface to the input
video frames, which constitute natural and optimal map-
pings.

In [2, 23] average textures are computed. First, average
images are generated considering all the cameras, but sep-
arately for each frames. Then, these average images are
merged into one final texture, by substituting the texture
of invisible patches by the texture from the closest frame
where it is visible [2], or by averaging over frames [23].
Due to blending, the results of these methods suffer from
undesirable artifacts, such as ghosting or blurring, that we
avoid.

The general principle of our method is to compute an op-
timal partition of the spatio-temporal surface of the scene,
into patches associated to the different input images. The
problem is cast as a Markov random field optimization:



to this extent, our work is most closely related to those
of [4, 13] for static scenes. In this paper, we reformulate
and extend these works, in order to meet the specific re-
quirements and issues of spatio-temporal scenes.

Contribution. Our method enjoys several remarkable
features. First, we drastically cut down on the amount of
texture data, and thereby we greatly enhance the portabil-
ity and the rendering efficiency of the model. Second, we
gather the numerous different viewpoint/time appearances
of the scene, so as to recover from low resolution, graz-
ing views, highlights, shadows and occlusions which affect
some regions of the spatio-temporal model1. Altogether,
our method allows the synthesis of novel views from a
small quantity of texture data, with an optimal visual quality
throughout the sequence, with minimally visible color dis-
continuities, and without flickering artifacts. These proper-
ties are demonstrated on real datasets.

2. Problem Formulation and Solution
In this paper, we focus on a representation of dynamic

scenes as animated meshes. An animated mesh consists
in a sequence of meshes with a fixed connectivity (rather
than unrelated meshes), whose time-varying vertex posi-
tions sample the trajectories of material points. It is a
widely used representation in computer graphics, especially
in computer animation.

This choice is not restrictive since there exist several
methods for producing animated meshes of real dynamic
scenes, either directly from video [3, 7, 8, 10, 15, 17, 21],
or from time-varying point clouds [16, 22] (the latter being
obtained from video or from fast 3-D scanning hardware).

In the following, we consider a dynamic scene, imaged
by N calibrated and synchronized video sequences com-
posed of T frames, and approximated by an animated mesh
with F polygonal faces. We note:

• In,t, n ∈ {1..N}, t ∈ {1..T} the input images,

• fk,t, k ∈ {1..F}, t ∈ {1..T} the faces of the animated
mesh at the different time instants.

2.1. Principle

Our method is based on two central assumptions. The
first assumption is that the reflectance properties of the sur-
face do not change through time. Please note that this does
not exclude appearance changes between images, caused
by non-Lambertian reflectance, varying shading, shadows
and highlights along scene motion, or varying lighting con-
ditions. Once this clarification is made, it appears that an

1One should note that highlights and shadows are necessary for photo-
realistic rendering, but they have to be eliminated from the input videos
and then synthesized depending on the new environment.

overwhelming majority of real-world scenes fulfill this as-
sumption. The second assumption is that a mesh face cor-
responds to a same material patch throughout the sequence.
The animated mesh representation precisely enforces this
property.

Our method exploits these two assumptions to estimate
a normalized appearance of the surface. Let us consider
a face of the animated mesh, and the set of input images in
which it is visible. Our rationale is that among these numer-
ous different viewpoint/time appearances of the face, one
or several of them are likely to approach ambient lighting
conditions, and in particular to be exempt from shadow and
highlights. By assigning each face of the animated mesh
to one of these adequate input images, we can assemble a
spatio-temporal texture atlas which allows the synthesis of
normalized views of the dynamic scene, from any viewpoint
and at any time instant.

Using a constant texture source for a face throughout the
sequence has many desirable outcomes. First, we drasti-
cally cut down on the amount of texture data. The latter
do not scale with the number of frames anymore. Second,
if a region of the dynamic scene is visible once (in any
time frame, from any input viewpoint), it can be rendered
throughout the sequence. If a region is out-of-shadow once,
we can discard the shadow throughout the sequence. The
same benefits apply to highlights, texture resolution, and so
on. Finally, we completely eliminate flickering artifacts, i.e.
small color fluctuations in the animation, to which human
eyes are very sensitive.

At this point, a clarification is needed. Rendering regions
of the scene that are not visible in any input image at this
time seems questionable at first sight: no information about
the very geometry of these regions can be expected from
the input data. However, most spatio-temporal reconstruc-
tion techniques are still able to infer relevant geometry and
motion there, by assuming the spatial and temporal coher-
ence of the scene. In turn, our method is able to infer texture
in these regions.

The assignment of faces of the animated mesh to input
images can be encoded by a labeling function

L : {1..F} → {1..N} × {1..T}, (1)

such that ∀t, face fk,t is textured from image IL(k). To be
more exact, faces that are not visible in any input image (in
any time frame, from any input viewpoint) are discarded al-
together, and are not considered in the above equation and
in further discussions. Also, we may want to consider only
a representative subset of the original time frames, in or-
der to keep the computational complexity of our method
sustainable for very long sequences. The rationale behind
the latter simplification is that, with a sufficient number of
frames with enough variety, the spatio-temporal texture at-
las is very close to optimal, and is not significantly further



improved by supplemental frames. Remarkably, such an at-
las can still be used to synthesize novel views of all original
time frames.

The labeling (1) induces a partition of the animated mesh
into patches. On the one hand, all faces inside a patch get
their texture from the same image, so color is continuous
across edges interior to the patch. On the other hand, at
patch boundaries, i.e. at edges between faces with different
labels, photometric and geometric inaccuracies in the data,
in particular approximate geometry and motion, imperfect
camera calibration, are likely to cause visually annoying
color discontinuities (seams). Our method is able to com-
pensate for most of these perturbations. It computes a label-
ing which optimizes visual quality, in some sense formally
defined below, while minimizing the visibility of seams.

2.2. Variational Formulation

More specifically, we adopt a variational formulation:
the optimality of a labeling is quantified by an energy func-
tional composed of two terms, measuring the local visual
quality and the visibility of seams, respectively:

E(L) = Equality(L) + µEseams(L) , (2)

where µ denotes a weighting factor. In the rest of this sub-
section, we detail some possible definitions of these two
energy terms. Subsection 2.3 describes the minimization
procedure applied to the energy functional.

The visual quality term Equality is local: it does not
consider interactions between neighboring regions of the
model. Hence we write it as a sum over faces:

Equality(L) =
F∑
k=1

φk(L(k)) , (3)

where φk(n, t) quantifies how appropriate image In,t is for
texturing faces fk,. of the animated mesh. We can use dif-
ferent criteria to assess this quality.

In previous work on static scenes, several strategies have
been used. In [13], the angle between viewing direction and
face normal is proposed. In [4], the area of the projected
face is advocated instead; in our context, this would write

φk(n, t) = −area [Πn(fn,t)] , (4)

where Πn denotes the projection from 3-D space to video
sequence n. The latter choice would lead to an easily in-
terpretable definition of visual quality: the total number of
texels (texture elements) on the animated mesh.

Nevertheless, the above definitions mistakenly identify
visual quality with visual detail. They fail to account for
photometric aspects such as shadows and highlights. If
the 3-D positions of light sources are known, we can eas-
ily estimate shadow and highlight regions on the spatio-
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Figure 1. Notations of adjacent faces for term Eseams.

temporal surface, and define visual quality as the total num-
ber of shadow-free and highlight-free texels on the animated
mesh.

As this additional information is not available in practice
for all datasets, we propose an alternative approach. Given a
face, we compute its average projected area over all images
where it is visible. To guarantee sufficient visual detail, we
discard all images below average, i.e. we set φk to infinity
for these images. For the remaining possible images, we
set φk to the difference between the actual face intensity
and the median of intensities. Here again, we compute the
median over all images where the face is visible. Unfortu-
nately, we could not test this criterion in this paper, for lack
of datasets with significant shadows and highlights.

The second term Eseams measures how smoothly the
color changes passing from one face to an adjacent. If the
two faces take their textures from the same image, i.e. their
label is the same, then the borderline between them is con-
tinuous. On the other hand, neighboring faces with different
labels are likely to cause seams at the common edge. In or-
der to minimize seam visibility, the second energy term is
defined as the integral along the seams of color discrepancy
between bordering images.

Further notations are needed to write a formal expression
of this term. (See Figure 1.) Let us denote by ej,k a non-
border edge of the animated mesh, adjacent to faces fj,. and
fk,.. We note ~xλj,k,τ , λ ∈ [0, 1] a linear parameterization of
ej,k at time τ . Notice that the color at a point ~xλj,k,τ on an
edge does not depend on the time frame τ , but only on the
selected input image (n, t). We note cλj,k(n, t) the color at
~xλj,k,., extracted from image In,t:

cλj,k(n, t) = In,t ◦Πn(~xλj,k,t) . (5)

With these notations in hand, Eseams writes as a sum
over the set E of all non-border edges:

Eseams(L) =
∑
ej,k∈E

‖ej,k‖ψj,k(L(j),L(k)) , (6)

ψj,k(`, `′) =
∫ 1

0

∥∥cλj,k(`)− cλj,k(`′)
∥∥ dλ . (7)

‖ej,k‖ is computed as the average length of the edge over
all frames.



2.3. Optimization Procedure

It must be noted that ψj,k is a semi-metric: ∀`, `′, `′′ ∈
{1..N} × {1..T},

• ψj,k(`, `) = 0,

• ψj,k(`, `′) = ψj,k(`′, `) ≥ 0,

• ψj,k(`, `′′) ≤ ψj,k(`, `′) + ψj,k(`′, `′′).

This still holds with any metric on colors instead of the
usual Euclidean distance in RGB color space.

This has an important practical consequence: it al-
lows us to minimize the energy functional (2) with α-
expansion [6, 12]. It consists in translating the labeling
problem, which is generally NP-hard, to a succession of bi-
nary minimum cut problems. Efficient solutions to these
min-cut problems are described in [5]. The whole pro-
cess monotonically decreases the energy and is guaranteed
to converge to a strong local minimum, thereby ensuring a
close-to-optimal seam placement.

In our implementation, we use the graph cuts
minimization software by O. Veksler (http:
//www.csd.uwo.ca/˜olga/code.html) and
by V. Kolmogorov (http://www.adastral.ucl.
ac.uk/˜vladkolm/software.html).

2.4. Texture Atlas Creation

We could synthesize novel views from the input video
sequences using multiple passes of projective texture map-
ping [9]. However, the creation of a single rectangular tex-
ture map is very desirable: it increases the rendering effi-
ciency and allows to output portable animated 3D formats.
To build such a spatio-temporal texture atlas, we consider
the binary masks representing the useful regions in the dif-
ferent images: Mn,t is the projection in In,t of the associ-
ated patch:

Mn,t = Πn

 ⋃
L(k)=(n,t)

fk,t

 . (8)

We first apply a morphological dilation to the masks with a
square structural element of a few pixels, in order to pro-
vision for automatic texture minifying during rendering.
We then compute a connected component decomposition,
yielding a list of texture fragments. We pack the latter using
a classical first-fit decreasing strategy: we place the frag-
ments in decreasing order of size, at the first available slot
found along a scanline search in the atlas. Finally, we set
the texture coordinates of the vertices of the animated mesh
accordingly. Thus, the final output of our algorithm is com-
patible with standard 3D viewers.

Figure 2. Some views of our test datasets. From left to right: two
input images, two views of the animated mesh. From top to bot-
tom: ’crane’, ’samba’ and ’swing’ datasets.

3. Experimental Validation
3.1. Input Datasets

In order to validate our method under real conditions,
we tested it on three challenging datasets: ’crane’, ’samba’
and ’swing’, that were made available online by the au-
thors of [21] at http://people.csail.mit.edu/
drdaniel/mesh_animation/.

Each dataset consists of 8 calibrated and synchronized
1600 × 1200 color video streams. ’crane’ and ’samba’
are composed of 175 frames. ’swing’ is composed of 150
frames. The datasets also include an animated mesh of
the dynamic scene, of approximately 10K vertices and 20K
faces, obtained in accordance with [21]. Figure 2 displays
some views of these datasets.

3.2. Compared Methods

On each of the datasets, we compare four different meth-
ods, which we call ’single-frame’, ’single-frame optimized’,
’multi-frames’ and ’multi-frames optimized’.

The ’single-frame’ and ’single-frame optimized’ meth-
ods both compute independent frame-by-frame texture at-
lases. The ’single-frame’ method greedily maps each face
to the highest-quality input image of the current frame. The
’single-frame optimized’ achieves a trade-off between vi-
sual quality and visibility of seams, similarly to [4, 13].

The ’multi-frames’ and ’multi-frames optimized’ meth-
ods both compute a single spatio-temporal texture atlas.
To limit computational expense, we build this atlas from
a subset of the input time frames, namely 10 uniformly dis-
tributed time frames, with no noticeable deterioration of the

http://www.csd.uwo.ca/~olga/code.html
http://www.csd.uwo.ca/~olga/code.html
http://www.adastral.ucl.ac.uk/~vladkolm/software.html
http://www.adastral.ucl.ac.uk/~vladkolm/software.html
http://people.csail.mit.edu/drdaniel/mesh_animation/
http://people.csail.mit.edu/drdaniel/mesh_animation/


’multi-frames’ ’multi-frames optimized’
Figure 6. Color-coded partition of the surface obtained on the
’samba’ dataset, with two different methods.

Figure 7. A sample spatio-temporal texture atlas.

results. The ’multi-frames’ method greedily maps each face
to the highest-quality input image among all viewpoints and
all selected time frames:

L(k) = arg max
n,t

φk(n, t) .

Finally, the ’multi-frames optimized’ method is the one
described in this paper. Let us mention that the ’multi-
frames optimized’ method degenerates to the ’multi-
frames’ method when setting the weighting factor µ of
Eseams to zero.

In all these experiments, we use the number of texels (4)
as the visual quality measure.

3.3. Results

The results of the four aforementioned methods on the
’crane’, ’samba’ and ’swing’ datasets are compared in Fig-
ures 3, 4 and 5, respectively. Due to space limitations, we
only show three views for each method and each dataset,
synthesized at three different time instants. A more con-
venient and more comprehensive visual comparison can be
conducted using the videos available in our supplemental
material.

Also, for illustration purposes, Figure 6 displays the par-
tition of the surface obtained on the ’samba’ dataset with the
’multi-frames’ and the ’multi-frames optimized’ methods.
Finally, Figure 7 displays a sample spatio-temporal texture
atlas, obtained from the ’swing’ dataset.

3.4. Discussion

These results clearly demonstrate one major advantage
of multi-frames methods over single-frame methods: the
ability to cover temporarily hidden regions as well, which
results in significantly smaller untextured regions in novel
views.

Another drawback of single-frame methods is also ap-
parent in these results, particularly in the accompanying
videos: the incoherence of surface partition across time
frames produces small color fluctuations, known as flick-
ering artifacts, to which human eyes are very sensitive.

The poor results of the ’multi-frames’ method reveal the
important geometric inaccuracy of the input datasets (ap-
proximate calibration, geometry and motion). This inaccu-
racy prevents from naively assembling a satisfactory spatio-
temporal texture atlas from input images that are very dis-
tant, in viewpoint or in time. Remarkably, our method
(’multi-frames optimized’) turns out to be robust to such
imperfect data, indicating that a global optimization of sur-
face partition is essential for the success of our approach.

At the same time, our experiments highlight a limit of
spatio-temporal texture atlases: if very detailed geometry
and motion, such as creases of clothes and facial expression,
are not modeled in the animated mesh, they cause a viola-
tion of our central ’constant reflectance’ assumption. As a
result, these variations are averaged out by our approach.
This explains the visually intriguing static faces visible in
our results.

Besides, we should note that our method does not explic-
itly take photometry into account, and although our method
could evolve in this direction, in this paper we deliberately
adopt an orthogonal approach: we estimate a plausible dif-
fuse map of the scene by automatically discarding complex
photometric effects. Our method, though it has limitations,
is simple and easy to implement, and our results show sig-
nificant advantages compared to frame-by-frame texturing.

4. Conclusion
We have proposed a method to create high-quality

spatio-temporal texture atlas for dynamic 3-D model. The
texture map is built using a set of calibrated video se-
quences by exploiting its high redundancy. We represent
the dynamic scene as animated mesh with fixed connectiv-
ity, and assume the reflectance properties of the surface to
be constant through time, which is valid for most real-world
scenes.

The main contribution is twofold. First, the amount of
texture data is drastically reduced by eliminating redun-
dancy, which greatly accelerates rendering and helps porta-
bility. Second, using several different viewpoint/time ap-
pearances of the scene, we can recover from low resolution,
grazing views, and reduce the annoying effects of high-
lights, shadows and occlusion. We have demonstrated the
advantages of our method compared to single-frame textur-
ing on real datasets.
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Figure 3. Results on the ’crane’ dataset. See text for more details.
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