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ABSTRACT

In this paper, we begin to explore the evolution of curves of
the projective plane according to a family of intrinsic equa-
tions generalizing a “projective heat equation” [1]. This
is motivated by previous work for the Euclidean |2, 3, 4]
and the affine case [5, 6, 7, 8] as well as by applications in
the perception of two-dimensional shapes. We establish the
projective arclength evolution and the projective curvature
evolution. Among this family of equations, we point out
the ones preserving an important property of the Euclidean
and affine heat equations that was not preserved in the pro-
jective case: a curve with constant curvature should remain
such a curve during its evolution.

1. INTRODUCTION

Let B(p,t) : R x R — P? be a family of smooth curves
embedded in the real projective plane P%. t represents the
time or the scale and p parameterizes the curve. Using
standard results of projective differential geometry [9], we
change B(p,t) by a scale factor A(p,t) and reparameterize
the curves with their projective arclength o(p,t) in such a
way that the vectors A = AB, considered as functions of o,
now satisfy the projective Frenet equations:

dA
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do
(1)
d‘;‘l‘ = —kA+A® (1)
a
2
d?;) = —A-kAW

k is the projective curvature, the point A®) is on the
tangent to the curve in A and the line (A, A®) is the pro-
jective normal. Functions k and o are invariant under the
action of the projective group PLG(2) and characterize the
curve up to a projective transformation. Moreover, vectors
A, A® | A®) gatisfy the condition:

[AAM AP =1 (2)

Note also that vectors A and B represent the same pro-
jective point.

Given a smooth curve Bg(p), trying to extend what
had been done in the Euclidean [2, 3, 4] and the affine case
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[5, 6, 7, 8], we previously studied [1] the evolution equation
A, =A,, (3)

with initial condition A(p,0) = Bg(p) in which the par-
tial derivative with respect to time is taken at constant p.
Hopelessly, while circles evolving according to the Euclidean
heat equation remain circles, while the conics, which are the
curves with constant affine curvatures, remain conics when
they follow the affine heat equation, we noticed that equa-
tion (3) does not preserve the property of having a constant
projective curvature. The motivation of this paper is then
to find an intrinsic evolution equation close to equation (3)
preserving this property. This could be one step further
toward a projective scale-space.

2. CURVES WITH CONSTANT PROJECTIVE
CURVATURE

Let us sketch out a way to determine the plane curves with
constant projective curvature. For more detail, please refer
to [10].

From the Frenet formulas (1), we get the useful relation
As = —2kAY — (1+4k,)A (4)

In this section, we don’t deal with the evolution of
curves anymore but only with a smooth curve A(p). If
A has a constant projective curvature, that is if k(p) = ko,
equation (4) becomes

A s +2kA, +A=0 (5)
We are thus led to consider the scalar equation
6" +2ke6' +6=0

If we write § = €¢"?7 we obtain the characteristic equation
r® + 2kor + 1 = 0. Depending on its roots, we have the fol-
lowing cases (note we can’t have three equal roots because
their sum is equal to zero and their product is —1):

1. Three distinct real roots r1,72,73: the solutions of (5)
are

A =Ci1e™7 4+ Ce™7 4 Cse™”

where C; are fixed points. In a certain coordinate
system:

AT =[z,y,2] = [, €7

e (6)
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which is the homogeneous equation of the curve
y = ™ (it can be proved that m can take any real
value except 2, % and —1)

2. One real root r1 and two complex conjugate roots
ro & ir3. In this case:

T - - . :
A” =[z,y,z] =[e"7,e"*7 cosrso, e sinrsa]| (7)
or, in polar coordinates in the map [£, £]:

p= erame g — oy

3. Two equal roots r2 = r3. There
AT =[z,y,2] =7, "7, 0¢™7] (8)

which leads to y = e{m2=m1)% 11 the map [i’i . Up
to an homography, it is the exponential y = €”.

This can be summarized as follows:

Proposition 1 The curves with constant projective curva-
ture fall in three categories

1. The general parabola: y = z™, m ¢ {2, %, -1}
2. The logarithmic spiral: p = ™%, m # 0

3. The exponential: y = e

3. EXTENDING THE PROJECTIVE HEAT
EQUATION

When we study the evolution of curves with constant pro-
jective curvature under equation (3) , we discover that their
projective curvature does not remain constant as a function
of p. Due to lack of space, we don’t give here a direct proof
of this. Anyway, this result is a consequence of proposition
4.

Noticing that equation (3) can be rewritten A; =
—kA + A® using equation (1) , we will consider the fol-
lowing evolution laws:

A, = oA+ AN +4AP (9)

were a, 3,7 are some differential projective invariants of the
curves A(p,t).

The projective arclength o and of the projective cur-
vature k characterizing a curve up to an homography, it is
natural to study their evolution laws. Actually, it is usual
to study g = ‘3—; instead of o.

Let us first establish some preliminary properties. Using

the fact that the independent variables p and ¢ verify
o 8
atdp  opot

it is quite immediate to show that the Lie bracket [2, 2]
equals:
[Q ﬂ]_a_z_a_z__ﬂﬂ (10)
0t’ o'~ Otdoc 00Ot g Do
Applying this formula twice more, we obtain the expres-
sions
7] g 0 o

83 _ gt .\
51007 = g8, "% 007 T arer MV

and

o* 0

_=_[g_¢]2__ g 8° o*
Otdo? g ° 0o

g 0 490 | O
B[g]aﬁo2 3 3+8035t

4 B (12)

that we will need further.

3.1. Evolution of the projective arclength

We use equation (2) . Taking the partial derivative of the
two members with respect to ¢ at constant p, we obtain the
desired equation.

Proposition 2 The evolution law of the projective arc-
length of a curve following equation (9) is given by

—k
gt =a+8,+ Jo2 — Y (]_3)
g 3
Proof: We have
|AA(1)A(2)|t — |A¢A(1)A(2)| + |AA£1)A(2)|
+HAAD AP (14)

From equations (9) and (1), the first determinant of the
right hand side member equals a. Using also equation (10),
we get

A
AW — A, = _Jiam 9B (15)
9

do
from which we finally obtain the value of |AA§1)A(2)| in
(14). In a similar way, we write

_ OkA+A,,

A ot

= ktA- + kA-aa + Atoa (16)

whose last term is obtained from equation (11) . Thus the
value of the last determinant in (14) and finally equation

(13) O
3.2. Evolution of the projective curvature

Proposition 3 The evolution law of the projective curva-
ture of a curve following equation (9) is given by

3 2
ke = —a,2+ e + % + k(§702 - 2a)
7
ko (B + §70) + 5 (g2 +2°) (17)

Proof: Let us compute %Aga in two different ways:

1. Using equation (4) , we have

OA s o
o _ 9. ok AD
57 = g (—(L+ ko)A —2kA®)
= — aé” A—(1+ko)A; — 2k, AW
—2kAY (18)

where we know A, and A{" from (9) and (15).



2. On the other hand, we can use equation (12)

0A s _ _[g_t]chAG — 3[&]0A02 — 3&A03
ot g g g
8’A
+5T; (19)

where all the terms of the right hand side member are
known from (13) and (1), except the last one which
can be computed from equation (9) and the Frenet
formulas.

Expressing (18) and (19) as functions of (A, AW, A(z)) and
equaling the coeflicient of A® in both, we get (17) O

4. PRESERVING CURVES WITH CONSTANT
PROJECTIVE CURVATURE

We want to choose (a,3,7) such that an initial curve with
constant projective curvature evolves while keeping this prop-
erty. Here is our main result:

Proposition 4 1. Curves with constant projective cur-
vature following evolution equation (9) remain curves
with comstant curvature if and only if differential pro-
jective tnvartants o, 3,y verify

ky = 3« (20)

2. In that case, these curves keep their initial curvature
(k: = 0), hence remaining the same curve up to an
homography. Projective arclength and curvature of
any curve evolve the following way

_ 3 Yo kK 1 (21)
k, = 37 + 5 + 3702 + ko (B + 5’)’0)
Proof: We have k(p,t) = k(¢).
of

Let 7;(t) be the solutions

4 2k(t)r4+1=0 (22)
There is an homography H(t) such that
Alp.t) = H(t) e o7, erso)T

(or one of the other two expressions (7) or (8)). It can be
shown that the coefficient of the term in e"'? of the first
coordinate of the evolution law (9) has to vanish, that is

(Hi1): + Hii(r10): = Hua(a+ Bri +4(r] + k)

hence

2 Wy Hll 1 3 A
o = %[(a + Bri +y(ri + k) — (H—) = (riha] (23)

The derivative of this equation with respect to o is

0 1
Fo = ol HBori b (4 R) = ()] (20)
equation whose left hand side member is given by (10)
Oo 0o, g1 00  gi .
dor _ 9:99 _ 9 25
do ot gOo g (25)

and whose last term of the right hand side member is ob-
tained deriving (22) with respect to ¢

—2’!‘1

PN T (26)

(r1): =

Using equations (13), (17), (25), (22) and (26) in (24), it
comes

YoTt + @ori + g+ 3(3a—ky) =0 (27)

It can be shown that the only way to satisfy (27) and similar
equations for r; and r3 (or for their real and imaginary

parts) is to verify
a, =0
Yo =0 (28)
3a—ky=0

We know from classical results in the theory of differential
invariants (see [11]) that every projective differential invari-
ant is a function I(k, ks, ..., kon ) for some n. Thus, the first
two conditions of (28) are verified (remember k = k(t)). Fi-
nally, only equation (20) remains. Moreover, this condition
implies from (17) that k; = 0. Hence the first part of point
2 in proposition 4 and the fact that the necessary condition
(20) is sufficient. Equations (21) come directly from (13)
and (17) using (20)0

Note that the projective heat equation doesn’t verify
condition (20), hence a proof of what is said at the begin-
ning of section 3.

Note also that any 8 may be chosen. This should not be
surprising because § governs the evolution along the tan-
gent. Whatever its value, the same family of curves is ob-
tained up to a reparameterization in p.

A simple case is the evolution law A; = kA+3A(2). For
this equation, (21) becomes g: = k; = 0. Hence, any curve
evolves remaining the initial one up to an homography. Fig-
ure 1 shows the evolution of a logarithmic spiral, rotating
and shrinking. Figure 2 shows what a general parabola be-
comes, tending to a line. See figure 3 for the exponential
curve. Nevertheless, this equation doesn’t smooth curves,
making it somewhat useless.
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Figure 1: A logarithmic spiral evolving according to A; =

kA + 3A® . In bold, the initial curve
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Figure 2: A general parabola evolving according to A, =

kA + 3A®)  Tn bold, the initial curve
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Figure 3: The exponential curve evolving according to A; =
kA + 3A®, In bold, the initial curve

The general case seems more promising. We currently
investigate what kind of values of v lead to interesting evo-
lutions of the projective arclength and curvature. It appears
that system (21) could have smoothing properties for good
choices of +.

5. CONCLUDING REMARKS

This work sets the basis for the study of projective invari-
ant evolutions of plane curves preserving the property of
having a constant projective curvature. We establish the
evolution laws of the projective arclength and curvature.
There remains to find out which particular evolutions lead
to interesting properties and to see if it is possible, as in
the Euclidean and affine cases, to define a projective scale-
space.
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