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Abstract. We present a novel geometric approach for solving the stereo problem
for an arbitrary number of images (greater than or equal to 2). It is based upon
the definition of a variational principle that must be satisfied by the surfaces of
the objects in the scene and their images. The Euler-Lagrange equations which
are deduced from the variational principle provide a set of PDE’s which are used
to deform an initial set of surfaces which then move towards the objects to be de-
tected. The level set implementation of these PDE’s potentially provides an efficient
and robust way of achieving the surface evolution and to deal automatically with
changes in the surface topology during the deformation, i.e. to deal with multiple
objects. Results of a two dimensional implementation of our theory are presented
on synthetic and real images.

1 Introduction and preliminaries

The idea that is put forward in this paper is that the methods of curve and
surface evolutions which have been developed in computer vision under the
name of snakes [15] and then reformulated by Caselles, Kimmel and Sapiro
[2] and Kichenassamy et al. [16] in the context of PDE driven evolving curves
can be used effectively for solving 3D vision problems such as stereo and
motion analysis.

As a first step in this direction we present a mathematical analysis of the
stereo problem in this context as well as a partial implementation.

The problem of curve evolution driven by a PDE has been recently studied
both from the theoretical standpoint [9,10,20] and from the viewpoint of
implementation [17,22,23] with the development of level set methods that
can efficiently and robustly solve those PDE’s. A nice recent exposition of
the level set methods and of many of their applications can be found in [21].

The problem of surface evolution has been less touched upon even though
some preliminary results have been obtained [23,3].

Stereo is a problem that has received considerable attention for decades in
the psychophysical, neurophysiological and, more recently, in the computer
vision literatures. It is impossible to cite all the published work here, we
will simply refer the reader to some basic books on the subject [14,11-13,6].
To explain the problem of stereo from the computational standpoint, we
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will refer the reader to Fig. la. Two, may be more, images of the world
are taken simultaneously. The problem is, given those images, to recover
the geometry of the scene. Given the fact that the relative positions and
orientations and the internal parameters of the cameras are known which we
will assume in this article (the cameras are then said to be calibrated [6]),
the problem is essentially (but not only) one of establishing correspondences
between the views: one talks about the matching problem. The matching
problem is usually solved by setting up a matching functional for which one
then tries to find extrema. Once a pixel in view ¢ has been identified as being
the image of the same scene point as another pixel in view j, the 3D point
can then be reconstructed by intersecting the corresponding optical rays (see
Fig. 1a again).

In order to go any further, we need to be a little more specific about the
process of image formation. We will assume here that the cameras perform a
perpective projection of the 3D world on the retinal plane as shown in Fig.
1b The optical center, noted C' in the figure, is the center of projection and
the image of the 3D point M is the pixel m at the intersection of the optical
ray (C,m) and the retinal plane R. As described in many recent papers in
computer vision, this operation can be conveniently described in projective
geometry by a matrix operation. The projective coordinates of the pixel m
(a 3 x 1 vector) are obtained by applying a 3 x 4 matrix P; to the projective
coordinates of the 3D point M (a 4 x 1 vector). This matrix is called the
perspective projection matrix. If we express the matrix P; in the coordinate
system (C,z,y, 2) shown in the Fig. 1b, it then takes a very simple form:

P; =[I50]

where I3 is the 3 x 3 identity matrix. If we now move the camera by applying
to it a rigid transformation described by the rotation matrix R and the
translation vector t, the expression of the matrix P changes accordingly and
becomes:

P, = [RT — RT¢]

Let us decide on some definitions and notations. Images are denoted by
Iy, k taking some integer values which indicate the camera with which the
image has been acquired. They are considered as smooth (i.e. C2, twice con-
tinuously differentiable) functions of pixels mj whose coordinates are defined
in some orthonormal image coordinate systems (zy,yr) which are assumed
to be known. We note I (my,) or I (zk,yr) the intensity value in image k at
pixel my.

The pixels in the images are considered as functions of the 3D geometry
of the scene, i.e. of some 3D point M on the surface of an object in the scene,
and of the unit normal vector N to this surface.

Our approach is an extension of previous work by Robert et al., Robert
and Deriche, [19,18], and Deriche et al. [4]. For a comparison with the work
of those authors see [7].



(a) (b)

Fig. 1. (a) The multicamera stereo vision problem is, given a pixel mi in image
1, to find the corresponding pixel my in image 2, ... , the corresponding pixel m,,
in image n, i.e. the ones which are the images of the same 3D point M. Once
such a correspondence has been established, the point M can be reconstructed by
intersecting the optical rays (m;,C;), i = 1,--- ,n. (b) The focal plane (z,y) is
parallel to the retinal plane (z1,y1) and at a distance of 1 from it.

2 The object and matching models

In this section we present the way we model the objects in the scene and the
way we match their images.

Objects are modelled as the zero level set of a function & : R® — R which
we assume to be smooth, i.e. C2. The coordinates (z,v,2) of the points in
the scene which are on the surface of the objects present are thus defined by
the equation 4(x,y, z) = 0. This approach has at least two advantages. First,
it potentially allows us to use an arbitrary number of cameras to analyze the
scene and second, it leads very naturally to an implementation of a surface
evolution scheme through the level set method as follows.

Let us consider a family of smooth surfaces S : (v,w,t) = S(v,w,t)
where (v, w) parametrize the surface and ¢ is the time. It is in general not
possible to find a single mapping S from R? to R? that describes the entire
surface of the objects (think of the sphere for example where we need at
least two) but we do not have to worry about this since our results will in
fact be independent of the parametrization we choose. The objects in the
scene correspond to a surface S(v, w) and our goal is, starting from an initial
surface So(v,w), to derive a partial differential equation

S; = PN, (1)

where N is the unit normal to the surface, which, when solved with initial
conditions S(v,w,0) = So(v,w), will yield a solution that closely approxi-
mates S(v,w). The function g is determined by the matching functional that



we minimize in order to solve the stereo problem. We define such a functional
in the next paragraph. An interesting point is that the evolution equation (1)
can be solved using the level set method which has the advantage of coping
automatically with several objects in the scene. In detail, the surfaces S are
at each time instant the zero level sets of a function v : R* — R:

u(S,t) =0

Taking derivatives with respect to wu, v, t, noticing that N can be chosen
such that N = —‘g—z‘, where V is the gradient operator for the first three
coordinates of u, one finds easily that the evolution equation for u is:

w =4 Vu | (2)

We now define our matching criterion. It is basically a modified version of
the standard cross-correlation criterion which takes into account the orienta-
tion of the tangent plane to the object. It is known [7,6] that a plane induces
a collineation between two retinal planes. The correlation window in image 2
is therefore the image by the collineation induced by the tangent plane of the
rectangular window in image 1 (see Fig. 2). This collineation is a function of
the point M and of the normal to the object at M. It is therefore a function
of S and N that we denote by K. It satisfies the condition K (m1) = ma. We
can define an inner product of the two images I1 and > as follows:

(IlaIZ)(SaN:w:y) =
1 +p r+q _ _

., /q (Ii(m1 +m) — i (m1)) (L (K (my +m)) = Ix(m2))dm,  (3)

Note that the definition of (I, I5) is not symmetric, because of K. It is

possible to make it symmetric [7]. We note | I |? the quantity (I, I). I; and

I, are the means of I; and I, which are classically defined as:

I —L i +qI Ndm' k=1,2 4
k(mg) = 1pg k(my +m')dm =1, (4)
—-P —q

Note that the definition (4) of I, should be modified to take K into account.
We do not do it here for lack of space, but see [7], and because it does not
modify the fundamental ideas exposed in this paper but makes the compu-
tations significantly more complex.

We can now define the following error measure:

C(S,N) = — i //Wll‘rjl(h,[j)da://QS(S,N,v,w)da

i,j=1,i#j
(5)

In this equation, the indexes 7 and j range from 1 to n, the number of views.
In practice it is often not necessary to consider all possible pairs but it does



not change our analysis of the problem. In (5), the integration is carried over
with respect to the area element do on the surface S rather than wit respect
to the image coordinates. With the previous notations, we have

do =| S, X Sy | dvdw
The presence of the term | S, x S,, | has two dramatic consequences:

1. Tt automatically regularizes the variational problem like in the geodesic
snakes approach [2], and

2. it makes the problem intrinsic, i.e. independent of the parametrization of
the objects in the scene.

Note also that each integral that appears in (5) is only computed for those
points of the surface S which are visible in the two concerned images. Thus,
visibility and occlusion are modelled in this approach (see Sect. 3 for more
details).

The rest of the derivation proceeds as usual, we write the Euler-Lagrange
equations of the variational problem (5), consider their component § along the
normal to the surface, set up a surface evolution equation (1) and implement
it by a level-set method. This is all pretty straightforward except for the
announced result that the resulting value of 3 is intrinsic and does not depend
upon the parametrization of the surface S.

We in fact prove in [7] a more general result. Let ¢ : R* x R*> — R be a
smooth function of class at least C? defined on the surface S and depending
upon the point S(v,w) and the unit normal N(v,w) at this point, which we
denote by ¢(X, N). Let us now consider the following error measure:

C(S,8,,50) = / / (S (v, w), N(v,w))h(v, w)dv dw (6)

where the integral is taken over the surface S and h(v,w) =| Sy x Sy |.
We prove in [7] the following theorem:

Theorem 1. Under the assumptions of smoothness that have been made for
the function ® and the surface S, the component of the Euler-Lagrange equa-
tions for criterion (6) along the normal to the surface is the product of h
with an intrinsic factor, i.e. which does not depend upon the parametrization
(v,w). Furthermore, this component is equal to

h(#xN — 2H(® — xN) + Trace((Pxn)1s + dN o (InN)16))  (7)

where all quantities are evaluated at the point S of normal N of the surface,
Ts is the tangent plane to the surface at the point S. dIN is the differential of
the Gauss map of the surface, H is its mean curvature, xn and NN are
the second order derivatives of &, (PxN)rs and (PNN)Ts their restrictions
to the tangent plane Ts of the surface at the point S.



Note that the error criterion (5) is of the form (6) if we define & to be

~ 1
- ——(L;, I)
2 PR A

4,j=1,i#j

According to the theorem 1, in order to compute the velocity § along the
normal in the evolution equations (1) or (2) we only need to compute s, P,
Psn and PN as well as the second order intrinsic differential properties of
the surface S. Using the fact that the function @ is a sum of functions &;; =
—m(Ii, I;), the problem is broken down into the problem of computing
the corresponding derivatives of the &;;’s. The results and proofs can be
found in [7].

In terms of the level set implementation, we ought to make a few remarks.
The first is to explain how we compute 3 in (2) at each point (z,y, z) rather
than on the surface S. It should be clear that we do not have any problem for
computing N = _|§—Z| and 2H = div(‘g—“u‘) and dN which is the differential
of the Gauss map of the level set surface going through the point (z,y, 2).
The vectors &x, PN, the matrices Pxn, Pnn are computed as explained in
[7]-

The second remark is that we can now write (2) as follows:

ut =| Vu | div(qﬁ&

— & (DN DN)I
Vu |) ~N( + trace(DN)I3)Vu

— Trace((Pxn)1s + dN o (nN)T16) | Vu | (8)

where DN is the 3 x 3 matrix of the derivatives of the normal with respect to
the space coordinates, I3 the identity matrix, and at each point (z,y,2) the
tangent plane T is that of the level set surface u = constant going through

that point. Note that trace(DN) = —div(‘g—zl).

The first term | Vu | div($gy) is identical to the one in the work
of Caselles, Kimmel, Sapiro and Sbert [3] on the use of minimal surfaces or
geodesic snakes to segment volumetric images. Our other terms come from the
particular process that we are modelling, i.e. stereo. We believe and hope that
we can prove in the near future that, under some reasonable assumptions, (8)
is well-posed. As a first step in that direction, we report on some important

implementation details:

1. Near the solution, @ is close to -1 and the term | Vu | div(@lg—zl) becomes
anti-diffusive! As a consequence, we used &' = & + 1 instead of ®,which
takes values between 0 and +2, as a new error measure. This is equivalent
to introducing in the criterion a term that tends to minimize the total
area of the objects.

2. Regarding the image smoothness assumptions, a Gaussian modulated
correlation could be used [8], although we did not have to use it in our

2D implementation (see Sect. 3).



3. Concerning the problems of visibility and occlusion, the total error mea-
sure Cy assumes the choice of certain camera pairs. Due to lack of place,
we will not go into the details and just say that our 2D implementation
handles this problem such that Cj is at least continuous.

Fig. 2. The square window (a1,b1,c1,d1) in the first image is back projected onto
the tangent plane to the object S at point M and reprojected in the retinal plane of
the second camera where it is generally not square. The observation is that the dis-
tortion between (a1, b1,c1,d1) and (a2, b2, c2,d2) can be described by a collineation
which is function of M and the normal N to the surface of the object.

3 Two-dimensional implementation

We now present the results of an implementation in two dimensions of the the-
ory that has been described in the previous section. The situation is described
in Fig. 3 which depicts a planar object S with two connected components.
This object is observed by the five cameras numbered from 1 to 5 and the
level set corresponding to some value k has been drawn to illustrate how the
visibility condition is taken into account when solving (8): the point M on
the level set is not seen by the cameras 3 to 5 but only by 1 and 2.

Planar objects are viewed by linear cameras. Pixels and images are func-
tions of only one variable.

The inner product (3) is:

(I, 1;)(S,N) = % / " (Li(m +m) — Ti(ma)) (5 (K (ms + m)) — T (mj))dm



We use the affine approximation: Kj;(m; + m) = m; + a;ym. The surface
S(v,w) is a plane curve S(v) and the error measure:

/ B(S(v), N(v))h(v)dv

where hi(v) = [Sy| and & = 37 ; ;e (o) Xig (V) (1— m(h, I;)) (Scam(v) is
the set of camera pairs used at v and A;;(v) scale factors choosen such that @ is
at least continuous). Let o be the arc-length parameter of S (do = h(v)dv),
T the unit tangent, and k its curvature, the normal component 8 of the
Euler-Lagrange equation simplifies to the intrinsic quantity:

B =k®+[Ps + £(TTT — NNT@L]- N + TT (Sgn + £nn)T

In order to implement the evolution equation (2) of u(z, y, t), the following
steps are required to get 8 at point M = (z,y) at time ¢:

— Considering the level set S(v) of u passing through point M, determine
from which cameras is M visible, let us call them the S-cameras. They
are determined by assuming that the level curve going through the point
is opaque.

— Compute the normal N and the curvature x of S at M.

— For each S-camera, compute m;, % and %mi.

For each pair of S-cameras, compute a;;, a;jg, Qijpns %aij, and %asz-

— Compute (I;, I;), (I, Ij)g, (Ii, Ij) s (I3, Ij) and (I, Ij)

Compute &, P, Py and LIy hence f.

This scheme has been tested with synthetic noisy images of 2D objects
viewed from a number of cameras located around them and on a number of
real images. We first present our results on three synthetic objects, each one
being meant to demonstrate one feature of the algorithm. All those results
have been obtained with 18 cameras observing the scene and are presented in
an homogeneous manner: on the left hand side of the figure we show the views
from some of the cameras, on the right hand side we show the convergence
of the zero level set.

We start with Fig. 4 which demonstrates that the algorithm works for
non convex objects. Notice that the background is dark. Figure 5 shows the
stereovision process for two circles viewed on a random background. This
example shows that our algorithm can deal with multiple objects (note the
change in topology at time ¢2) and can cope with a textured background
without being fooled.

Figure 6 shows the results for two squares. This example shows that our
modelling can cope somewhat with non smooth objects.

Figure 7 shows a real example in the case of two cameras. The stereo pair
of a human face is shown on the left hand side of the figure, the trace of the
epipolar plane (vertical in this case) being shown. On the right hand side of
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Fig. 3. The 2D implementation of the algorithm described in the previous section.
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Fig. 4. 2D case — Detection of a non convex object.

the figure we show the evolution of the zero level set at four time instants.
One curve is the result of the correlation algorithm described in [5] while the
other one is the level set. It can be seen that the convergence is satisfactory.

4 Conclusion

We have presented a novel geometric approach for solving the stereo problem
from an arbitrary number of views. It is based upon writing a variational
principle that must be satisfied by the surfaces of the objects to be detected.
The design of the variational principle allows us to clearly incorporate the
hypotheses we make about the objects in the scene and how we obtain corre-
spondences between image points. The Euler-Lagrange equations which are
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Fig. 5. 2D case — Detection of two circular objects on a random background.

deduced from the variational principle provide a set of PDE’s which are used
to deform an initial set of surfaces which then move towards the objects to be
detected. The level set implementation of these PDE’s potentially provides
an efficient and robust way of achieving the surface evolution and to deal
automatically with changes in the surface topology during the deformation.

Our implementation is so far only two-dimensional, i.e. it works only in
epipolar planes but the results we have obtained look promising enough to
lead us into thinking that the approach will also be successful in 3D.

To finish on a methodological note, we believe that it is by working in
such well defined conceptual or mathematical frameworks, as the calculus of
variations or the theory of PDE’s, where the tools exist to prove (or disprove)
the correctness of algorithms, that we will be able to bring computer vision up
to the level of predictability where it can be used reliably in real applications
and interfaced to other components to build complex systems.
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