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Jérôme Courchay1, Jean-Philippe Pons2,
Pascal Monasse1, and Renaud Keriven1

1 IMAGINE , 6 Av Blaise Pascal - Cité Descartes, Marne-la-Vallée, FR
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Abstract. In this paper, we propose a novel method to simultaneously
and accurately estimate the 3D shape and 3D motion of a dynamic scene
from multiple-viewpoint calibrated videos. We follow a variational ap-
proach in the vein of previous work on stereo reconstruction and scene
flow estimation. We adopt a representation of a dynamic scene by an an-
imated mesh, i.e. a polygonal mesh with fixed connectivity whose time-
varying vertex positions sample the trajectories of material points. In-
terestingly, this representation ensures a consistent coding of shape and
motion by construction. Our method accurately recovers 3D shape and
3D motion by optimizing the positions of the vertices of the animated
mesh. This optimization is driven by an energy function which incor-
porates multi-view and inter-frame photo-consistency, smoothness of the
spatio-temporal surface and of the velocity field. Central to our work is an
image-based photo-consistency score which can be efficiently computed
and which fully handles projective distortion and partial occlusions. We
demonstrate the effectiveness of our method on several challenging real-
world dynamic scenes.
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1 Introduction

In recent years, several methods for automatic generation of complete spatio-
temporal models of dynamic scenes from multiple videos have been proposed
[1–15]. In particular, the most recent ones have proven effective for full-body
marker-less motion capture, yielding visually impressive results. However, when
taking a closer look at the aforementioned techniques, it becomes apparent that
very few of them achieve a desirable coupled, dense and accurate 3D shape and
3D motion estimation.

Accurate 3D shape. Many recent techniques still produce an approximate
geometry: free-form deformation of a template body model [2, 11, 15], visual
hull [1, 3, 15], Laplacian deformation of a laser scan of the initial pose [4, 5].
These methods are unable to recover genuine geometric details such as facial
expressions and clothing folds and wrinkles.
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Accurate 3D motion estimation is crucial in some applications like mo-
tion transfer and time interpolation. Also, a coarse motion estimation precludes
the enforcement of temporal consistency constraints during coupled shape and
motion estimation. However, in most existing performance capture techniques,
3D scene flow [16], i.e. the dense 3D motion field of the scene, is not accurately
estimated. Often, it is interpolated from sparse 3D correspondences [3, 4, 12].
Some methods do not address 3D motion estimation whatsoever: [7] uses a four-
dimensional level set representation which, beyond its very high computational
and memory requirements, does not encode 3D correspondence. [10, 15] produce
animated meshes but, despite appearances, the underlying 3D correspondences
are purely artifactual.

Coupled 3D shape and 3D motion estimation allows to exploit their re-
dundancy, and has long been recognized [17] as a desirable way to improve their
performance. However, most marker-less motion capture methods fail to inte-
grate spatio-temporal consistency constraints. In [3, 12, 13], shape is computed
independently in each time frame, prior to motion estimation. In [9], shape and
motion are estimated sequentially, not simultaneously. In [5], an initial mesh
is propagated by 3D scene flow, under silhouette constraints, but without any
stereo cues; as a result, this method suffers from temporal drift. The latter is cir-
cumvented in [4] by substituting sparse 3D correspondences for dense 3D scene
flow, but neither shape or motion are accurate enough to allow enforcing spatio-
temporal consistency. In [1, 7], a certain degree of spatio-temporal coherence is
obtained through four-dimensional representations, but as these representations
do not encode temporal correspondence, they cannot exploit inter-frame match-
ing constraints. In [14], shape and motion are estimated simultaneously using
a plane-sweep carving algorithm in a 6D space, but this approach has a very
high computational and memory cost, is limited to two frames, and is unable to
enforce the smoothness of the recovered shape and motion.

Thus, to our knowledge, two methods [6, 8] achieve this highly desirable cou-
pled, dense and accurate 3D shape and 3D motion estimation. In [8], shape and
motion are represented through the detail coefficients of a time-varying subdivi-
sion surface. The latter coefficients are estimated by simultaneously optimizing
multi-view and inter-frame photo-consistency. However, the non-linearity of the
chosen multi-resolution representation makes this optimization intricate. Also,
the required motion initialization relies on the spatio-temporal derivatives of the
input images, thereby making it applicable mainly to slowly-moving Lambertian
scenes under constant illumination.

[6] is the only work to date which can handle complex real-world dynamic
scenes. Despite the effectiveness of this method, we believe that the expansion
framework used does not allow to take into account the full visibility depending
on occluding patch not computed yet.

In this paper, we propose a novel method to simultaneously and accurately es-
timate the 3D shape and 3D motion of a dynamic scene from multiple-viewpoint
videos. First, we follow a variational approach in the vein of previous work on
stereo reconstruction and scene flow estimation [9, 17–21]. None of these meth-
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ods fits our applications in their current state: most are limited to a single
time-varying depth map of the scene [17–21], while others do not enforce spatio-
temporal consistency constraints [9, 19].

Second, we adopt a representation of a dynamic scenes by an animated
mesh, i.e. a polygonal mesh with fixed connectivity whose time-varying vertex
positions sample the trajectories of material points. Interestingly, this represen-
tation ensures a consistent coding of shape and motion by construction. It is
widely used in computer graphics, especially in computer animation. It is also
popular for performance capture from video [3–6, 10, 11, 15] or from time-varying
point clouds [22, 23] (the latter being obtained from video or from fast 3-D scan-
ning hardware).

Our method accurately recovers 3D shape and 3D motion by optimizing
the positions of the vertices of the animated mesh. This optimization is driven
by an energy function which incorporates multi-view and inter-frame photo-
consistency, smoothness of the spatio-temporal surface and of the velocity field.
Central to our work is an image-based photo-consistency score which can be
efficiently computed and which fully handles projective distortion and partial
occlusions, in the spirit of [9].

The rest of this article is organized as follows. In Section 2, we describe
in detail the discrete geometric representation, the variational formulation, the
energy function and the associated minimization procedure which constitute our
approach. In Section 3, we discuss implementation aspects and we demonstrate
the effectiveness of our method on several challenging real-world dynamic scenes.

2 Our Approach

2.1 Discretize then optimize

An overwhelming majority of variational methods in this area [9, 17–19, 21] and
more generally in computer vision, rely on an optimize then discretize approach:
an energy functional depending on a continuous infinite-dimensional spatio-
temporal representation is considered, the gradient of this energy functional
is computed analytically, then the obtained evolution flow is discretized.

In contrast, we adopt a discretize then optimize approach: we define an en-
ergy function depending on a discrete finite-dimensional spatio-temporal repre-
sentation, and we use standard non-convex optimization tools. The benefits of
this approach have long been recognized in mesh processing, but have seldom
been demonstrated in computer vision [24–26]. Thus, the choice of an adequate
discrete spatio-temporal representation is crucial in our work.

2.2 Animated mesh representation

In our context, animated polygonal meshes present many significant advantages.
Compared to unrelated meshes at different time instants, they are more compact,
easier to store and to manipulate. They provide a direct access both to the shape
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of the scene at a given time instant, and to motion trajectories. 3D shape and
3D motion are mutually consistent by construction.

Their fixed topology may be regarded as a limitation, as argued in [12].
We believe that it is not, since the human body has a constant - spherical, if
disregarding pierces - topology. It is questionable to treat a character with hands
on hips as a genus-2 torus. It should rather be regarded as a topological sphere
with some temporary contact regions.

Furthermore, let us mention that our method is not limited to a spherical
topology: while the topology of the animated mesh is constant across time, we
are able to modify it across our optimization process using a spatio-temporal
version of Delaunay deformable models [27].

2.3 Variational formulation

In the following, we consider a dynamic scene, imaged by N calibrated and
synchronized video sequences composed of T frames, and represented by an
animated polygonal mesh with K vertices. We note:

– Ii,t : Ωi ⊂ R2 → Rd, i ∈ {1..N}, t ∈ {1..T} the input images. In practice
d = 1 for grayscale images and d = 3 for color images.

– X = {xk,t, k ∈ {1..K}, t ∈ {1..T}} the 3D positions of the vertices of the
animated mesh at the different time instants,

– Xt = {xk,t, k ∈ {1..K}} the tth temporal slice of the animated mesh.

In the sequel, by a slight abuse of notation, we indistinctly use X and Xt to
refer to the animated mesh and to the positions of its vertices.

The energy to minimize with respect to X is composed of a data attach-
ment term, of a regularization term for the spatio-temporal surface and of a
regularization term for the velocity field:

E(X) = ED(X) + λSES(X) + λV EV (X) . (1)

ED encourages multi-view and frame-to-frame matching consistency. It is
defined as the sum over camera pairs (i, j) and pairs of time frames (t, u) of
a dissimilarity measure between image Ii,t and the reprojection of Ij,u via the
animated mesh. The detailed description of this term is left to Section 2.4.

ES favors the regularity of the spatio-temporal surface. We use the total area
of the animated mesh. The minimization of this term by gradient descent yields
a discrete version of the well known mean curvature motion, which we implement
as described in [28].

EV penalizes rapid variations of the velocity field along the animated mesh.
It is the total squared L2 norm over the animated mesh of the gradient of the
velocity field. The detailed description of this term is left to Section 2.5.

We minimize the above energy function using a standard gradient descent
on the spatio-temporal positions X. In order to avoid unwanted local minima,
we resort to a multi-resolution and chronological scheme. We first optimize the
first two frames of a low-resolution animated mesh using low-resolution versions



Dense and Accurate Spatio-Temporal Multi-View Stereovision 5

xk,t

φk,Xt = 1

φk,Xt = 1
2

φk,Xt = 1
2

xl,t

φk,Xt = 0

xm,t φk,Xt = 0

∇φk,Xt

Fig. 1. Finite element representation over a facet (k, l,m) of the animated mesh.

of input images. Then we initialize an additional time frame by extrapolating
3D position from speed and acceleration of previous frames. We iteratively add
time frames, and optimize the sequence using a sliding time window of a few
frames, until we reconstruct the whole temporal sequence at low resolution. We
then refine the obtained spatio-temporal mesh with increased image and mesh
resolutions, until we reach the desired accuracy.

2.4 Data attachment term

The formal definition of ED and of its gradient requires some additional no-
tations. The perspective projection performed by camera i is denoted by Πi :
R3 → R2. Our method takes into account the visibility of the surface points. We
refer to Xi,t as the part of the temporal slice Xt visible in image i. The back-
projection of a point of camera i on the animated mesh at frame t is denoted by
Π−1
i,Xt

: Πi(Xt)→Xi,t.
We also define 3D transport functions TXt⇀Xu

that map points in Xt to
points in Xu. This can be written formally using the linear finite-element repre-
sentation depicted in Figure 1. For each vertex k of the animated mesh at some
time frame t, we define a basis function φk,Xt such that (i) φk,Xt(xk,t) = 1 (ii)
∀l 6= k, φk,Xt(xl,t) = 0 (iii) φk,Xt varies linearly inside the triangular facets
adjacent to the kth vertex, and cancels outside this ring. We then have at pixel
pi in image i:

TXt⇀Xu
=
∑
k

xk,u φk,Xt
. (2)

In a simpler way we can say that the back-projection Yt of pixel pi lies on a
triangular facet f and has barycentric coordinates φl,Xt

(Yt) at time t, l being a
vertex of f . So the position of this particle at time u is Yu =

∑
l∈f xl,u φl,Xt

(Yt),
that is Yu =

∑
k∈X xk,u φk,Xt

(Yt) since φk,Xt
(Yt) cancels if vertex k is outside

facet f .
Finally, we define image transport functions T(i,Xt)⇀(j,Xu) which map posi-

tions in Ii,t to positions in Ij,u via the animated mesh:

T(i,Xt)⇀(j,Xu) = Πj ◦ TXt⇀Xu
◦Π−1

i,Xt
. (3)
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Fig. 2. Reprojection of image j at time u in image i at time t via the animated mesh.

With these notations in hand the reprojection of image j at time u in image
i at time t via the animated mesh writes Ij,u ◦T(i,Xt)⇀(j,Xu). This is illustrated
in Figure 2.

The data attachment term is the sum over oriented camera pairs (i, j) and
oriented pairs (t, u) of time frames of a dissimilarity measure M between image
Ii,t and the above defined reprojection of Ij,u via the animated mesh. The dis-
similarity is computed only over the region of image plane i where both images
are defined, i.e. after discarding semi-occluded regions. This image region writes
Πi (Xi,t ∩ TXu⇀Xt

(Xj,u)). More clearly, pixel pi in image i is visible in both
images, if its back-projection lies on the surface at time t, and this point on the
surface once transported at time u is visible (nore occluded, nore outside the
image frame) in image Ij,u. This visible image region is computed before each
optimization step on graphics hardware. For conciseness, we will omit it in the
equations below:

ED(X) =
∑
i,j

∑
t,u

M
[
Ii,t , Ij,u ◦ T(i,Xt)⇀(j,Xu)

]
. (4)

We now compute the partial derivative of this energy term with respect to
the variation of a single position xk,t of the animated mesh. First, we note that
the only oriented pairs of time frames affected by such a variation are (u, t)
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and (t, u), u ∈ {1..T}. Second, when the animated mesh moves, the reprojected
image changes. Hence the partial derivative of ED involves the derivative of the
similarity measure M with respect to its second argument, denoted by ∂2M .

Using the chain rule, and after some index manipulations, we get:

∂ED
∂xk,t

=
∑
i,j

∑
u∫

Ωi

∂2M
[
Ii,t , Ij,u ◦ T(i,Xt)⇀(j,Xu)

]
DIj,u

∂T(i,Xt)⇀(j,Xu)

∂xk,t
(pi) dpi

+
∫
Ωj

∂2M
[
Ij,u , Ii,t ◦ T(j,Xu)⇀(i,Xt)

]
DIi,t

∂T(j,Xu)⇀(i,Xt)

∂xk,t
(pj) dpj , (5)

where DI.,. denotes the Jacobian matrices of the input images. For conciseness,
we have omitted the points where the latter are evaluated in the above equation.

As regards the quantities ∂T...

∂xk,t
, we can make several observations. First,

they are purely geometric, i.e. independent of image data. Second, they cancel
outside the ring of triangular facets adjacent to the kth vertex. Hence, despite
appearances, integration is performed only over the visible projection of this ring
in the different images, not over the full image domains. Third, these quantities
involve the normal of the triangular facet visible at pixel pi, and the barycentric
coordinate of xk,t in this facet. Complete expressions can be obtained using a
non trivial geometric reasoning. We refer the interested reader to [29], where
the detailed numerical computation, but also an additional intuitive solving are
proposed. The numerical solving, mainly consist in computing how barycentric
coordinates change for a small perturbation of the surface.

2.5 Velocity field regularization term

The velocity field is unambiguously encoded by the animated mesh X. Specifi-
cally, it is a continuous and piecewise linear vector field Xt → R3 defined by

vX,t(x) = TXt⇀Xt+1(x)− x , (6)

or equivalently by
vX,t =

∑
k

(xk,t+1 − xk,t)φk,Xt . (7)

The velocity field regularization term writes:

EV (X) =
∑
t

∫
Xt

‖∇vX,t(x)‖2dx . (8)

To simplify this expression, we use the fact that ∇φk,Xt is constant in each
triangular facet f of Xt and equals hk,f

‖hk,f‖2 , where hk,f is triangle’s height going
through vertex k. Af being the area of f , the energy term becomes:

EV (X) =
∑
t

∑
f∈Xt

Af

∥∥∥∥∥∥
∑
k∈f

hk,f
‖hk,f‖2

(xk,t+1 − xk,t)

∥∥∥∥∥∥
2

. (9)
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If we neglect the variation of hk,f with respect to vertex displacement, the partial
derivatives ∂EV

∂xk,t
of this energy term can now easily be derived.

3 Numerical Experiments

3.1 Implementation aspects

The computation of image reprojections via the animated mesh and of the gradi-
ent of the data attachment term are the most expensive parts of our algorithm.
Hence, they are implemented on GPU using the OpenGL API and the Cg shad-
ing language.

In all our experiments, we choose the opposite of normalized cross correlation
as the image dissimilarity measure M , in order to accommodate moving shadows
and time-varying lighting conditions.

The storage of the animated mesh and the computation of spatio-temporal
smoothing terms are based on the C++ Computational Geometry Algorithms
Library (CGAL)3.

The resolution of the mesh is controlled by a lower and an upper edge length
thresholds, that are applied to the whole time sequence: an edge is bisected if it
is longer than the upper threshold in at least one time frame; an edge is collapsed
if it is shorter than the lower threshold in all time frames. The topology of the
mesh is automatically corrected when needed by applying Delaunay deformable
models [27] to the coordinates of the animated mesh at a reference time frame.
The user chooses a reference frame that reflects the actual topology of the scene:
e.g a pose with arms and legs slightly apart for human motion.

3.2 Experimental results

We have tested our algorithm on two challenging multi-view video sequences of
non-rigid scenes.

The “Pants” dataset is composed of 8 cameras 480×640 pixels. It is courtesy
of R. White, K. Crane and D.A. Forsyth [30]. We have successfully applied our
algorithm to the first 60 frames of this dataset. Due to the high image resolu-
tion, four multi-resolution scales have been used to obtain the accurate spatio-
temporal reconstruction shown in Figure 3. It has taken 24 hours to teconstruct
the 60 frames spatio-temporal model.

Figure 4 demonstrates the superiority of our spatio-temporal approach com-
pared to a frame-by-frame multi-view stereovision method [9], on the “Pants”
dataset. The improvements are three-fold: (i) our approach exploits speed and
acceleration to make better initial guesses of the subsequent time frames, thus
being less prone to unwanted local minima (ii) thanks to the enforcement of
temporal coherence, our approach is less likely to fail in regions with low photo-
consistency evidence (iii) our approach simultaneously and consistently estimates
3D shape and 3D scene flow.
3 http://www.cgal.org/
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Fig. 3. Our results on the “Pants” dataset. See text for more details.

Fig. 4. Comparison between a frame-by-frame multi-view stereovision approach (top)
and our spatio-temporal approach (bottom) on the “Pants” dataset. See text for details.
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Fig. 5. Our results on the “Dancer” dataset. See text for more details.

The “Dancer” dataset was made available to us by the 4Dviews company4.
It was acquired by 14 calibrated and synchronized video cameras 1000 × 1000
pixels. We have applied our algorithm to the first 10 frames of this dataset.
To bootstrap our multi-resolution and chronological optimization procedure, we
have used a standard stereo-vision algorithm at the first time frame. The ob-
tained reconstruction after processing three multi-resolution levels is displayed
in Figure 5. We insist on the fact that we have not used silhouette information
and that stereovision on such a dataset is quite challenging: because it was de-
sign for visual hull based techniques, many parts of the subject are textureless.
It has taken 10 hours to teconstruct the full spatio-temporal model.

4 Conclusion

We have presented a novel variational approach to dense and accurate 3D shape
and motion reconstruction from multi-view video sequences. Our method lever-
ages the benefits of the animated mesh representation, of image-based photo-
consistency, of discrete geometric optimization and of GPU computation. We
have validated our algorithm on two challenging real datasets, and obtained
results that rival state-of-the-art techniques.

4 http://4dviews.com
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3. Ahmed, N., Theobalt, C., Rössl, C., Thrun, S., Seidel, H.P.: Dense correspondence
finding for parametrization-free animation reconstruction from video. In: IEEE
Conference on Computer Vision and Pattern Recognition. (2008)

4. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Perfor-
mance capture from sparse multi-view video. In: ACM SIGGRAPH. (2008)

5. de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.P.: Marker-less deformable mesh
tracking for human shape and motion capture. In: IEEE Conference on Computer
Vision and Pattern Recognition. (2007)

6. Furukawa, Y., Ponce, J.: Dense 3D motion capture from synchronized video
streams. In: IEEE Conference on Computer Vision and Pattern Recognition. (2008)
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