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Abstract. Designing statistical procedures that are provably almost as
accurate as the best one in a given family is one of central topics in
statistics and learning theory. Oracle inequalities offer then a convenient
theoretical framework for evaluating different strategies, which can be
roughly classified into two classes: selection and aggregation strategies.
The ultimate goal is to design strategies satisfying oracle inequalities
with leading constant one and rate-optimal residual term. In many recent
papers, this problem is addressed in the case where the aim is to beat
the best procedure from a given family of linear smoothers. However,
the theory developed so far either does not cover the important case of
nearest-neighbor smoothers or provides a suboptimal oracle inequality
with a leading constant considerably larger than one. In this paper, we
prove a new oracle inequality with leading constant one that is valid
under a general assumption on linear smoothers allowing, for instance,
to compete against the best nearest-neighbor filters.

Keywords: adaptive smoothing, nonparametric regression, supervised
learning.

1 Introduction

Linear procedures are omnipresent in machine learning. Sliding windows esti-
mators, nearest neighbor smoothers, support vector machines with L2 loss, etc.,
are popular examples of learning procedures obtained from the data vector by
a linear transform. However, the performance of these procedures is, in general,
severely affected by the choice of various tuning parameters. A typical example is
presented in Figure 1: among the three linear estimators of a regression function,
the two up-most estimators perform very poorly while the third one leads to an
almost perfect recovery. The goal of the present paper is to propose a strategy
which is able to estimate a regression function almost as well as the best lin-
ear procedure in a given family. Such a family may be obtained by considering,
for instance, different values for the number of neighbors in nearest neighbor
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Fig. 1. The effect of the smoothing matrix Aλ on the resulting estimator. In this exam-
ple, the true signal is the sine function over [−π, π] and the three matrices represented
in the leftmost column are some powers of one convolution matrix. Large powers corre-
spond to stronger smoothing. It is clearly seen that the third matrix leads to an almost
perfect recovery of the original signal.

smoothing. It is also possible to make vary the metric in which the proximity is
measured.

We will mainly focus on the theoretical guarantees expressed in terms of ora-
cle inequalities for the expected squared loss. Interestingly, despite the fact that
several recent papers [1, 4, 18, 11] discuss the paradigm of competing against
the best linear procedure from a given family, none of them provide oracle in-
equalities with leading constant equal to one. Furthermore, most existing results
involve some constants depending on different parameters of the setup. In con-
trast, the oracle inequality that we prove herein is with leading constant one and
admits a very simple formulation. It is established for a suitably symmetrized
version of the exponentially weighted aggregate [16, 8, 14] with arbitrary prior
(see Figure 2) and a temperature parameter which is not too small. The result
is completely non-asymptotic and leads to asymptotically optimal residual term
in the case where the sample size, as well as the cardinality of the family of
competitors, tends to infinity.

More precisely, let f be an unknown function defined on some set X (called
feature space) and taking values in R. To fix the ideas, assume that X is equipped
with a metric d. We consider the setting where only noisy evaluations of the
function f at n points x1, . . . , xn of X are available. The observations are then
D = {(x1, Y1), . . . , (xn, Yn)}. We are interested here in recovering the true values
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f(xi) for i = 1, . . . , n based on the data D. In this context, if we assume that
f is smooth in some sense, a common estimator of f(xi) is given by the k-
nearest neighbor (kNN) filter f̂k,d(xi). In order to define it, let us denote by
ji,0, ji,1, . . . , ji,(n−1) a permutation of {1, . . . , n} that leads to a rearrangement of
the design points xj from the closest to xi to the farthest, i.e., 0 = d(xi, xji,0 ) ≤
d(xi, xji,1 ) ≤ . . . ≤ d(xi, xji,(n−1)). The kNN smoothing filter is then defined by

f̂k,d(xi) =
1
k

k−1∑
m=0

Yji,m . (1)

In most applications, one can define different metrics d on the feature space and
obtain different estimators of f(xi) with very different statistical properties. The
choice of the parameter k and the metric d that leads to the smallest possible
estimation error is an important problem both from practical and theoretical
viewpoints. A natural question arises: assume that we are given several metrics
d1, . . . , dL on the feature space, is it possible to design a statistical procedure
that estimates each of f(xi) nearly as well as the best kNN-filter from the family
{f̂k,d�

: k = 1, . . . , n; � = 1, . . . , L}? We show that the answer to this question is
affirmative, but there is a price to pay for not knowing the optimal metric and
the optimal value of k. In the present work, we address this issues by aggregating
the estimators f̂k,d over the set of all possible values of k and the metric d. Our
results imply that the price to pay for not knowing the best values of these
parameters is of the order log(L(n − 1))/n.

Note that the estimator (1) can be written as f̂k,d(xi) =
∑n

j=1 aijYj , with aij

being equal to 1/k if j ∈ {ji,0, . . . , ji,(k−1)} and 0 otherwise. Thus, the weights aij

depend exclusively on the the features x1, . . . , xn and not on the Yis. Therefore,
the kNN filter is a particular instance of linear estimators defined by

f̂ =

⎡⎢⎣f̂(x1)
...

f̂(xn)

⎤⎥⎦ = AY ,

where A is a n×n weight matrix and Y = [Y1, . . . , Yn]� is the vector of observed
responses. The main results of this paper hold for this general class of estimators
under some condition on the weight matrix A. This condition is satisfied for a
kNN estimator whatever the metric d and the parameter k are.

From the perspective of learning theory, oracle inequalities constitute a valu-
able theoretical tool for assessing the performance of procedures elaborated in
the context of agnostic learning introduced by [20], see also [19] for a recent
contribution to the subject. Note also that the problem of competing against
the best procedure in a given family has been extensively studied in the context
of online learning and prediction with expert advice [21, 9, 10, 5]. A remarkable
connection between the results on online learning and the statistical oracle in-
equalities has been recently established by [17]. The case of linear estimators has
been studied by [24, 26, 12] for projection matrices A and by [26, 12] for diagonal
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Input: data vector Y ∈ R
n, n× n noise covariance matrix Σ and a family of linear

smoothers {f̂λ = AλY ; λ ∈ Λ}.
Output: estimator f̂SEWA of the true function f .

Parameter: prior probability distribution π on Λ, temperature parameter β > 0.

Strategy:
1. For every λ, compute the risk estimate r̂unb

λ =
∥∥Y − f̂λ

∥∥2

n
+ 2

n
Tr(ΣAλ) −

1
n

Tr[Σ].
2. Define the probability distribution π̂(dλ) = θ(λ)π(dλ) with θ(λ) ∝

exp(−nr̂unb
λ /β).

3. For every λ, build the symmetrized linear smoothers f̃λ = (Aλ + Aλ
� −

Aλ
�Aλ)Y .

4. Average out the symmetrized smoothers w.r.t. posterior π̂: f̂SEWA =∫
Λ

f̃λπ̂(dλ).

Fig. 2. The symmetrized exponentially weighted aggregation strategy for competing
against the best linear smoother in a given family

matrices A. However, these result do not cover several important classes of linear
estimators including the kNN filter.

We should mention that the numerical experiments we have carried out on
a number of synthetic datasets have shown that the symmetrized exponentially
weighted aggregate performs as predicted by our theoretical result. Interestingly,
these experiments show also that the standard (non-symmetrized) exponentially
weighted aggregate is not worse than the symmetrized one. However, we are not
able so far to provide theoretical guarantees for the non-symmetrized strategy.

Outline. The rest of the paper is organized as follows. We introduce the main no-
tation along with a short background on oracle inequalities and on linear filtering
in Section 2. The main contribution of the paper, a sharp oracle inequality for the
symmetrized exponentially weighted aggregate, is stated in Section 3, while Sec-
tion 4 contains some numerical results. Section 5 summarizes the content of the
paper and provides some perspectives. The proofs are postponed to the Appendix.

2 Notation and Background

Throughout this work, we focus on the heteroscedastic regression model with
Gaussian additive noise. More precisely, we assume that we are given a vector
Y = (y1, · · · , yn)� ∈ R

n obeying the model:

yi = fi + ξi, for i = 1, . . . , n, (2)

where ξ = (ξ1, . . . , ξn)� is a centered Gaussian random vector, fi = f(xi) where
f is an unknown function X → R and x1, . . . , xn ∈ X are deterministic points.
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Here, no assumption is made on the set X . Our objective is to recover the vector
f = (f1, . . . , fn), often referred to as signal, based on the data y1, . . . , yn. In our
work the noise covariance matrix Σ = E[ξξ�] is assumed to be finite and known,
with a possible extension to the case of estimated covariance matrix discussed
in Remark 5. We measure the performance of an estimator f̂ by its expected
empirical quadratic loss: r = E(‖f − f̂‖2

n), where ‖f − f̂‖2
n = 1

n

∑n
i=1(fi − f̂i)2.

We also denote by 〈·|·〉n the corresponding empirical inner product. For any
matrix B, ‖|B‖| stands for the spectral norm of B, i.e., its largest singular value.

2.1 Oracle Inequalities

In this subsection we describe the paradigm of selection/aggregation of estima-
tors in a data-driven manner from a given family of estimators. The task of
aggregation consists in estimating f by a suitable combination of the elements
of a family of constituent estimators FΛ = (f̂λ)λ∈Λ ∈ R

n, while the task of
selection is just to choose a data-dependent value λ̂ of λ for which the estimator
f̂ λ̂ is close to f . The target objective of the selection/aggregation is to build an
estimator f̂ select/f̂aggr that mimics the performance of the best constituent esti-
mator, called oracle (because of its dependence on the unknown function f). In
what follows, we assume that Λ is a measurable subset of R

M , for some M ∈ N.
The theoretical tool commonly used for evaluating the quality of an aggregation

procedure is the oracle inequality (OI), generally written in the following form:

E‖f̂aggr − f‖2
n ≤ Cn inf

λ∈Λ

(
E‖f̂λ − f‖2

n

)
+ Rn, (3)

with residual term Rn tending to zero, and leading constant Cn being bounded.
The OIs with leading constant one—called sharp OIs—are of central theoretical
interest since they allow to bound the excess risk and to assess the aggregation-
rate-optimality.

2.2 Nearest Neighbor Filtering

When the unknown function f is smooth or can be well approximated by a
smooth function, it is reasonable to estimate it by computing the moving av-
erages or k-Nearest Neighbor (kNN) filters, see e.g. [15]. More precisely, let us
fix an index i and consider the problem of estimating the value fi of f at xi.
Let xj1 , . . . , xjk

be the set of k points from {x1, . . . , xn} which are at smallest
distance (in some metric) from xi. The idea of kNN filtering is to estimate the
unknown value fi by taking the average of k values Yj�

, � = 1, . . . , k. This ap-
proach is particularly popular, for instance, in stereo-vision for reconstructing
3D scenes from 3D point clouds.

A crucial point when estimating a function by kNN-filtering is the choice of the
tuning parameter k. This parameter allows the user to control the trade-offbetween
the bias and the variance of estimation. If the value of k is too small, the resulting
estimator is very oscillating, whereas large values of k lead to over-smoothed esti-
mators. Many strategies for selecting k in a data driven manner have been proposed



134 A.S. Dalalyan and J. Salmon

in the literature [25, 23, 22, 18, 1]. However, to the best of our knowledge, none of
these procedures is proved to satisfy a sharp oracle inequality in the sense made
precise in the previous section. In the present work, we propose a strategy—for
which a sharp oracle inequality is established—based on data-driven aggregation
of kNN filters rather than on (data-driven) selection of the parameter k.

2.3 General Linear Smoothing

More generally, we will focus on linear estimators f̂λ, i.e., estimators that are
linear transforms of the data Y = (y1, . . . , yn)� ∈ R

n. Using the convention that
all vectors are one-column matrices, linear estimators can be defined by

f̂λ = AλY , (4)

where the n × n real matrix Aλ is deterministic. This means that the entries of
Aλ may depend on the points x1, . . . , xn but not on the data vector Y . Let In
denote the identity matrix of size n × n. It is well-known that the risk of the
estimator (4) is given by

E[‖f̂λ − f‖2
n] = ‖(Aλ − In)f‖2

n +
Tr(AλΣAλ

�)
n

(5)

and that r̂unb
λ , defined by

r̂unb
λ =

∥∥Y − f̂λ

∥∥2

n
+

2
n

Tr(ΣAλ) − 1
n

Tr[Σ] (6)

is an unbiased estimator of rλ = E[‖f̂λ − f‖2
n]. In order to get a sharp oracle

inequality with a simple residual term, we will need the following assumption.

[C(λ)] The matrix Aλ satisfies Tr(ΣAλ) ≤ Tr(ΣAλ
�Aλ).

Let us present now several classes of widely used linear estimators for which this
condition is satisfied.

1. The simplest class of matrices Aλ for which condition C(λ) holds true are or-
thogonal projections. Indeed, if Aλ is a projection matrix, it satisfies Aλ

�Aλ =
Aλ and, therefore, Tr(ΣAλ) = Tr(ΣAλ

�Aλ).
2. If the matrix Σ is diagonal, then a sufficient condition for C(λ) is aii ≤∑n

j=1 a2
ji. Consequently, for the matrices having only zeros on the main

diagonal C(λ) holds true. For instance, the kNN filter in which the weight
of the observation Yi is replaced by zero,i.e., aij = 1j∈{ji,1,...,ji,k}/k satisfies
this condition.

3. Under a little bit more stringent assumption of homoscedasticity, i.e., when
Σ = σ2In, if the matrices Aλ are such that all the non-zero elements of
each row are equal and sum up to one (or a quantity larger than one) then
Tr(Aλ) = Tr(Aλ

�Aλ) and C(λ) is fulfilled. A notable example of linear es-
timators that satisfy this condition are Nadaraya-Watson estimators with
rectangular kernel and nearest neighbor filters. Below is a visual illustration
of a matrix defining a Nadaraya-Watson estimator:
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3 Main Result

Let rλ = E[‖f̂λ − f‖2
n] denote the risk of the estimator f̂λ, for any λ ∈ Λ, and

let r̂λ be an estimator of rλ. For any probability distribution π over the set Λ
and for any β > 0, we define the probability measure of exponential weights, π̂,
by the following formula: π̂(dλ) = θ(λ)π(dλ) with

θ(λ) =
exp(−nr̂λ/β)∫

Λ exp(−nr̂ω/β)π(dω)
. (7)

The corresponding exponentially weighted aggregate, henceforth denoted by
f̂EWA, is the expectation of the f̂λ w.r.t. the probability measure π̂:

f̂EWA =
∫

Λ

f̂λ π̂(dλ) . (8)

It is convenient and customary to use the terminology of Bayesian statistics: the
measure π is called prior, the measure π̂ is called posterior and the aggregate
f̂EWA is then the posterior mean. The parameter β will be referred to as the
temperature parameter. In the framework of aggregating statistical procedures,
the use of such an aggregate can be traced back to [16].

The density θ(·) assigns weights to the estimators according to their perfor-
mance, measured in terms of the risk estimate r̂λ. The temperature parameter
reflects the confidence we have in this criterion: if β ≈ 0 the posterior concen-
trates on the estimators achieving the smallest value for r̂λ, whereas if β → +∞
then the posterior approaches to the prior π, and the data do not modify our
confidence in the estimators. It should also be noted that averaging w.r.t. the
posterior π̂ is not the only way of constructing an estimator of f based on π̂;
some alternative randomized estimators have been studied, for instance, in [2].

To state our main results, we denote by PΛ the set of all probability measures
on Λ and by K(p, p′) the Kullback-Leibler divergence between two probability
measures p, p′ ∈ PΛ:

K(p, p′) =

{∫
Λ

log
(

dp
dp′ (λ)

)
p(dλ) if p 
 p′,

+∞ otherwise.
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Theorem 1. Let {Aλ : λ ∈ Λ} be any family of n × n matrices satisfying con-
dition C(λ) on a set of π-measure one. Let f̂SEWA denote the symmetrized expo-
nentially weighted aggregate, i.e. the exponentially weighted aggregate acting on
symmetrized estimators f̃λ = (Aλ + Aλ

� −Aλ
�Aλ)Y with the weights (7) defined

via the risk estimate r̂unb
λ . Then, for every β ≥ 4‖|Σ‖|, it holds that

E
[‖f̂SEWA − f‖2

n

] ≤ inf
p∈PΛ

{∫
Λ

E
[‖f̂λ − f‖2

n

]
p(dλ) +

β

n
K(p, π)

}
.

A first observation that one can make is that, in the particular case of a finite
collection of projection estimators (i.e., Aλ = Aλ

� = A2
λ for every λ) this result

reduces to Corollary 6 in [24]. Furthermore, Theorem 1 handles the general noise
covariances while [24] deals only with i.i.d. Gaussian noise.

Note also that the result of Theorem 1 applies to the estimator f̂EWA that uses
the full knowledge of the covariance matrix Σ. Indeed, even if for the choice of β
only an upper bound on the spectral norm of Σ is required, the entire matrix Σ
enters in the definition of the unbiased risk r̂unb

λ that is used for defining f̂SEWA.
We will discuss in Remark 5 some extensions of the proposed methodology to
the case of unknown Σ.

Remark 1. We decided in this paper to focus on the case of Gaussian errors,
in order to put the emphasis on the possibility of efficiently aggregating broad
families of linear estimators without spending time and space on other technical
aspects. The result stated in this section can be generalized to some other noise
distributions by following the approach developed in [13].

Remark 2. We prove a result that is stronger than the one stated in Theorem 1.
In particular, it holds for any matrices Aλ and boils down to the elegant inequal-
ity stated in Theorem 1 when condition C(λ) is π-a.e. satisfied. The precise form
of this more general result is the following. Let f̂SEWA denote the aggregate de-
fined in Figure 2. Then, for every β ≥ 4‖|Σ‖|, the risk E

[‖f̂SEWA −f‖2
n

]
of f̂SEWA

is bounded from above by

inf
p∈PΛ

{∫
Λ

E
[‖f̂λ − f‖2

n

]
p(dλ) +

β

n
K(p, π)

}
+ Rn (9)

with the residual term Rn = β
n log

[ ∫
Λ

e
2
β Tr[Σ(Aλ−Aλ

�Aλ)]π(dλ)
]
.

Remark 3. Using the previous remark, one can also get the risk bound (9), when
condition C(λ) is only approximately satisfied. More precisely, if condition C(λ)
is replaced by :

[C(λ, ε)] The matrix Aλ satisfies Tr(ΣAλ) ≤ Tr(ΣAλ
�Aλ) + ε,

then the residual term Rn in Inequality (9) simply becomes 2ε
n .

In order to demonstrate that Theorem 1 can be reformulated in terms of an OI
as defined by (3), let us consider the case when the prior π is discrete. That is,
we assume that π(Λ0) = 1 for a countable set Λ0 ⊂ Λ. Without loss of generality,
we assume that Λ0 = N. Then, the following result holds true.
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Proposition 1. If π is supported by N and condition C(λ) is satisfied for every
λ ∈ N, then the aggregate f̂SEWA satisfies the inequality

E[‖f̂SEWA − f‖2
n] ≤ inf

λ:πλ>0

{
E‖f̂λ − f‖2

n +
β log(1/πλ)

n

}
(10)

provided that β ≥ 4‖|Σ‖|.
Proof. It suffices to apply Theorem 1 and to bound the right hand side from
above by the minimum over all Dirac measures p = δλ with λ such that πλ > 0.

This inequality can be compared to Corollary 2 in Section 4.3 of [4]. Our inequal-
ity has the advantage of being sharp, i.e., having factor one both in front of the
expectation of the LHS of (10) and in front of the inf of the RHS. To the best of
our knowledge, there is no other result in the literature providing such a sharp
OI for linear estimators which are not of projection type. In particular, in [4]
the risk in the LHS of the OI is multiplied by a constant which is smaller than
one and depends on different parameters of the problem. It should be noted,
however, that we consider the noise covariance matrix as known, whereas [4]
estimates the noise covariance along with the regression function.
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Fig. 3. Three test signals used in experimental evaluation. From left to right : the sine
function, HeaviSine and Wave functions [7].

Remark 4. A particular case of Proposition 1 is the situation where π is the
uniform probability over a finite set of cardinality M . In such a situation, the
remainder term in (10) becomes of the form (β log M)/n. The rate (log M)/n of
the remainder term in the OI has been proven [28] unavoidable in the context
of aggregating data-independent estimators. By similar arguments, it is possible
to prove that this rate is optimal in the case of aggregating linear smoothers as
well.

Remark 5. The symmetrized exponentially weighted aggregate f̂SEWA is easily
extended to handle the more realistic situation where an unbiased estimate Σ̂,
independent of Y , of the covariance matrix Σ is available. Simply replace Σ by Σ̂
in the definition of the unbiased risk estimate (6). When the matrices Aλ satisfy
π-a.e. condition C(λ), it is easy to see that the claim of Theorem 1 remains
valid. Of course, the condition β ≥ 4‖|Σ‖| should be replaced by β ≥ 4‖|Σ̂‖| and
β should be replaced by E[β] in the right hand side of the oracle inequality.
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4 Numerical Experiments

We have implemented the symmetrized exponentially weighted aggregate (SEWA)
in Matlab in the case of combining kNN filters with varying values of k. Along
with SEWA we have also implemented the classical exponentially weighted aggre-
gate (EWA) as defined for instance in [24, 14] and the empirical risk minimization
(ERM) algorithm, the latter consisting in choosing the value of k minimizing the
unbiased estimator of the risk (6). Following the philosophy of reproducible re-
search, a toolbox containing the code we used for getting the results reported in
this section will be made available by the date of the conference at the authors’
home pages.

In our experiments, we compared the aforementioned three strategies, ERM,
EWA and SEWA, on three common 1D signals depicted in Figure 3. Each signal
has been beforehand normalized to have an L2 norm equal to one. We have cho-
sen several sample sizes n ∈ {30, 50, 100} and noise levels σ2 ∈ {0.2, 0.5, 1, 1.5, 2}
and randomly generated the data vector Y = (Y1, . . . , Yn) by the formula
Yi = f(i/n) + εi, where (ε1, . . . , εn) is a Gaussian random vector N (0, σ2In).
We then computed the three estimators ERM, EWA and SEWA and repeated
the experiment 104 times. As preliminary estimators we used the kNN filters
with k ∈ {1, . . . , [n/2]}. The prior was chosen to be uniform and the tempera-
ture parameter is the one suggested by the theory: β = 4σ2. The medians and
the inter-quartile ranges of the errors1 ‖f̂• − f‖2 are summarized in Tables 1, 2
and 3 below.

Table 1. Sine function: the values of the median error and the inter-quartile range (in
parentheses) over 104 trials are reported

n = 30 n = 50 n = 100
ERM EWA SEWA ERM EWA SEWA ERM EWA SEWA

σ2 = 0.2 1.4397 1.3906 1.3469 1.5290 1.4685 1.4663 1.6768 1.5984 1.6471
(0.40) (0.40) (0.35) (0.40) (0.39) (0.38) (0.40) (0.38) (0.38)

σ2 = 0.5 2.0301 1.8806 1.7861 2.1395 2.0800 2.0086 2.3634 2.2661 2.2786
(0.57) (0.48) (0.53) (0.65) (0.59) (0.56) (0.63) (0.62) (0.59)

σ2 = 1 2.4966 2.2161 2.1933 2.8026 2.5501 2.4487 3.0561 2.9287 2.8590
(0.69) (0.61) (0.71) (0.81) (0.67) (0.74) (0.93) (0.83) (0.81)

σ2 = 1.5 2.7930 2.4966 2.5046 3.1521 2.8125 2.7660 3.5679 3.3088 3.2167
(0.94) (0.83) (0.96) (0.94) (0.84) (0.95) (1.09) (0.92) (0.96)

σ2 = 2 3.0113 2.7180 2.7793 3.3930 3.0757 3.0413 3.9748 3.5854 3.4970
(1.08) (1.02) (1.17) (1.10) (0.93) (1.06) (1.19) (1.00) (1.09)

A first observation is that the aggregation strategies, EWA and SEWA, are
always better than the selection strategy ERM. This is essentially explained

1 In this expression the norm is the classical Euclidean one and f̂ • is either one of the
estimators ERM, EWA or SEWA.
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Table 2. HeaviSine function [7]: the values of the median error and the inter-quartile
range (in parentheses) over 104 trials are reported

n = 30 n = 50 n = 100
ERM EWA SEWA ERM EWA SEWA ERM EWA SEWA

σ2 = 0.2 1.6552 1.5906 1.5708 1.8157 1.7274 1.7306 2.0170 1.9359 1.9921
(0.37) (0.36) (0.35) (0.37) (0.39) (0.38) (0.39) (0.37) (0.39)

σ2 = 0.5 2.2783 2.1604 2.0845 2.4834 2.3370 2.2589 2.7984 2.6620 2.6611
(0.55) (0.57) (0.58) (0.59) (0.54) (0.57) (0.62) (0.59) (0.59)

σ2 = 1 2.9039 2.7275 2.6416 3.1558 2.9446 2.8783 3.5533 3.3284 3.2715
(0.82) (0.81) (0.85) (0.85) (0.83) (0.84) (0.86) (0.80) (0.82)

σ2 = 1.5 3.3554 3.1526 3.0878 3.5758 3.3576 3.2583 4.0708 3.7886 3.7106
(1.08) (0.99) (0.97) (1.02) (0.95) (1.00) (1.05) (0.97) (1.00)

σ2 = 2 3.7266 3.4729 3.4443 4.0147 3.7368 3.6694 4.4888 4.1560 4.0723
(1.34) (1.19) (1.22) (1.30) (1.23) (1.24) (1.24) (1.13) (1.16)

Table 3. Wave function: the values of the median error and the inter-quartile range
(in parentheses) over 104 trials are reported

n = 30 n = 50 n = 100
ERM EWA SEWA ERM EWA SEWA ERM EWA SEWA

σ2 = 0.2 1.4340 1.3814 1.3724 1.5887 1.5725 1.5580 1.9720 1.8696 1.8612
(0.37) (0.29) (0.30) (0.41) (0.33) (0.33) (0.34) (0.30) (0.33)

σ2 = 0.5 1.8300 1.6868 1.7159 2.1004 1.9571 1.9608 2.4045 2.3730 2.3462
(0.45) (0.41) (0.47) (0.53) (0.41) (0.47) (0.67) (0.49) (0.52)

σ2 = 1 2.1727 2.0073 2.0976 2.4719 2.2784 2.3351 2.9898 2.7755 2.7716
(0.74) (0.65) (0.73) (0.69) (0.60) (0.68) (0.77) (0.58) (0.66)

σ2 = 1.5 2.4395 2.2637 2.4013 2.7554 2.5266 2.6331 3.2993 3.0282 3.0761
(1.00) (0.84) (0.94) (0.93) (0.77) (0.89) (0.88) (0.72) (0.83)

σ2 = 2 2.6845 2.5068 2.6809 2.9950 2.7495 2.8961 3.5428 3.2290 3.3133
(1.23) (1.01) (1.12) (1.15) (0.94) (1.06) (1.05) (0.86) (0.99)

by a relative lack of stability of selection strategies thoroughly discussed in [6].
A second observation is that there is no clear winner among the aggregation
strategies EWA and SEWA. Both of them are quite accurate with very little
difference in the error of estimation. This raises the following question: is it pos-
sible to prove a sharp oracle inequality for the standard EWA without applying
the symmetrization trick? To date, we are unable to answer this question.

It is important to stress that the medians reported in Tables 1-3 are those of
estimation errors without normalization by the sample size n. Therefore, it is
quite natural that these errors increase with n (more and more parameters are
estimated). It is however clear from the reported results that the non-normalized
accuracy increases very slowly when n increases. This is in agreement with our
theoretical result stating that the error increases at most logarithmically.
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5 Conclusion and Outlook

We have suggested a new strategy for aggregating linear smoothers in order to
denoise a signal corrupted by an additive Gaussian noise. We proved a sharp
oracle inequality for the proposed strategy, termed SEWA for symmetrized ex-
ponentially weighted aggregation. A few experimental results are also reported
that allow to illustrate our theoretical result and to quantify the advantage of
aggregation as compared to selection.

The SEWA results may have profitable application to classification and pat-
tern recognition. As proved in [3], fast rates in classification can be obtained by
plugging-in efficient regression estimators. We are experimenting with the use of
a procedure analogous to SEWA to perform binary classification. The results, to
date, have been as encouraging as in the regression case.
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Parcimonie.
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A Proof of Theorem 1

The proof of our main result relies on the well-known Stein lemma [27] providing
an unbiased risk estimate for any estimator that depends sufficiently smoothly
on the data vector Y . For the convenience of the reader, we recall Stein’s lemma
in the case of heteroscedastic Gaussian regression.

Lemma 1. Let Y be a random vector drawn form the Gaussian distribution
Nn(f , Σ). If the estimator f̂ is a.e. differentiable in Y and the elements of
the matrix ∇ · f̂� := (∂if̂j) have finite first moment, then r̂Σ = ‖Y − f̂‖2

n +
2
n Tr[Σ(∇·f̂�)]− 1

n Tr[Σ], is an unbiased estimate of r, i.e., Er̂Σ = r. Moreover,
if Σ̂ is an unbiased estimator of Σ such that Y and Σ̂ are independent, then

r̂ = ‖Y − f̂‖2
n +

2
n

Tr[Σ̂(∇ · f̂�)] − 1
n

Tr[Σ̂], (11)

is an unbiased estimator of the risk r as well.

We apply Stein’s lemma to the estimator f̂λ = AλY , where Aλ is an n × n

matrix. We get that r̂unb
λ,Σ =

∥∥Y − f̂λ

∥∥2

n
+ 2

n Tr[ΣAλ] − 1
n Tr[Σ] is an unbiased

estimator of the risk rλ = E[‖f̂λ − f‖2
n] = ‖(Aλ − In)f‖2

n + 1
n Tr[AλΣA�

λ ].
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Furthermore, if Σ̂ is an unbiased estimator of Σ then r̂unb
λ =

∥∥Y − f̂λ

∥∥2

n
+

2
n Tr[Σ̂Aλ] − 1

n Tr[Σ̂] is also an unbiased estimator of rλ.
Prior to proceeding with the proof of main theorems, we prove an important

auxiliary result which is the central ingredient of the proof for our main result.

Lemma 2. Let assumptions of Lemma 1 be satisfied. Let {f̃λ : λ ∈ Λ} be a
family of estimators of f and {r̃λ : λ ∈ Λ} a family of risk estimates such that
the mapping Y → (f̃λ, r̃λ) is a.e. differentiable ∀λ ∈ Λ. Let r̃unb

λ be the unbiased
risk estimate of f̃λ given by Stein’s lemma (cf. Eq. (11)).
1. For every μ ∈ PΛ and for any β > 0, the estimator f̃EWA defined as the

average of f̃λ w.r.t. the probability measure μ̂(Y , dλ) = θ(Y , λ)μ(dλ) with
θ(Y , λ) ∝ exp

{ − nr̃λ(Y )/β
}

admits

r̂EWA =
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̃EWA‖2

n − 2n

β

〈∇Y r̃λ|Σ̂(f̃λ − f̃EWA)
〉

n

)
μ̂(dλ)

as unbiased estimator of the risk.
2. If furthermore r̃λ ≥ r̃unb

λ , ∀λ ∈ Λ and
∫

Λ

〈∇r̃λ|Σ̂(f̃λ − f̃EWA)
〉

n
μ̂(dλ) ≥

−a
∫

Λ
‖f̃λ − f̃EWA‖2

nμ̂(dλ) for some random a > 0 independent of Y , then
for every β ≥ 2na it holds that

E[‖f̃EWA − f‖2
n] ≤ inf

p∈PΛ

{∫
Λ

E[r̃λ] p(dλ) +
E[β]K(p, μ)

n

}
.

Proof. According to the Lemma 1, the quantity

r̂EWA = ‖Y − f̃EWA‖2
n +

2
n

Tr[Σ̂(∇ · f̃EWA(Y )] − 1
n

Tr[Σ̂] (12)

is an unbiased estimate of the risk rn = E(‖f̃EWA − f‖2
n). Using simple algebra,

one checks that

‖Y − f̃EWA‖2
n =

∫
Λ

(
‖Y − f̃λ‖2

n − ‖f̃λ − f̃EWA‖2
n

)
μ̂(dλ). (13)

By interchanging the integral and differential operators, we get the following re-
lation: ∂yi f̂EWA,j =

∫
Λ

{(
∂yj f̃λ

j
(Y )

)
θ(Y , λ)+ f̃λ

j
(Y )

(
∂yiθ(Y , λ)

)}
μ(dλ). This

equality, combined with Equations (12) and (13) implies that

r̂EWA =
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̃EWA‖2

n

)
μ̂(dλ) +

2
n

∫
Λ

Tr[Σ̂f̃λ∇Y θ(Y , λ)�] μ(dλ).

Taking into account the fact that the differentiation and the integration can be
interchanged,

∫
Λ f̃EWA

(∇Y θ(Y , λ)
)�

μ(dλ) = f̃EWA∇Y

( ∫
Λ θ(Y , λ)μ(dλ)

)
= 0,

and we come up with the following expression for the unbiased risk estimate:

r̂EWA =
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̂n‖2

n + 2
〈∇Y log θ(λ)|Σ̂(f̃λ − f̃EWA)

〉
n

)
μ̂(dλ)

=
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̃EWA‖2

n − 2nβ−1
〈∇Y r̃λ|Σ̂(f̃λ − f̃EWA)

〉
n

)
μ̂(dλ).

This completes the proof of the first assertion of the lemma.
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To prove the second assertion, let us observe that under the required condition
and in view of the first assertion, for every β ≥ 2na it holds that r̂EWA ≤∫

Λ r̃unb
λ μ̂(dλ) ≤ ∫

Λ r̃λμ̂(dλ) ≤ ∫
Λ r̃λμ̂(dλ) + β

nK(μ̂, μ). To conclude, it suffices to
remark that μ̂ is the probability measure minimizing the criterion

∫
Λ

r̃λp(dλ) +
β
nK(p, μ) among all p ∈ PΛ. Thus, for every p ∈ PΛ, it holds that r̂EWA ≤∫
Λ r̃λp(dλ) + β

n K(p, μ). Taking the expectation of both sides, the desired result
follows.

Proof of Remark 2 and Theorem 1

Let now f̃λ = ÃλY with a symmetric Ãλ = Aλ+Aλ
�−Aλ

�Aλ. We apply Lemma 2
with the prior μ(dλ) ∝ exp{2 Tr[Σ(Aλ

�−Aλ
�Aλ)]/β}π(dλ), with f̂λ = AλY and

with the risk estimate

r̃λ =
∥∥Y − f̂λ

∥∥2

n
+

2
n

Tr[ΣÃλ] − 1
n

Tr[Σ] = r̂unb
λ +

2
n

Tr[ΣAλ
�Aλ − ΣAλ]. (14)

One easily checks that this choice leads to the posterior μ̂ that is equal to π̂
defined in Figure 2. Therefore, the aggregate f̃EWA based on the prior μ coincides
with f̂SEWA based on the prior π. Thus we obtain the following inequality:

E[‖f̂SEWA − f‖2
n] ≤ inf

p∈PΛ

{∫
Λ

E[r̃λ] p(dλ) +
βK(p, μ)

n

}
. (15)

Furthermore, easy algebra yields that all the conditions required in the second
part of Lemma 2 are fulfilled with a = 2‖|Σ‖|

n as soon as β ≥ 4‖|Σ‖|. Indeed, one
can notice that ∇Y r̃λ = 2

n (Y − f̃λ). This leads to∫
Λ

〈∇Y r̃λ|Σ(f̃λ − f̃EWA)
〉

n
μ̂(dλ) =

2
n

∫
Λ

〈
f̃EWA − f̃λ|Σ(f̃λ − f̃EWA)

〉
n
μ̂(dλ)

≤ 2‖|Σ‖|
n

∫
Λ

‖f̃λ − f̃EWA‖2
nμ̂(dλ). (16)

Hence the conclusion of the second part of Lemma 2 holds true. To prove the
claim of Remark 2, one can notice that:

K(p, μ) = −
∫

Λ

log
(dμ

dp
(λ)

)
p(dλ)

=
∫

Λ

2
β

Tr[Σ(Aλ
�Aλ − Aλ)]p(dλ) + log

[∫
Λ

e
2
β Tr[Σ(Aλ−Aλ

�Aλ)]π(dλ)
]

+ K(p, π).

(17)

Then, by taking the expectation and combining together relations (14), (15) and
(17), one gets E[‖f̂SEWA − f‖2

n] ≤ infp∈PΛ

{∫
Λ rλp(dλ) + βK(p,π)

n

}
+ Rn, and the

claim of Remark 2 follows.
Finally, if condition C(λ) is satisfied for π-almost all values of λ, then Rn is

non-positive, and we get the sharp oracle inequality stated in Theorem 1.
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