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Abstract. A technique for calibrating a network of perspective cameras based
on their graph of trifocal tensors is presented. After estimating a set of reliable
epipolar geometries, a parameterization of the graph of trifocal tensors is pro-
posed in which each trifocal tensor is encoded by a 4-vector. The strength of this
parameterization is that the homographies relating two adjacent trifocal tensors,
as well as the projection matrices depend linearly on the parameters. A method
for estimating these parameters in a global way benefiting from loops in the graph
is developed. Experiments carried out on several real datasets demonstrate the ef-
ficiency of the proposed approach in distributing errors over the whole set of
cameras.

1 Introduction

Camera calibration from images of a 3-dimensional scene has always been a central
issue in Computer Vision. The success of textbooks like [1,2] attests this interest. In
recent years, many methods for calibration have been proposed. Most of these work
either rely on known or partially known internal calibrations [3,4,5,6,7,8,9,10] or deal
with an ordered sequence of cameras [11,12,13,14]. In many practical situations, how-
ever, the internal parameters of cameras are unavailable or available but very inaccurate.
The absence of an order in the set of cameras is also very common when processing,
for instance, Internet images.

In this paper, we deal with the problem of calibrating a network of cameras from
a set of unordered images, the main emphasis being on the accuracy of the projective
reconstruction of camera matrices. Traditionally, this situation is handled by factorizing
the measurement matrix [15,16], which may be subject to missing data [17,18] because
of occlusions. The methodology adopted in the present work is substantially different
and is based on the notion of the graph of trifocal tensors rather than on the factorization.
The experiments on real datasets show that our approach leads to highly competitive
results that furnish a good initialization to the bundle adjustment (BA) algorithm [19].

Even in the case of calibrated cameras, most of the aforementioned methods are
based on a graph of cameras (in which the edges are the epipolar geometries) which is
made acyclic by discarding several edges. On the other hand, a number of recent studies,
oriented toward city modeling from car or aerial sequences, point out the benefits of
enforcing loop constraints. Considering loops in the graph of cameras has the advantage
of reducing the drift due to errors induced while processing the trajectory sequentially
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(cf. Fig. 1). [20] merges partial reconstructions, [21] constrains coherent rotations for
loops and planar motion. Adapted to their specific input, these papers often rely on
trajectory regularization or dense matching [22,23]. [24] is a notable exception, where
loop constraints are added to sparse Structure from Motion (SfM), yet taking as input
an ordered omnidirectional sequence and assuming known internal parameters. The

Fig. 1. Multi-view stereo reconstruction [25] using cameras calibrated without (left) and with
(right) using the loop-constraint. When the loop constraint is not enforced, the accumulation of
errors results in an extremely poor reconstruction.

method proposed in the present work consists of the following points:

– Our starting point is a set of unknown cameras linked by estimated epipolar geome-
tries (EG). These are computed using a state-of-the-art version of RANSAC [26],
followed by a maximum likelihood improvement described in [13]. We assume that
along with the estimated fundamental matrices, reliable epipolar correspondences
are known. These correspondences are made robust by simultaneously considering
several camera pairs, like in [3]. This produces a set of three-view correspondences
that will be used in the sequel.

– We group views into triplets. Three views (i, j, k) are considered as a valid triplet if
(a) the EGs between i and j as well as between j and k have been successfully com-
puted at the previous step and (b) there are at least 4 three-view correspondences
in these images. To reduce the number of nodes, some of the estimated epipolar
geometries are ignored, so that inside a triplet, only two of the three fundamental
matrices are considered known. The advantage of this strategy is that we do not
need to enforce the coherence of fundamental matrices. At first sight, this can be
seen as a loss of information. However, this information is actually recovered via
trifocal tensors.

– We define a graph having as nodes valid camera triplets. Therefore, there are two
fundamental matrices available for each node. Two nodes are connected by an edge
if they share a fundamental matrix. We demonstrate that for each node there exists
a 4-vector such that all the entries of the three camera matrices are affine functions
of this 4-vector with known coefficients. Moreover, the homographies that allow
the registration of two adjacent nodes ν and ν′ are also affine functions depending
on 4 out of the 8 unknown parameters corresponding to ν and ν′. To speed-up the
computations, for each node only 50 (or less) three-view correspondences that are
the most compatible with the EGs are used.
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– If the graph of triplets is acyclic, the equations of three-view correspondences for
all nodes lead to a linear estimate of all the cameras. In case, the graph of triplets
contains one or several loops, each loop is encoded as a (non-linear) constraint
on the unknowns. Starting from an initial value computed as a solution to the un-
constrained least squares, we sequentially linearize the loop constraints and solve
the resulting problem by (sparse) linear programming. This can be efficiently done
even for very large graphs. It converges very rapidly, but the loop constraints are
fulfilled only approximately.

– In the case where the loop constraints are not satisfied exactly, we proceed by ho-
mography registration and estimation of camera matrices by linear least-squares
under norm constraint. This is done exactly via a singular value decomposition
producing as output all cameras in a projective space. To provide a qualitative eval-
uation, we recover the metric space using an implementation of [27], and a single
Euclidean bundle adjustment that refines the metric space and camera positions.

Thus, we propose a method that accurately recovers geometries, without any sequential
process, and attempts to enforce the compatibility of cameras within loops in the early
stages of the procedure. An important advantage conferred by our approach is that the
number of unknown parameters is kept fairly small, since we consider only the cameras
(four unknowns for each triplet) and not the 3D points. Our reconstruction is further re-
fined by bundle adjustment. Taking loops into account and avoiding error accumulation,
the proposed solution is less prone to get stuck in local minima.

The remainder of the paper is organized as follows. Section 2 presents the back-
ground theory and terminology. Our algorithm is thoroughly described in Sections 3
and 4. The results of numerical experiments conducted on several real datasets as well
as a comparison to state-of-the-art software is provided in Section 5. A discussion con-
cludes the paper.

2 Background

In this work, we consider a network of N uncalibrated cameras and assume that for
some pairs of cameras (i, j), where i, j = 1, . . . , N , i �= j, an estimation of the funda-
mental matrix, denoted by Fij , is available. Let us denote by eij the unit norm epipole
in view j of camera center i. Recall that the fundamental matrix leads to a projective
reconstruction of camera matrices (Pi,Pj), which is unique up to a homography.

The geometry of three views i, j and k is described by the Trifocal Tensor, hereafter
denoted by T ijk . It consists of three 3 × 3 matrices: Tijk

1 ,Tijk
2 and Tijk

3 and provides
a particularly elegant description of point-line-line correspondences in terms of linear
equations

pT
i

⎡
⎢⎣
lTj T

ijk
1

lTj T
ijk
2

lTj T
ijk
3

⎤
⎥⎦ lk = 0, (1)

where pi is a point in image i (seen as a point in projective space P
2) which is in

correspondence with the line lj in image j and with the line lk in image k. Considering
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the entries of T ijk as unknowns, we get thus one linear equation for each point-line-
line correspondence. Therefore, one point-point-point correspondence pi ←→ pj ←→
pk leads to 4 independent linear equations by combining an independent pair of lines
passing through pj in image j with an independent pair of lines passing through pk in
image k.

Since a Trifocal Tensor has 27 entries, the previous argument shows that 7 point-
point-point correspondences suffice for recovering the Trifocal Tensor as a solution of
an overdetermined system of linear equations. Recall however that the Trifocal Tensor
has only 18 degrees of freedom. Most algorithms estimating a Trifocal Tensor from
noisy point-point-point correspondences compute an approximate solution to the linear
system by a least squares estimator (LSE) and then perform a post-processing in order to
get a valid Trifocal Tensor. An alternative approach consists in using a minimal solution
that determines the three-view geometry from six points [28,29].

2.1 Main Ingredients of Our Approach

Let us describe now two elementary results that represent the building blocks of our ap-
proach, relying on the fact that when two out of three fundamental matrices are known,
the Trifocal Tensor has exactly 4 degrees of freedom.

Proposition 1. For three views i, j and k, given two fundamental matrices Fij and Fik,
there exists a 4-vector γ = [γ0, . . . , γ3] such that T ijk is given by:

Tijk
t = Aij

t

⎡
⎣
0 0 0
0 0 1
0 γ0 γt

⎤
⎦ (Aik

t )
T

(2)

for every t = 1, 2, 3, where Ais
t =

[
(Fis

t,1:3)T , (Fis
t,1:3)T × eis , eis

]
, for s = j, k.

Moreover, T ijk is geometrically valid, i.e. , there exist 3 camera matrices Pi, Pj and
Pk compatible with Fij and Fik and having T ijk as the Trifocal Tensor.

The proof of this result is deferred to the supplemental material. It is noteworthy that
the claims of Proposition 1 hold true under full generality, even if the centers of three
cameras are collinear. In view of [1], the camera matrices parameterized by γ that are
compatible with the fundamental matrices Fij and Fik as well as with the Trifocal
Tensor defined by Eq. 2 are given by (up to a projective homography)

Pi = [I3×3 |03×1], Pk = [γ0[eik]×Fki | eik],
Pj = kron

(
[γ1:3, 1]; eij

)
− [[eij ]×Fji |03×1],

(3)

where kron(·, ·) stands for the Kronecker product of two matrices.
In the noiseless setting, Proposition 1 offers a minimal way of computing the 4 re-

maining unknowns from point-point-point correspondences. One could think that one
point-point-point correspondence leading to 4 equations is enough for retrieving the 4
unknowns. However, since two EGs are known, only one equation brings new informa-
tion from one point-point-point correspondence. So we need at least 4 point-point-point
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correspondences to compute the Trifocal Tensor compatible with the two given funda-
mental matrices. In the noisy case, if we use all 4 equations associated to point-point-
point correspondences, the system is then overdetermined and one usually proceeds by
computing the LSE.

The second ingredient in our approach is the parameterization of the homography
that bridges two camera triplets having one fundamental matrix in common. Let i, j,
k and � be four views such that (a) for views i and k we have successfully estimated
the fundamental matrix Fik and (b) for each triplet (i, j, k) and (k, i, �) the estimates of
two fundamental matrices are available. Thus, the triplets (i, j, k) and (k, i, �) share the
same fundamental matrix Fik . Using equations (3), one obtains two projective recon-
structions of camera matrices of views i and j based on two 4-vectors γ and γ′. Let us
denote the reconstruction from the triplet (i, j, k) (resp. (k, i, �)) by Pi

γ and Pk
γ (resp.

Pi
γ′ and Pk

γ′ ). If the centers of cameras i and k differ, then there is a unique homography
Hγ,γ′ such that

Pi
γHγ,γ′ ∼= Pi

γ′ , Pk
γHγ,γ′ ∼= Pk

γ′ , (4)

where ∼= denotes equality up to a scale factor. Considering the camera matrices as
known, one can solve (4) w.r.t. Hγ,γ′ . One readily checks that1

Hγ,γ′ =

⎡
⎢⎣

kron(γ ′
1:3, e

ki)− [eki]×Fik eki

−γ0
2 tr([eik]×Fki[eki]×Fik)(eik)T 0

⎤
⎥⎦ . (5)

To sum up this section, let us stress that the main message to retain from all these
formulas is that Hγ,γ′ , as well as the camera matrices (3) are linear in (γ, γ′).

3 Estimating Tensors by Sequential Linear Programming

This section contains the core of our contribution which is based on a graph-based
representation of the triplets of cameras. This is closely related to the framework devel-
oped in [5], where the graph of camera pairs is considered. The advantage of operating
with triplets instead of pairs is that there is no need to distinguish between feasible and
infeasible paths.

3.1 Graph of Trifocal Tensors

The starting point for our algorithm is a set of estimated EGs that allow us to define a
graph Gcam so that (a) Gcam has N nodes corresponding to the N cameras and (b) two
nodes of Gcam are connected by an edge if a reliable estimation of the corresponding
epipolar geometry is available. Then, a triplet of nodes i, j, k of Gcam is called valid if
(a) there is a sufficient number of three view correspondences between i, j and k, and
(b) at least two out of three pairs of nodes are adjacent in Gcam.

If for some valid triplet all three EGs are available, we remove the least reliable one
and define the graph Gtriplet = (Vtriplet, Etriplet) having as nodes valid triplets of cameras

1 See supplemental material for more details.
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and as edges the pairs of triplets that have one fundamental matrix in common. In view
of Proposition 1, the global calibration of the network is equivalent to the estimation of
a 4-vector for each triplet of cameras. Thus, to each node v of the graph of triplets we
associate a vector γv ∈ R

4. The large vector Γ = (γv : v ∈ Vtriplet) is the parameter of
interest in our framework.

If, by some chance, it turns out that the graph of triplets is acyclic, then the problem
of estimating Γ reduces to estimating NV = Card(Vtriplet) independent vectors γv.
This task can be effectively accomplished using point-point-point correspondences and
the equation (1). As explained in Section 2, a few point-point-point correspondences
suffice for computing an estimator of γv by least squares. In our implementation, we
use RANSAC with a minimal configuration of four 3-view correspondences in order to
perform robust estimation.

3.2 Calibration as Constrained Optimization

However, acyclic graphs are the exception rather than the rule. Even if the camera graph
is acyclic, the resulting triplet graph may contain loops. To explain how the loops in the
graph Gtriplet are handled, let us remark that one can associate a homography (cf. (5))
to each adjacent pair (v, v′) of nodes of Gtriplet. Using these homographies, each loop
of the graph of triplets yields a constraint on the homographies and, therefore, on the
parameter vector Γ . For instance, the 3-loop v ←→ v′ ←→ v′′ ←→ v gives rise to the
constraint Hγv ,γv′Hγv′ ,γv′′Hγv′′ ,γv

∼= I4×4. This equation defines a set of 15 poly-
nomial constraints on the unknown vector Γ . If the triplet graph contains Nloop loops,
then we end up with 15Nloop constraints. Our proposal—in the case of general graphs
of triplets—is to estimate Γ by minimizing an energy derived from the equations (1)
and point-point-point correspondences (similarly to the LSE proposed in the previous
subsection) subject to 15Nloop constraints.

The main advantage of this approach is that if a solution to the proposed optimiza-
tion problem is found, it is guaranteed to be consistent w.r.t. the loops, meaning that
each camera matrix will be uniquely determined up to a scale factor and an overall
homography ambiguity.

3.3 Sequential Linear Programming

Instead of solving the optimization problem that is obtained by combining the LSE
with the loop-constraints, we propose here to replace it by a linear program. To give
more details, let us remark that every loop-constraint can be rewritten as fj(Γ ) = 0,
j = 1, . . . , 15, for some polynomial functions fj . Gathering these constraints for all
Nloop loops, we get

fj(Γ ) = 0, j = 1, . . . , 15Nloop. (6)

On the other hand, in view of (1) and (2), the point-point-point correspondences can be
expressed as an inhomogeneous linear equation system in Γ

MΓ = m, (7)
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where M is a 4N3-corr × 4N matrix and m is a 4N3-corr vector with N3-corr being the
number of correspondences across three views. The matrix M and the vector m are
computed using the known fundamental matrices. Since in practice these matrices are
estimated from available data, the system (7) need not be satisfied exactly. Then, it is
natural to estimate the parameter-vector Γ by solving the problem

min ‖MΓ −m‖qq subject to fj(Γ ) = 0, ∀j = 1, . . . , 15Nloop, (8)

for some q ≥ 1. Unfortunately, there is no q for which this problem is convex and,
therefore, it is very hard to solve. To cope with this issue, we propose a strategy based
on local linearization.

We start by computing an initial estimator of Γ , e.g., by solving the unconstrained
(convex) problem with some q ≥ 1. In our implementation, we use RANSAC with
q = 2 for ensuring robustness to erroneous three-view correspondences. Then, given
an initial estimator Γ0, we define the sequence Γk by the following recursive relation:
Γk+1 is the solution to the linear program

min ‖MΓ −m‖1 subject to |fj(Γk) +∇fj(Γk)(Γ − Γk)| ≤ ε, (9)

where ε is a small parameter (we use ε = 10−6). There are many softwares—such
as GLPK, SeDuMi, SDP3—for solving problem (9) with highly attractive execution
times even for thousands of constraints and variables. Furthermore, empirical expe-
rience shows that the sequence Γk converges very rapidly. Typically, a solution with
satisfactory accuracy is obtained after five to ten iterations.

3.4 Accounting for Heteroscedasticity

The goal now is to make the energy that we minimize in (9), which is purely algebraic,
meaningful from a statistical viewpoint. Assume equations (7) are satisfied up to an
additive random noise: MΓ = m + ξ, where the random vector ξ has independent
coordinates drawn from the centered Laplace distribution with constant scale. Then the
energy in (9) is proportional to the negative log-likelihood. The constancy of the scale
factor means that the errors are homoscedastic, which is a very strong hypothesis. We
observed that all three view correspondences recorded by a fixed triplet have nearly
the same scale for the errors, while the scales for different triplets are highly variable.
To account for this heteroscedasticity of the noise, we use the initial estimator of Γ to
estimate one scale parameter σv per node v ∈ Vtriplet. This is done by computing the
standard deviation of the estimated residuals. Using {σv}, the energy in problem (9) is
replaced by

∑
v ‖MvΓ −mv‖1/σv. Here, Mv is the submatrix of M containing only those

rows that are obtained from three-view correspondences recorded by v. The vector mv

is obtained from m in the same way.

4 Homography Registration and Estimation of Projection
Matrices

Assume that we have a graph of trifocal tensors, Gtriplet, each node of which will be de-
noted by v1, v2, . . . , vn. In the previous step, we have determined parameters γ1, . . . , γn,
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such that γi characterizes the trifocal tensor represented by vi. A naive strategy for es-
timating camera matrices is to set one of the cameras equal to [I3×3 |03×1] and to
recover the other cameras by successive applications of the homographies Hγ,γ′ to the
camera matrices reconstructed according to (3). However, in general situations, the vec-
tor Γ computed by sequential linear programming as described in the previous section
satisfies the loop constraints up to a small error. Therefore, the aforementioned naive
strategy has the drawback of increasing the error of estimation for cameras computed
using many homographies Hγ,γ′ . In order to avoid this and to uniformly distribute the
estimation error over the set of camera matrices, we propose a method based on homog-
raphy registration by SVD. Thus, the input for the method described in this section is a
vector Γ for which the loop constraints are satisfied up to a small estimation error.

4.1 The Case of a Single Loop

We assume in this subsection that Gtriplet reduces to one loop, that is each node vi has
exactly two neighbors vi−1 and vi+1 with standard convention and vn+i = vi for all i.
(This applies to all the indices in this subsection.) For each node vi representing three
views, we have already computed a version of the projection matrices P1,γi , P2,γi , P3,γi .
Furthermore, for two neighboring nodes vi and vi+1 we have computed a homography
Hi,i+1 so that Pj,γi+1 ∼= Pj+1,γiHi,i+1, j ∈ {1, 2}. Based on the relative homographies
{Hi,i+1} we want to recover absolute homographies Hvi that allow to represent all the
matrices Pj,γi in a common projective frame. In other terms, in the ideal case where
there is no estimation error, the matrices Hvi should satisfy

Pj,γi Hvi ∼= Pj+i−1,∗, j ∈ {1, 2, 3}. (10)

Obviously, the set {Hvi} can only be determined up to an overall projective homography.

Proposition 2. If for some i = 1, . . . , n, the cameras Pi+1,∗ and Pi+2,∗ have different
centers, then Hvi ∼= Hi,i+1Hvi+1 . Furthermore, if the centers of each pair of consecutive
cameras are different, then one can find a projective coordinate frame so that

i) Hvi = Hi,i+1Hvi+1 , ∀i = 1, . . . , n− 1,

ii) α Hvn = Hn,1Hv1 , where α can be determined by α = 1
4Trace(

∏n
i=1 H

i,i+1),
iii) Let H̄ be the (4n) × 4 matrix resulting from the vertical concatenation of matrices

Hvi . The four columns of H̄ are orthonormal.

This result, the proof of which is presented in the supplemental material, allows us
to define the following algorithm for estimating the matrices {Hvi}. Given the relative
homographies {Hi,i+1}, we first compute α according to the formula in ii) and then
minimize the cost function

n−1∑
i=1

‖Hvi − Hi,i+1Hvi+1‖22
max(σ2

vi
, σ2

vi+1
)

+
‖α Hvn − Hn,1Hv1‖22

max(σ2
v1

, σ2
vn

)
(11)

w.r.t. {Hvi}, subject to the orthonormality of the columns of H̄. Here, ‖ · ‖2 is the Frobe-
nius norm. The exact solution of this (non-convex) optimization problem can be com-
puted using the singular value decomposition of a matrix of size 4n × 4n constructed
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First frame Second frame Last frame

Fig. 2. This figure illustrates the improvement achieved at each step of our algorithm. If the cam-
eras are reconstructed without imposing loop constraints, the epipolar lines between the first and
the last frames are extremely inaccurate (1st row). They become much more accurate when the
constrained optimization is performed (2nd row). Finally, the result is almost perfect once the
homography registration is done.

from α and {Hi,i+1}. Since this is quite standard (based on the Courant-Fisher minimax
theorem [30, Thm. 8.1.2]), we do not present more details here.

4.2 The Case of Several Loops

Assume now that we have identified several loops in the graph of trifocal tensors. Let
Nloop be the number of these loops. We apply to each loop the method of the previous
section and get a homography for every node of the loop. In general, one node of Gtriplet

may lie in several loops, in which case we will have several homographies for that
node. It is then necessary to enforce the coherence of these homographies. To this end,
we define the graph Gloop having Nloop nodes, each node representing a loop. Two nodes
of Gloop are linked by an edge, if the corresponding loops have non-empty intersection.
We will assume that the graph Gloop is connected, since otherwise it is impossible to
simultaneously calibrate different connected components.

The next step consists in determining a minimal depth spanning tree Tloop of Gloop.
Since the number of loops is assumed small, this step will not be time consuming.
Let (L,L′) be a pair of adjacent nodes of Tloop. By an argument analogous to that
of Proposition 2, one can show that there exists a 4 × 4 homography HL,L′

such that
Hv,L ∼= Hv,L′

HL
′,L up to an estimation error, for every triplet of cameras v ∈ L ∩ L′.

Here, Hv,L (resp. Hv,L′
) stands for the homography assigned (cf. previous subsection) to

the triplet v as a part of the loop L (resp. L′). The homography HL
′,L can be estimated

by minimizing the objective function
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∑
v∈L∩L′

‖αvH
v,L − Hv,L′

HL
′,L‖22/σ2

v (12)

w.r.t. the matrix HL
′,L and parameters {αv} subject to ‖HL′,L‖22 +

∑
v∈L∩L′ α2

v = 1.
Once again, this minimization can be carried out by computing the eigenvector corre-
sponding to the smallest singular value of a suitably defined matrix.

Finally, to enforce the coherence of absolute homographies computed using different
loops, we proceed as follows. We do not modify the homographies computed within
the loop L0 constituting the root of the minimal depth spanning tree Tloop. For any other
loopL, letL0 → L1 → . . .→ Lk → L be the (unique) path joiningL to the root. Then,
every absolute homography Hv,L, v ∈ L, computed within the loop L using the method
of the previous subsection is replaced by Hv,LHL,Lk · · · HL1,L0 . After this modification,
the images by Hv,L of the projection matrices Pj,γv (j = 1, 2, 3) will all lie in nearly the
same projective space. This makes it possible to recover the final projection matrices Pi

by a simple computation presented in the next subsection.

4.3 Estimating Projection Matrices

Once the set of absolute homographies estimated, we turn to the estimation of camera
matrices {Pj,∗}. Due to the estimates computed in previous steps, each projection ma-
trix Pj,∗ can be estimated independently of the others. To ease notation and since there
is no loss of generality, let us focus on the estimation of P1,∗. We start by determining
the nodes in Gtriplet that contain the first view. Let V1 denote the set of these nodes. To
each node v ∈ V1 corresponds one estimator of P1,∗, denoted by P1,γv . Furthermore,
we have a set of estimated homographies Hv,L that satisfy, up to an estimation error,
the relation P1,vHv,L ∼= P1,∗. This is equivalent to αv,LP1,vHv,L = P1,∗, ∀v ∈ V1,
∀L ⊃ {v} with some αv,L ∈ R. In these equations, the unknowns are the reals αv,L
and the matrix P1,∗. Since this matrix should be of rank 3, it has nonzero Frobenius
norm. Therefore, we estimate P1,∗ by P1 defined as a solution to

arg min
P

min
{αv,L}:‖P‖2

2+‖α‖2
2=1

∑
L

∑
v∈L∩V1

‖αv,LP1,vHv,L − P‖22/σ2
v, (13)

where α stands for the vector having as coordinates the numbers αv,L. Once again, the
problem (13) can be explicitly solved using the SVD of an appropriate matrix.

5 Experiments

Implementation. In order to apply the methodology we have just described, we extract
and match SIFT [31] descriptors from all the images. Then, epipolar geometries are
estimated by DEGENSAC [32]. Note that some speed-up in this step can be achieved
by using one of the recent versions of RANSAC [26,33]. Estimated EGs allow us to
identify and remove wrong correspondences as well as to create feature tracks. Using
these tracks and EGs as input for our algorithm, we compute as output the projection
matrices of all the cameras. In order to be able to visually assess the reconstruction
quality, all cameras and the 3D structure are upgraded to Euclidean [27].
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Table 1. Characteristics of the datasets used for the experimental validation. From left to right:
number of frames in each sequence, the resolution of each image, the number of 2D image points
used for the final BA for our method and for bundler [5], the mean squared reprojection error.

Dataset #frames resolution
# image points MSRE (pxl)

Our Bundler Our Bundler

Dinosaur 36 576 × 720 45,250 37,860 0.27 0.25
Temple 45 480 × 500 26,535 23,761 0.08 0.11
Fountain P11 11 2048 × 3072 57,547 23,648 0.16 0.13
Herz-Jesu R23 23 2048 × 3072 129,803 − 0.41 −
Detenice 34 1536 × 2048 30,200 − 0.15 −
Calvary 52 2624 × 3972 54,798 − 0.51 −

Fig. 3. One frame of each dataset used to test our methodology. From left to right: dinosaur,
temple, fountain P11, Herz-Jesu R23 [34], Calvary, Detenice fountain.

Datasets. We tested our methodology on six datasets: the dinosaur sequence (36 frames),
the temple sequence (45 frames), the fountain P11 sequence (11 frames), the Herz-Jesu
R23 sequence (23 frames), the Detenice fountain sequence (34 frames) and the calvary
sequence (52 frames). For the first three datasets, the ground truth of camera matrices
is available on the Web.

Quality measures. Since the main contribution of the present paper concerns the pro-
jective reconstruction, it is natural to assess the quality of the proposed approach using
the distance:

dproj({Pj}, {Pj,∗}) = inf
α,H

n∑
j=1

‖αjP
jH− Pj,∗‖22, (14)

where Pj and Pj,∗ are respectively the reconstructed and the true camera projection
matrices, α = (α1, . . . , αn) is a vector of real numbers and H is a 3D-homography.
Naturally, this measure can be used only on sequences for which the ground truth is
available. Note also that the computation of the infimum in (14) is a non-convex op-
timization problem. We solve it by first computing the one-norm solution to the least
squares problem minα,H

∑n
j=1 ‖PjH−α−1

j Pj,∗‖22, and then use this solution as a starting
point for an alternating minimization. For the examples considered here, this converges
very rapidly and, since the results are good, we believe that the local minimum we find
is in fact a global minimum, or at least not too far from it.
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(a) (b)

(c)

Fig. 4. This figure shows the errors in estimated camera matrices for our method and for bundler.
The per-camera errors and their boxplots for the dinosaur sequence (a), the temple sequence (b)
and for the fountain P11 sequence (c). One can remark that our method achieves the same level
of accuracy as that of bundler, despite the fact that we do not use any information on the internal
parameters, while bundler assumes that the skew is zero and the principal point is the center.

Results. For the dinosaur, temple and fountain P11 sequences, since ground truth ex-
ists, we compared our results with those of bundler [5], which is a state-of-the-art cali-
bration software. The ground truth was normalized so that the Frobenius norm of all the
cameras is one. For both reconstructions (ours and bundler), we computed numbers αj

and a homography H by minimizing (14). This allows us to define the per-camera error
as ‖αjP

jH − Pj,∗‖22 for the jth camera. As shown in Fig. 4, not only these errors are
small, but also our results are quite comparable to those of bundler despite the fact that
our method does not perform intermediate BAs and does not assume that the principal
point is in the center and the skew is zero. One can also note that the error is well dis-
tributed over the whole sequence of cameras due to the fact that both methods operate
on the closed sequence. Furthermore, the results reported for fountain P11 are achieved
without final BA, proving that the method we proposed furnishes a good starting point
for the non-linear optimization.

As for the datasets where no ground truth is known, we have chosen to use as measure
of evaluation the multiview stereo reconstruction of the scene based on the method of
[25]2. The results are shown in Fig. 1 (right) for the calvary sequence and in Fig. 5 for
the Herz-Jesu R23 and the Detenice fountain sequences. In the aim of comparing our
results with other approaches, let us recall that (as reported in [34]) on the Herz-Jesu
R23 data the ARC3D software succeeded to calibrate four of the 23 cameras, while
the method proposed in [4] calibrated all the cameras with a relatively large error for

2 Since multiview stereo reconstruction is not the purpose of the paper and is only used for
illustration, the results shown in Fig. 1 and 5 are obtained without the final mesh refinement.
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Fig. 5. Multi-view stereo reconstruction using the camera matrices estimated by our method for
the Herz-Jesu R23 and Detenice fountain datasets. For these data, the ground truth is unavailable
but the quality of the scene reconstruction demonstrates the accuracy of estimated cameras.

cameras 6-11. Although we are unable to quantitatively compare our reconstruction
to that of [4], the accuracy of the 3D scene reconstruction makes us believe that the
estimated cameras are very close to the true ones.

6 Conclusion

In this paper, we have proposed a new approach to the problem of autocalibration of a
network of cameras. Our approach is based on a representation of the network of cam-
eras by a graph of trifocal tensors and on a natural parameterization of camera matrices
and relating homographies. We have proposed to estimate the unknown parameters by
a constrained optimization that can be recast in a linear program. Thanks to the spar-
sity of the matrices involved in this linear program, the running times of the proposed
algorithm are very attractive even for large scale datasets. The experiments reported in
this paper show that our approach leads to state-of-the-art results without assuming any
kind of information on the internal parameters.
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