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Abstract— The aim is to investigate the activation condi-
tions of the different nerves which control the bladder. The
selective stimulation of the nerve fibers depends on electrode
configuration and intensity of applied current. The goal of this
study is to compute the electrical potential inside the nerve due
to an applied boundary currents. A symmetrically cylindrical
model, representing the geometry and electrical conductivity of
a nerve surrounded by a connective tissue and a cuff is used.
In the quasistatic approximation, the problem can be modeled
by a Poisson equation with Neumann boundary conditions. A
symmetric boundary integral formulation is discretized using
mixed finite elements. We can thus compute an electrical
potential distribution depending on the electrode configuration
and the applied current inside a nerve. Our results show that
the distribution of the electrical potential inside a nerve or a
fascicle depends on the geometry of the electrode and the shape
of the applied current.

I. INTRODUCTION

Functional Electrical Stimulation (FES) provides a way
to restore movement of paralyzed limbs by activating the
efferent somatic axons. Indeed they innerve the striated
muscle fibers that can thus generate force when stimulated.
FES can also be used to activate other target organs such
as the Detrusor smooth muscle for bladder control. The
principle remains the samei.e. firing motor axons of the
desired target muscles. However, within a nerve composed of
different types of axons innervating muscle fibers - smooth,
slow and fast striated, one challenge to get efficient implanted
FES system is to provide a way to selectively activate these
fibers; for instance to stimulate the Detrusor (smooth muscle)
without stimulating the striated sphincter (innervated by the
same sacral root) for bladder emptying, stimulating slow
fibers instead of fast fibers in a striated muscle to limit
fatigue effect for movement restoration. In the literature,
some experimental tests of FES [1], [2], [3] show that the
fiber selectivity is possible depending on the geometry of the
electrodes and the shape of the stimulus but these results stay
empirical and do not give an explicit form of the potential
inside a nerve. Some studies concerning the modeling of
the interaction between nerve fibers and the stimulating
electrodes can be found. Among these, we can cite [4] which
examines the behavior of axons excited by electrical fields. In
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[5], simulations show that the diameter dependency of nerve
fiber recruitment is influenced by the electrode geometry.
The results, given in [6], predict that the use of intraneural
or even intrafascicular electrodes is necessary for selective
stimulation of fascicles not lying on the surface of the nerve.
Authors in [7] conclude that a transverse tripole activates
superficial nerve fibers in a more selective way than other
configurations (monopole, bipole, ...). Using a volume con-
ductor model to compute the electrical potential distribution
inside a tripolar cuff electrode and a human fiber model to
simulate the fiber response to stimulation, [8] determines a
minimal quantity of charge per pulse which is needed for
selective nerve stimulation depending on pulse shapes. Our
aim is to propose a numerical model of nerve-cuff electrode
which will be used to study interactions between nerve fibers
and electrode during a FES. This model will be used to
determine the optimal geometric parameters for a multipolar
cuff electrode for selective neural stimulation. This kind of
study has been investigated in [9], but only considering a
2-D conductor model. In our investigations, we consider a
3-D problem and we use a numerical method inspired from
the forward problem of Electrical Impedance Tomography
(EIT), i.e. the computation of an electrical potential due
to an applied boundary current. The forward problem of
EIT has been solved in [10], [11] using a symmetrical
version of the boundary element method (BEM). In the
study presented in this article, we were interested in the
validation of our numerical model in a simple case, thus
the nerve was considered as an isotropic medium. The goal
is to compute an electrical potential inside a nerve. Knowing
the potential and the current densities on the one hand and
the fiber excitation thresholds on the other hand, we can
determine which type of fiber has been stimulated according
to the selected currents and the geometry. Using the Poisson
equation, we introduce our physical model of nerve-cuff
electrode. Then, the numerical model based on the BEM,
used to compute the electrical potential inside a nerve, is
described. We finish giving some results corresponding to
different cases of stimulation.

II. METHODS

A. Physical model

The electrical potential generated by a cuff electrode in
a volume conductor satisfies the Poisson equation, obtained



from the Maxwell equations in the quasi-static case :




∇.(σ∇V) = 0

σ
∂V
∂n

= j,
(1)

where j (A) is the applied current andV (V) is the unknown
electrical potential. The conductivityσ (S/m) is piecewise
constantie each medium has its own conductivity. In the
anisotropic case, the conductivity is represented by a diago-
nal tensor in cylindrical coordinates:

σ =




σr 0
σr

0 σz


 (2)

We restrict this study to the isotropic case (σr = σz = σ ).
The conductivity values are provided in Table I.
A nerve consists in a number of nerve fiber bundles called

TABLE I

CONDUCTIVITY OF EACH TISSUE(INSPIRED FROM[9]).

Tissue Conductivityσ (S/m)
fascicle 0.6

connective tissue 1.7

fascicles. Our geometrical model of a stimulated nerve is
cylindrically symmetric nerve with one fascicle of lengthL =
80 mm. Its shape is sketched in Fig.1 and its transversal
section in Fig.2. Between the inner and outer cylinders lies
the connective tissue (thicknesse = 0.25 mm). We denote
r = 1 mm the radius of the fascicle. A stimulation current
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Fig. 1. Schematic design of the nerve-cuff electrode geometry
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Fig. 2. Transversal section of the nerve-cuff electrode geometry

is applied with a multipolar cuff electrode compound of two
anodes and one cathode. The applied currentj on the cuff
electrode must respect the rule:

∫

electrodes
j = 0. (3)

In Fig. 2 one sees that an anode or a cathode has four
contacts. The length of an anode or a cathode along thez
axis is denoteda. The distance between one anode and the
cathode along the axisz is d1 = d2 = d = 5 mm in the cases
presented in this paper. The angular width of each contact

is β =
4π
10

and the angular distance between two contacts is

α =
π
10

.

B. Numerical model

Numerically, (1) is solved using a symmetrical BEM. The
BEM based on a boundary integral equation permits to com-
pute the potential distribution on the surface of a piecewise
homogeneous isolated conductor of arbitrary shape, it has
been adapted by [11] for the modelisation and simulation of
the forward problem of EIT. A detailed description of this
method is given in [10]. The conductivity is supposed to be
piecewise constantie each surface has its own conductivity.
Thus, the conductivity can be factorized in (1) and a Laplace
equation is obtained in each volume:

∆V = 0, (4)

with the following boundary conditions at the interfaceS1

V−
S1

= V+
S1

, (5)

σ1

(
∂V
∂n

)−

S1

= σ0

(
∂V
∂n

)+

S1

, (6)

where (−) and (+) symbolize the inside and the outside
of the surfaceS1. In the case presented in this paper,σ1

corresponds to the conductivity of the fascicle andσ0 to the

connective tissue. The unknown valuesVS1 and

(
σ

∂V
∂n

)

S1
are represented byvi and (σ∂nv)i in a discretized form. In
the BEM used here, the formula of the electrical potentialV
at any pointp inside the nerve is computed using

V(p) = ∑
i

(‖p− pTi‖
4π

∫

Ti

Φi(p)
‖p− p′‖3

ds(p
′
)
)

vi

+
1

4π ∑
i

(∫

Ti

ds(p
′
)

‖p− p′‖

)
(σ∂nv)i ,

(7)

whereTi are the triangles of a mesh representingS1, p
′

is
a point of Ti and pTi the barycenter ofTi . s is a surface
of Ti . Φi is the piecewise linear finite element associated to
triangle. SurfacesS0 andS1 are meshed using finer triangles
close to the electrodes. We give an image of the surface
S0 showing the meshes (Fig. 3(a)). The image (Fig. 3(b))
shows the closing of the mesh at the end of the cylinder. As
an illustration, Fig. 4 shows the electrical potential on the
surface of the nerve.

III. RESULTS

A. Validation

The results given by the numerical scheme can be vali-
dated by comparison with analytical solution of the Poisson



(a) (b)
Fig. 3. Zoom of the surfaceS0 of the nerve-cuff model. (a) shows that
the mesh is finer close to the electrodes. (b) shows that there is a mesh
continuity in the boundary of the model.

Fig. 4. The upper inset shows the electrical potential distribution at the
surface of the nerve model. The lower inset gives the values of the electrical
potential.

equation (1) obtained for cylindrically symmetric current
injection. Let us assume that the potentialV is of the form
V(r,θ ,z) = R(r)Q(θ)Z(z), writing the Laplacian in cylindri-
cal coordinates, (4) becomes

∆V =
r

R(r)
d
dr

(
r
dR(r)

dr

)
+

1
Q(θ)

d2Q(θ)
dθ 2 +

r2

Z(z)
d2Z(z)

dz2 = 0

(8)
Using boundary conditions, the general solution of (8) is

V(r,θ ,z) = ∑
m,n

[Am,nIn(mωr)+Bm,nKn(mωr)]e±inωze±imθ ,

(9)
with the constantsA andB for each interface are determined
from the boundary conditions,In and Kn are the modified
Bessel functions of the first and the second kind respectively
and of ordern.
In the following, some results are presented for different
values of applied current on the cuff electrode. We present
here results corresponding to two types of applied current:
In the first case, one contact among four has been used
to apply a current and in the second case, a current is
applied on all contacts (see Table II for the values). The

TABLE II

DIFFERENT APPLIED CURRENTS

Cases Cathodic current (µA) Anodic current (µA)
1 -1,0,0,0 0.5,0,0,0
2 -1,0.5,-1,0.5 0.5,-0.25,0.5,-0.25

shape of the electrical potential on the surface of the nerve
computed numerically is close to the solution (9) of the
Poisson equation in the cylindrical coordinates (see Fig.
5(a)). A small difference exists in the results, which can
be explained from the truncation or the approximation of
the numerical values. With a linear regression, the numerical
results match the analytical results (see Fig. 5(b)).
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Fig. 5. Comparison of the electrical potentialV on the nerve surface(S1).
The current stimulus corresponds to case 1 and electrode contact size is
a = 1 mm. Continuous line corresponds to numerical results and dashed
line corresponds to theoretical results. (a) without linear regression and (b)
with linear regression.

B. Numerical simulations

In the following, the colorbar represents the normalized
values of the electrical potential (1 corresponds to the max-
imal value). Figures (6) and (7) show the distribution of the
electrical potential values according to a longitudinal section
of the nerve withy= 0. These figures correspond to a section
of the nerve close to the position of the electrodes. We see
that the electrical potential propagates symmetrically in two
opposite directions. For each symmetrical value ofz, there
is an homogeneous distribution of the potential according to
the x axis of the nerve except aroundz∈ [−1.2,1.2]. This
difference leads to disappear if the lengtha of the electrode
contact increases and the applied current is symmetrical (see
Fig. 7(b)).
Figures (8) and (9) show the distribution of the electrical
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Fig. 6. Distribution of the electrical potentialV according to the longitudi-
nal section of the nerve (y= 0), size of electrode contacta= 1 mm. (a) and
(b) corresponds respectively to case 1 and case 2 of applied current. The
maximal value of the electrical potentialVmax is in the case (a)Vmaxa = 0.688
mV and in the case (b)Vmaxb = 0.671 mV.

potential values according to the transversal section of the
nerve. These figures correspond to the section of the nerve
at the position of the cathode (z= 0). These results provide
that the electrical potential increases with the number of
stimulation contacts and the lengtha of the electrode contact.
Our results go in the direction of [2], where the authors
perform experiments on the cat sciatic nerve and conclude
that the application of multiple contact was succesfully used
to effect selective activation of fascicles inaccessible with a
single contact stimulation.
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Fig. 7. Distribution of the electrical potentialV according to the
longitudinal section of the nerve (y = 0), size of electrode contacta = 3
mm. (a) and (b) corresponds respectively to case 1 and case 2 of applied
current. The maximal value of the electrical potentialVmax is in the case
(a), Vmaxa = 2.629 mV and in the case (b),Vmaxb = 2.6 mV.

(a) (b)
Fig. 8. Distribution of the electrical potentialV according to the transversal
section of the nerve atz= 0, size of electrode contacta = 1 mm. (a) and
(b) corresponds respectively to case 1 and case 2 of applied current. The
maximal value of the electrical potentialVmax is in the case (a),Vmaxa = 0.72
mV and in the case (b),Vmaxb = 0.70 mV. At x = y = 0, V = 0.639 mV.

(a) (b)
Fig. 9. Distribution of the electrical potentialV according to the transversal
section of the nerve atz= 0, size of electrode contacta = 3 mm. (a) and
(b) corresponds respectively to case 1 and case 2 of applied current. The
maximal value of the electrical potentialVmax is in the case (a),Vmaxa = 2.66
mV and in the case (b),Vmaxb = 2.63 mV. At x = y = 0, V = 2.548 mV.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, a nerve-cuff electrode model has been
presented. We have used an approach inspired from the EIT
forward problem and the BEM numerical method. Some
preliminary results of the electrical potential distribution
inside a fascicle have been given. It will be interesting to test
the anodal blocking concept by taking the distanced1 6= d2

between the cathode and each anode. Indeed, asymetric cuff
with multiphasic current can block the spike propagation in
the afferent or efferent way. Besides, the same principle may
be used to block the propagation of fast fiber action potentials
and then promote slow fiber activation. This numerical
model should be used to optimize the stimulation electrode

configuration and the shape of the applied current. These
results should be used to improve the technology of the
FES. This technology leads to conceive and to test multiple
implanted functional electrical stimulation devices [12]. We
are currently working on the inclusion of the anisotropy of
the different media of the nerve. We plan to validate these
results through in vitro (isotropic saline solution), and in
vivo (on the sciatic nerve of rabbit) experiments. In the last
case, intrafascicular electrodes [13], [14] may be used to
measure potential and verify the firing of a restricted pool
of axons. The functional effect,i.e. selective activation of
afferent - efferent pathways, slow and fast fibers may be
studied through the distal measurements on the nerve of
the action potentials. After the validation of the model, the
challenge will be the optimisation on one hand, of the design
of multipolar electrode and on the other hand of the current
waveforms.
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