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77455 Marne-la-Vallée - France

ABSTRACT

Kernel PCA has received a lot of attention over the past years
and showed usefull for many image processing problems. In
this paper we analyse the issue of normalization in Kernel
PCA for the pre-image problem. We present a geometric in-
terpretation of the normalization process for the gaussian ker-
nel. As a consequence, we could formulate a correct normal-
ization criterion in centered feature space. Furthermore, we
show how the proposed normalization criterion improves pre-
vious pre-image methods for the task of image denoising.

Index Terms— Kernel PCA, Out-of-Sample, Image De-
noising

1. INTRODUCTION

1.1. Kernel Methods

Kernel methods are a class of powerful techniques that have
been widely used in the field of pattern recognition, with ap-
plications ranging from clustering, classification and recog-
nition to image denoising, signal reconstruction and shape
priors [1, 2]. The key idea of these methods is to map the
training data (such as vectors, images, graphs, . . . ) from
the input space χ into a high-dimensional Hilbert space H
that is better suited for analysis than the original input space.
To do so, a mapping, denoted Φ◦ : χ 7→ H, is implicitly
defined by the property 〈Φ◦(si),Φ◦(sj)〉H = Wi,j , where
Wi,j = w(si, sj) gives the inner product 〈., .〉H between two
points in the feature space and is a measure for similarity. In
practice, the mapping does not have to be computed explicitly
as most techniques only require the computation of dot prod-
ucts that can be evaluated directly using the kernel w(., .).
This is called the kernel trick.

The high-dimensional, possibly infinite-dimensional,
space H is better suited for analysis because data may then
be processed by linear methods such as Principal Component
Analysis (PCA). PCA is a widely used method to compute
second order statistics in data sets. The principal axis found
by PCA reflect the main modes of variation present in the data
set. Kernel PCA refers to the generalization of linear PCA to
its nonlinear counterpart. It was introduced by Schoelkopf [2]

and is one amongst the most prominent kernel methods. It has
received a lot of attention in the data analysis and computer
vision community. Using this methodology, it is possible to
extract efficiently meaningful structure present in non-linear
data, thereby significantly improving PCA results [3, 4, 5, 6].

In general, the mapping Φ◦, also referred to as an em-
bedding, is only known over the training set. The extension
of the mapping to new input points is of primary importance
for kernel based methods whose success depends crucially on
the “accuracy” of the extension. This problem, referred to as
the out-of-sample problem, is often solved using the popular
Nyström extension method [6, 7, 8]. In addition, the reverse
mapping from the feature space back to the input space is of-
ten required. After operations are performed in feature space
(these operations often necessitate the extension of the map-
ping), corresponding data points in input space often needs to
be estimated. This problem is known as the pre-image prob-
lem.

The pre-image problem has received a lot of attention in
kernel methods [6, 3, 5, 4]. Recently, Arias and coworkers
[6] have shown its close connection with the out-of-sample
problem. They also carefully considered the issue of normal-
ization in feature space, thereby improving the “accuracy” of
the out-of-sample extension and the pre-image estimation.

1.2. Contributions

Kernel PCA is achieved by applying a principal component
analysis on the mapped training samples. PCA computes an
eigen-decomposition of a kernel matrix deduced from the ad-
jacency matrix W . Before applying PCA, the data is centered
at the origin. In Kernel PCA the mean of the mapped input
points is not known. Therefore, to simplify, one often as-
sumes that the mapped training points Φ(si) are already cen-
tered in the feature space H and incorrectly diagonalize the
adjacency matrix W [6, 4]. Although simpler to understand,
the resulting presentation of kernel methods misses some im-
portant points.

Our analysis of the kernel PCA methods studies in de-
tail the centering of the data and underlines some important
properties of the geometry of the mapped data induced by
the kernel. We focus on the Gaussian kernel w(si, sj) =



exp (−d2
χ(si, sj)/2σ2), with σ estimated as the median of all

the distances between all training points [6, 9]. In accordance
with the geometry induced by the Gaussian kernel, we high-
light some non-trivial elements and rephrase some pre-image
methods in a centered feature space[6]. A comparison based
on numerical experiments demonstrates the superiority of our
pre-image methods using a careful normalization in a cen-
tered feature space.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews Kernel PCA and the out-of-sample problem.
Section 3 states the pre-image problem and insists on the is-
sue of normalization in centered feature space. Numerical
experiments on real data are reported in section 4 and section
5 concludes.

2. KERNEL PCA

Let {s1, · · · , sp} be a set of training data in the input space χ.
Kernel PCA computes the principal components of mapped
features in the feature space H. The mapping can be explic-
itly computed by the eigen-decomposition of a kernel matrix
deduced from the adjacency matrix W . The coefficients of
the adjacency matrix W are a measure of similarity between
samples. Typically, the kernel function w(., .) is a decreasing
function of the distance dχ between training points si and sj .

In this work, we focus on the Gaussian kernel. The
Gaussian kernel has the important property of implicitely
mapping the training points onto the unit sphere of H, since
‖Φ◦(si)‖2 = 〈Φ◦(si),Φ◦(si)〉H = Wi,i = 1. This important
normalization property has been extensively used by Arias
and coworkers [6] to improve the “accuracy” of previous pre-
image methods [3, 5, 4]. In this work, we state the Kernel
PCA methodology in centered space and shows that a finer
degree of normalization can be achieved by considering the
geometry of the mapped features.

Let Φ̄◦ = 1
p

∑
xk∈Γ Φ◦(sk) and Φ∗ denote the centered

mapping, i.e. Φ∗(si) = Φ◦(si) − Φ̄◦. The mapping Φ∗ can
be computed by the eigen-decomposition of a centered kernel
P ∗ [2]:

P ∗ = HWH = Ψ∗Λ∗Ψ∗T = Ψ∗
√

Λ∗(Ψ∗
√

Λ∗)
T
,

where H is the centering matrix H = I − 1
p1p1

T
p and Λ∗ =

diag{λ∗1, · · · , λ∗p} with λ∗1 ≥ · · · ≥ λ∗p−1 > λ∗p = 0. We
denote Λ̂ = diag{λ∗1, · · · , λ∗p−1} and Ψ̂ = (Ψ∗1, · · · ,Ψ∗p−1),
the mapping is obtained as:

Φ∗ : χ→ Rp−1, si 7→
√

Λ̂Ψ̂T e∗i . (1)

The canonical basis {e∗1, · · · , e∗p−1} of Rp−1, defined for-
mally by e∗k = 1√

λ∗k

∑
si∈Γ Ψ∗k(si)Φ∗(si), captures the vari-

ability of the point cloud of training samples. Projection of a
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Fig. 1. a) Visualization of the feature points(blue) geometry
in H and the affine subspace(red circle); b) Affine subspace
Sp−1

new test point s ∈ χ onto the kth-canonical vector e∗k in the
feature space can be shown to be:

βk(s) = 〈e∗k,Φ∗(s)〉 = e∗Tk
1√
Λ̂

Ψ̂T p∗s, (2)

where p∗s(sj) = H(ws − 1
pW1p)(s, sj). (3)

p∗s(sj) is the extended mapping in centered feature space
computed by centering the kernel vector ws. This way
of extending embedding coordinates to new test points
has been used implicitly[3, 5, 4] or explicitly[6] in Kernel
methods[10]. Projecting a new test point s ∈ χ onto the
subspace spanned by the first m∗ vectors {e∗1, · · · , e∗m∗} (i.e.
Pm∗(Φ∗(s)) =

∑
1≤k≤m∗ βk(s)e∗k) does not require the ex-

plicit computation of the mapping Φ∗(s) since Eq.2 can be
written only in terms of the kernel.

Working in a centered feature space, some important
(often mistakenly ignored) comments follow. We show
that the fundamental property of the mapped input points
‖Φ◦(si)‖2 = w(si, si) = 1 can be greatly improved in a cen-
tered feature space. To do so, we define the mean in feature
space Φ̄∗(∈ Rp−1) = 1

p
1√
Λ∗

Ψ∗THW1p and consider some
properties of the feature points mapped under:

Φ̃∗ : χ→ Rp−1, s 7→ Φ̄∗ + Φ∗(s). (4)

Under this mapping, the training samples verify:
〈

Φ̃∗(si), Φ̃∗(sj)
〉

=

w(si, sj)− Φ̄∗2p , with 0 ≤ Φ̄∗p ≤ 1. The adjacency matrix W
therefore gives (up to an additional factor Φ̄∗2p ) the inner prod-
uct between two points in the feature space under the mapping
Φ̃∗. The constant Φ̄∗p has a simple geometric interpretation.
In the feature space, the p non-centered training points, which
belong to the unit sphere, define an affine space that is iso-
morphic to Rp−1. This affine space, spanned by the vectors
{e∗1, · · · , e∗p−1}, is at distance Φ̄∗p from the origin 0. Conse-
quently, feature points mapped under Φ̃∗ : s 7→ Φ̄∗+Φ∗(s) all

belong to an hypersphere of Rp−1 of radius rp =
√

1− Φ̄∗2p ,



i.e. Sp−1(0, rp). This implies that, for all training sample
si ∈ Γ, we have ‖Φ̃∗(si)‖ = rp. This normalization prop-
erty of training samples is stronger than the usual property
‖Φ◦(si)‖ = 1 and will prove important in the next section1.
In particular, this allows us to rephrase some pre-image meth-
ods, such as[6], in a centered feature space, leading to better
results (sect 4). Finally, we note that the mapping Φ◦ can be
deduced from Φ∗ by Φ◦ : χ→ Rp, s 7→ (Φ̃∗(s)T , Φ̄∗p)

T .

3. PRE-IMAGE

Given a point in the feature space ψ, the pre-image problem
consists in finding a point s ∈ χ in the input space such that
Φ(s) = ψ, i.e. the pre-image ofψ. The exact pre-image might
not exist (when it exists, it might also not be unique) and the
pre-image problem is ill-posed [6, 3, 5, 4]. To circumvent
this problem, one usually settles for an approximate solution
and search for a pre-image that optimizes a given optimality
criterion in the feature space. The pre-image problem has re-
ceived a lot of attention in kernel methods [6, 3, 5, 4] and dif-
ferent optimality criteria have been proposed. Although most
of those are based on the property ‖Φ◦(si)‖2 = 1, significant
improvement can be attained by considering that the mapped
feature points Φ̃∗(si) belong to the hypersphere Sp−1(0, rp)
(or equivalently stated that ‖Φ̃∗(si)‖ = rp). In particular,
we insist on the fact that the popular normalization Φ◦(s)

‖Φ◦(s)‖

is not equivalent to the normalization Φ̃∗(s)

‖Φ̃∗(s)‖ . In more de-
tail, note that after normalization by the former criterion, a
feature point does not belong any longer to the affine space
defined by the p-training points. This behavior can also be
seen in Figure 1b), which is the two dimensional visualiza-
tion of the affine subspace(red circle) in Figure 1a). Figure
1a) shows the sphere S and the layout of feature points on S.
The extended mapping of a new input point does not lie on
the sphere(visualized as a purple point). As can be clearly
seen the normalization as proposed in [6] projects the fea-
ture point(purple) onto the sphere(white). But the projected
point does not lie in the span. This is clearly problematic as
the principal modes of variations span only this affine space.
The later normalization is the correct one and should be ad-
vantageously used. Therefore, we capitalize on our careful
analysis of KPCA and define the different optimality criteria
in centered feature space:

Distance:s = arg minz∈χ ‖Φ̃∗(z)− ψ̃∗‖2, (5)

Collinearity:s = arg maxz∈χ
〈

Φ̃∗(z)

‖Φ̃∗(z)‖ ,
ψ̃∗

‖ψ̃∗‖

〉
, (6)

where ψ̃∗ = Φ̄∗ + ψ∗. Recently, Arias and coworkers[6]
have shown the connections between the out-of-sample and

1Note that to compute the radius value rp (or, equivalently, the distance
Φ̄∗

p), it is sufficient to compute ‖Φ̃∗(si)‖ for only one of the training samples
si ∈ Γ.

Fig. 2. Digit images corrupted by additive Gaussian noise
(from top to bottom, σ = 0.25, 0.45, 0.65). The different
rows respectively represent: the original digits and corrupted
digits; different reconstruction methods: [3] ; [3] with nor-
malization ; [5] ; [5] with normalization.

the pre-image problems and proposed a normalized optimal-
ity criterion addressing the important lack of normalization in
kernel methods:

s = arg min
z∈χ

‖Φ̃∗(z)− ψ̄‖2 with ψ̄ = rp
ψ̃∗

‖ψ̃∗‖
. (7)

Instead of solving directly for the pre-image in Eq.7, they
first estimate the optimal kernel vector p∗ψ as a standard least-

squares problem p∗ψ = Ψ̂
√

Λ̂(ψ̄ − Φ̄∗) and then use previous
methods[3, 5] to estimate the optimal pre-image.

4. APPLICATION IN IMAGE DENOISING

In order to validate the proposed algorithm, we run experi-
ments on real world data. We test our pre-image algorithm on



the denoising of noisy images and compare our approach to
previous methods. The computation of Kernel PCA is done
using the Gaussian kernel exp (−d2

χ(si, sj)/2σ2) where σ is
the median over all distances between points[6].

To test the performance of our approach on the task
of image denoising, we apply the algorithm on the USPS
dataset of handwritten digits2. We show that our normal-
ization method improves two recent state-of-the-art algo-
rithms [3], [5]. Therefore, we form two training sets com-
posed of randomly selected samples (60 and 200 respectively)
for each of the ten digits. The test set is composed of 60
images randomly selected and corrupted by some additive
Gaussian noise at different noise levels. The process of de-
noising simply amounts to estimating the pre-images of the
feature vectors given by the Nyström extension of the noisy
samples. In the case of Kernel PCA, we use the first m∗ = 8
eigenvectors {e∗1, · · · , e∗m∗} to compute projections in feature
space.

σ2 [3] [3] [5] [5]
0.25 10.39 11.71 15.88 16.18
0.45 10.22 12.54 15.80 16.35
0.65 9.95 12.72 15.54 16.32
0.85 9.52 12.58 15.31 16.28
0.25 12.11 12.14 15.83 15.89
0.45 10.22 12.54 15.80 16.35
0.65 9.95 12.72 15.54 16.32
0.85 9,24 12.59 15.31 16.28

Table 1. Average PSNR (in dB) of the denoised images cor-
rupted by different noise level. Training set is composed of 60
samples (first 4 rows) and 200 samples (last 4 rows). The first
and third column show the denoising results without and the
second and last columns with the normalization as proposed
in this paper

Figure 2 displays some of the computed pre-images us-
ing different methods. Table 1 shows a quantitative compar-
ison between different methods based on the pixel-signal-to-
noise ratio(PSNR). Our normalisation method improves visu-
ally and quantitatively both pre-image methods. The results
confirm that the new normalisation criterion in centered fea-
tures space (second and fourth column) yields better results
than previous pre-image methods (first and third column).

5. CONCLUSION

In this paper, we focused on the pre-image problem in ker-
nel methods such as Kernel PCA. We espacially focussed on
the issue of correctly normalizing in centered feature space.
A geometric interpretation eased the understanding of oper-
ations involved when working with centered data in feature
space. As a consequence, we deduced a new normalization

2The USPS dataset is available from http://www.kernel-machines.org.

criterion for previous proposed pre-image methods. The the-
oretical results could be nicely verified at hand of computed
examples.
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