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ABSTRACT

Image segmentation with shape priors has received a lot of
attention over the past years. Most existing work focuses on a
linearized shape space with small deformation modes around
a mean shape, which is relevant only when considering simi-
lar shapes. In this paper, we introduce a new framework that
can handle more general shape priors. We model a category
of shapes as a finite dimensional manifold, the shape prior
manifold, which we approximate from the shape samples us-
ing dimensionality reduction techniques suchlike Laplacian
eigenmaps. Unfortunately, this model does not provide an ex-
plicit projection operator onto the manifold. Our contribution
is twofold. First, we calculate the low dimensional represen-
tation of any point not in the training set. Second, we properly
define a projection operator onto the manifold by interpolat-
ing between shape samples using local weighted means. We
show results both on synthetic and real shapes and demon-
strate the potential of our method for segmentation tasks.

Index Terms— Shape manifold, graph Laplacian, seg-
mentation, prior, dimensionality reduction

1. INTRODUCTION

1.1. Motivation

Image segmentation is an ill-posed problem due to various
perturbing factors such as noise, occlusions, missing parts,
cluttered data, etc. When dealing with complex images, some
prior shape knowledge may be necessary to disambiguate the
segmentation process. The use of such prior information in
the deformable models framework has long been limited to
a smoothness assumption or to simple parametric families of
shapes. But a recent and important trend in this domain is the
development of deformable models integrating more elabo-
rate prior shape information.

An important work in this direction is the active shape
model of Cootes et al. [1], but is limited due to a parametrized
representation of shapes. Among the most recent works, Lev-
enton, Grimson and Faugeras [2] compute parameterization -
independent shape statistics, within the level set representa-
tion [3, 4], based on PCA on the signed distance functions of
the training shapes. Several improvements to this approach
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have been proposed in [5, 6]. Let us also mention a neat
Bayesian prior shape formulation, based on a B-spline rep-
resentation, proposed by Cremers et al. in [7].

Performing PCA on distance functions might be problem-
atic since they do not define a vector space. To cope with this,
Charpiat, Faugeras and Keriven [8] proposed shape statistics
based on differentiable approximations of the Hausdorff dis-
tance. Similar ideas are presented in [9]. However, their work
is limited to a linearized shape space with small deformation
modes around a mean shape. Such an approach is relevant
only when the learning set is composed of very similar shapes.

1.2. Contributions

In this paper, we introduce a new framework that can handle
more general shape priors. We model a category of shapes
as a smooth finite-dimensional submanifold of the infinite-
dimensional shape space. In the sequel, we term this finite-
dimensional manifold the shape prior manifold. This mani-
fold cannot be represented explicitly. We approximate it from
a collection of shape samples using a recent manifold learning
technique called Laplacian eigenmaps [10] that constructs an
embedding from data. This technique has been very recently
applied in [11] to sets of shapes but it has never been used in
the context of image segmentation with shape priors.

Our main contribution is to properly define the projection
of a shape onto the shape prior manifold, by estimating the
embedding with a regression function in its entire space and
by interpolating between some carefully selected shape sam-
ples using local weighted means shapes.

The remainder of this paper is organized as follows. Sec-
tion 2 is dedicated to learning the shape prior manifold from
a finite set of shape samples using the Laplacian eigenmaps
technique. Section 3 presents a method for the projection of
a new shape on the embedding that enables to find the pro-
jection onto the shape manifold. In Section 4, we report on
some numerical experiments which yield promising results
with synthetic and real shapes.

2. LEARNING THE SHAPE PRIOR MANIFOLD

2.1. Definitions

In the sequel, we define a shape as a simple (i.e. non - inter-
secting) closed curve, and we denote by S the space of such



shapes. Please note that, although this paper only deals with
2 dimensional shapes, all ideas and results seamlessly extend
to higher dimensions.

The space S is infinite-dimensional. We make the as-
sumption that a category of shapes, i.e. the set of shapes that
can be identified with a common concept or object, e.g. fish
shapes, can be modeled as a finite-dimensional manifold.

In the context of estimating the shape of an object in a
known category from noisy and/or incomplete data, we call
this manifold the shape prior manifold. In practice, we only
have access to a discrete and finite set of example shapes
in this category. We will assume that this set constitutes a
”good” sampling of the shape prior manifold, where ”good”
stands for ”exhaustive” and ”sufficiently dense” in a sense that
will be clarified below.

Many different definitions of the distance between two
shapes have been proposed in the computer vision litterature
but there is no agreement on the right way of measuring shape
similarity. The definition used in experiments presented in
this paper are based on the representation of a curve in the
plane by its signed distance function. In this context, the
distance between two shapes can be defined as the Sobolev
W 1,2-norm of the difference between their signed distance
functions. Let us recall that W 1,2(Ω) is the space of square
integrable functions over Ω with square integrable derivatives
[8]:

dW 1,2(S1, S2)2 = ||D̄S1 − D̄S2 ||2L2(Ω,R)

+||∇D̄S1 −∇D̄S2 ||2L2(Ω,Rn)

where D̄Si denotes the signed distance function of shape Si

(i = 1, 2), and ∇D̄Si its gradient.
The method presented in this paper is not limited to this dis-
tance and other distance may be used, such as the symmetric
difference between the region bounded by the two shapes or
the Haussdorff distance [12, 8].

2.2. Manifold learning

Once some distance d between shapes has been chosen, clas-
sical manifold learning techniques can be applied, by building
a neighborhood graph of the learning set of shape examples.
Let (Si)i∈1,...,p denote the n shapes of the learning set. An
adjacency matrix (Wi,j)i,j∈1,...,p is then designed, the coeffi-
cients of which measure the strength of the different edges in
the neighborhood graph. See [10] for details.

Once a neighborhood graph is constructed from a given
set of samples, manifold learning consists in mapping data
points into a lower dimensional space while preserving the
local properties of the adjacency graph. This dimensional-
ity reduction with minimal local distortion can be achieved
using spectral methods, i.e. through an analysis of the eigen-
structure of some matrices derived from the adjacency matrix.
Dimensionality reduction has enjoyed renewed interest over

the past years. Among the most recent and popular techniques
are Isomap [13] , the Locally Linear Embedding (LLE) [14],
Laplacian eigenmaps [10], Diffusion maps [15]

Below, we present the mathematical formulation of Lapla-
cian eigenmaps for data living in Rn. An extension to shape
manifolds is straightforward.

LetM be a manifold of dimension m lying in Rn (m <<
n). For the time being, we take m = 1 since generalization
to any dimension m < n is immediate. The dimensionality
reduction problem consists in finding a mapping (called an
embedding) f : M−→ R such that if two points x and z are
close in M, so are f(x) and f(z). To characterize such an
optimal mapping, the following inequality is stated in [10]:

|f(z)− f(x)| ≤ dM (x, z) ||∇f(x)||+ o (dM (x, z)) (1)

where dM is the geodesic distance on the manifold M. The
optimality condition then writes:

f∗ = arg min
f : ||f ||L2(M)=1

∫

M
||∇f ||2 (2)

= arg min
f : ||f ||L2(M)=1

∫

M
L (f) f (3)

L = −div (∇f) is the Laplace-Beltrami operator and the
equivalence between (2) and (3) is due to the Stokes theorem.
The sign ·∗ denotes the solution of a minimization problem
and henceforth it will be used in that sense.

Solving the minimization problem (3) is equivalent to solv-
ing the eigen problem L (f) = λf . The optimal mapping
is then given by the eigen functions corresponding to the m
smallest non-zero eigenvalues of L(f) , where m is the tar-
get dimension. Note that the latter dimension can either be
known a priori or be inferred from the profile of the eigen
spectrum.

In practice, a discrete counterpart to this continuous for-
mulation must be used. Let x1 · · ·xp ∈ Rn be p sample
points of the m dimensional manifold M. The correspond-
ing neighborhood graph is denoted G and its adjacendy matrix
(Wi,j)i,j∈1,...,p is given by Wi,j = k(xi, xj), where k(., .) is
mostly chosen to be the well known gaussian kernel k(xi, xj) =

e
d(xi,xj)2

2σ2 .
Let also L = D−W where D is the diagonal matrix defined
by Di,i =

∑
j Wi,j =

∑
j k(xi, xj). Matrix L represents

the Laplacian of the graph G. It is known to be a conver-
gent approximation of the Laplace-Beltrami operator over the
manifold M. Note that the convergence is achieved under
certain conditions depending on the probablity density used
to sample the manifold M. This study is however out the
scope of this article. For the sake of clarity, in this paper we
outline the basic formulation for uniform probability density
leading to the unnormalized graph Laplacian L. The dicrete
formulation of equation 3 [10] is

y∗ = arg min
y: yT Dy=1

(
yT Ly

)
(4)



where y ∈ Rp. y(i) denotes the ith coordinate of vector y
and is the 1-dimensional embedding value of the point xi.
Note that y(i) is equivalent to f(xi) in the continuous for-
mulation. Solving equation 4 consists merely of solving the
general eigenproblem Ly = λDy and keeping the eigen vec-
tor corresponding to the smallest non-zero eigenvalue. When
the optimal embedding is of dimension m > 1, the energy
involved is then generalized into:

Y ∗ = arg min
Y : Y T DY =I

Tr
(
Y T LY

)
(5)

where Y = [y1, · · · , ym] is a (p × m) matrix. (y1 is equiv-
alent to y in equation 4). For any i = 1, · · · ,m, the ith

row vector y(xi) = y(i) = [y1(i), · · · , ym(i)] ∈ Rp of ma-
trix Y represents the m dimensional embedding of the point
xi ∈ Rn. Such notations will be used from now on. Optimal
dimensionality reduction is achieved by finding the eigenvec-
tors y1, · · · , ym of matrix L corresponding to the m small-
est non-zero eigenvalues. Laplacian eigenmaps for shapes
(Si)i∈1,··· ,p is computed by using the same procedure(fig. 2)

Although the Laplacian eigenmaps technique is a power-
ful tool for dimensionality reduction, it does not give access
to neither an explicit projection onto the manifold nor its em-
bedding. We can thus identify two major limitations : First,
the embedding values calculated by the solution of equation
5 is restricted to the training samples. Computing the embed-
ding of points not in the training set is known as the out of
sample problem. Second, the preimage problem consists in
estimating a shape on the shape prior manifold given an em-
bedding value. Note that we also need to describe the shape
prior manifold in between the training shapes.

3. PROJECTION ONTO A SHAPE MANIFOLD

We aim this section at 1. computing the embedding of a new
data point xp+1, xp+1 6= xi ∀i = 1, · · · , p 2. retrieving
the corresponding shape associated to such embedding value.

3.1. Out of sample problem

In this part, we tackle the first limitation presented in the pre-
vious section and show that it can be solved by means of a
regression function of the discrete embedding. The most sim-
ilar approach known in the litterature to relies on the Nystrom
extension [16]: it consists in extending the eigenvector of a
discrete operator to all the space. In this work, we take a
different approach leading to a solution expressed as a regu-
larization function of the discrete embedding.

We start again with the formulation for data living Rn.
The embedding of the new point xp+1 requires matching some
properties. First, it should use the dicrete embedding previ-
ously computed from the training samples. Indeed, comput-
ing a new embedding with the samples (xi), ∀i = 1, · · · , p+1
is not relevant and above all would not be efficient. Then, the

point xp+1 may not belongs to the manifold M, Now, we re-
formulate equation 5 with n+1 points. Let w = (wi)i=1,··· ,p
be defined by wi = k(xp+1, xi) and Ln such that

Ln =
[

Lo −w
−w

∑p
i=1 wi

]
(6)

where Lo may be the Laplacian matrix obtained with the points
x1, · · · , xp or an updated version depending on w. Whatever
the choice, we will show in the following lines that it does not
influence the final result. Following equation 5, the uncon-
strained energy to mimize can then be written

min
Z: ZT DZ=I

Tr
(
ZT LnZ

)

where Z = [z(1)T , . . . , z(p + 1)T ]T is a (p + 1×m) matrix.
Since the embedding of the p points x1, · · · , xp is already
known, we add the constraints ∀i = 1, · · · , p z(i) = y∗(i)
from the solution of equation 5 and obtain :

z∗(p + 1) = arg min
z(p+1): Z=[Y ∗T z(p+1)T ]T

Tr
(
ZT LnZ

)
(7)

Deriving equation 7 leads to the mapping ẑ : Rn → Rm:

ẑ(x) =
∑

i k(x, xi)y∗(i)∑
i k(x, xi)

(8)

The result pointed up in equation 8 is of particular interest
since it does not depend on Lo and the solution is expressed
by means of the Nadaraya-Watson kernel widely used in the
statistical learning litterature. The function ẑ(x) can be seen
as a regression function estimating the continuous embed-
ding. Note that ẑ(xi) 6= y∗(xi), ∀i = 1, . . . , p, so we have
to consider the values ŷ(xi) = ẑ(xi) instead of y∗(xi).

We applied this projection to data sets of shapes (Si)i=1,...p

instead of euclidian points (xi)i=1,...,p. The results obtained
are illustrated in figures 1 and 3

3.2. Finding the corresponding point in the shape space

Let PM(S) ∈ S be the projection onto the shape prior mani-
fold M. Once the embedding ẑ(S) of a new shape point S ∈
S has been computed, the shape PM(S) ∈ S has to be found.
From now on, we suppose the dimension m of the shape man-
ifold to be fixed. We basically assume the shape PM(S) to
be a weighted mean shape that interpolates between m + 1
samples of a neighborhood system N = (S0, ..., Sm). N is
determined based on a m dimensional Delaunay triangulation
in the reduced space of the data ŷ(j), ∀j ∈ 1, . . . , p (fig. 1)
Indeed, N corresponds to the points of the m dimensional
triangle in which the point ẑ(x) falls. The barycentric coef-
ficients can be immediately computed: Λ = (λ0, · · · , λm)
with (λi ≥ 0,

∑
λi = 1) Thus, the local interpolation of the

shape manifold is given by:

S̄N (Λ) = arg min
S

m∑

i=0

λid (Si, S)2



4. APPLICATION TO SEGMENTATION WITH
SHAPE PRIOR & CONCLUSION

We propose to apply the method presented in this paper in
the context of image segmentation with shape priors. Without
loss of generality, the method is stated as a variational prob-
lem attempting to minimize an energy ET (S) = Eac(S) +
αEp

N ,Λ(S) (very basic formulation). Ea(S) is the common
energy used in the active contour framework. Ep

N ,Λ(S) =∑m
i=0 λid (Si, S)2 is the prior term that attracts the evolving

shape towards the shape prior manifold, for a given neigh-
borhood system N and barycentric coefficients Λ. α is a pa-
rameter that influences the importance of the prior term. The
energy ET (S) is minimized by using calculus of variations.
Results are presented in figure 3.

In this paper, we presented a new technique that handles
general shape prior and the results obtained show the potential
of the method.

Fig. 1. a: 2-dimensional representation of 150 crosses and its
Delaunay triangulation. b: Projection of a corrupted shape on
the shape prior manifold

Fig. 2. 2-dimensional representation of 150 fishes [SQUID
database]

Fig. 3. Fish segmentation 1: initial contour 2: active con-
tour without shape prior 3: active contour with shape prior 4:
reprojection of the final result on the shape manifold
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Département d’informatique et recherche opérationnelle, Uni-
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