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CERTIS, École des ponts, Paris-Est, France

{allene,pons,keriven}@certis.enpc.fr

Abstract

In this paper, we propose a novel method for creating

a high-quality texture atlas from a 3D model and a set

of calibrated images. Our method focuses on avoiding

visual artifacts such as color discontinuities, ghosting

or blurring, which typically arise from photometric and

geometric inaccuracies. We first compute a partition of

mesh faces which realizes a good trade-off between vi-

sual detail and color continuity at patch boundaries: we

efficiently obtain a close-to-optimal seam placement us-

ing graph cuts optimization. We then apply a pixel-wise

color correction in the vicinity of patch boundaries with

a principled 3D extension of multi-band image blend-

ing: we achieve faultless color continuity while avoid-

ing ghosting artifacts. We demonstrate the effectiveness

of our method on two real-world large-scale scenes.

1. Introduction

Capturing, processing and displaying the visual at-

tributes, such as color, of a 3D model typically requires

to map its surface to a two-dimensional domain. Gen-

erally, it is impossible to find a global such parameter-

ization with acceptable distortion, so an atlas structure

is adopted: it consists of a partition of the surface into

connected parts (patches) and of a piecewise 2D param-

eterization (cf for example [16] and references therein).

The instantiation of this problem in the context of

image-based 3D modeling, i.e. when extracting geom-

etry and/or visual attributes from digital photographs,

has received much attention in the computer vision and

computer graphics communities.

On the one hand, the image-based case alleviates

the parameterization problem: the projective transfor-

mations from the surface to the input images constitute

natural and optimal mappings [11, 17, 19]. They avoid

image resampling and loss of visual detail, contrarily to

approaches based on other parameterizations [1, 2, 7].

On the other hand, in the image-based modeling con-

text, color discontinuities at patch boundaries (seams)

are a crucial issue, due to photometric and geometric in-

accuracies: varying lighting conditions and camera re-

sponse, non-Lambertian reflectance, imperfect camera

calibration, approximate shape, etc. Weighted averag-

ing of images in overlapping regions [2, 6, 12, 14, 17]

is not sufficient. It causes unsatisfactory ghosting

and blurring, unless the 3D model is highly accurate

(e.g. obtained by laser range scanning) and camera

calibration is tightened using image-based registration

[2, 8, 12].

Two main axes of research have been explored in

order to reduce seam visibility. The first approach is

the optimization of patch layout. Some works force

patch boundaries into regions of high negative curva-

ture [13, 18]. Others use an image fidelity term [11, 20]

to explicitly look for a partition of the surface induc-

ing minimal color discontinuities. Of particular interest

is the formulation of this problem as a Markov random

field optimization [11], for it brings powerful algorith-

mic tools into play. However, these works suffer from

the absence of per-pixel processing: they are unable to

achieve perfect color continuity.

The second improvement path is precisely pixel-wise

color correction in the vicinity of patch boundaries. A

notable work in this category is a tentative extension of

2D multi-band image splining [5] to textured 3D sur-

faces [1]. However, this work misses the importance

of an optimal patch layout, and fails to define transition

zones of distinct and adapted width for the different fre-

quency bands. As a result, it has to keep to a two-band

frequency decomposition to limit ghosting artifacts.

In this paper, we propose a novel method for creating

a high-quality seamless texture atlas from a 3D model

and a set of calibrated images. Our method upgrades the

Markov random field approach of [11] with a principled

3D extension of multi-band image blending, thereby

achieving both close-to-optimal seam placement and

faultless color continuity. We demonstrate the effective-

ness of our method on two real-world large-scale scenes

reconstructed from high-resolution images using recent



multi-view stereovision techniques.

2. Methods

In the following, we note I1, . . . , In the input cali-

brated images, and Πi the projection from 3D space to

image Ii. We assume that the surface is represented by

a polygonal mesh M with faces F = {f1, . . . , fm}.

2.1. Patchwork optimization using graph cuts

The first step of our method mainly follows [11],

with a few clarifications and improvements: it computes

a partition of the surface which realizes a good trade-

off between visual detail and color continuity at patch

boundaries, using graph cuts optimization.

In practice, it consists in assigning each face of the

mesh to one of the input views in which it is visible. Af-

ter discarding faces that are not visible in any view, this

can be encoded by a labeling vector ~ℓ = {ℓ1, . . . , ℓm} ∈
{1, . . . , n}m. We denote by L the set of admissible la-

beling vectors, i.e. that fulfill the aforementioned visi-

bility constraints.

The optimality of a labeling is quantified by an en-

ergy function. It is a weighted sum of two terms. The

first term measures visual detail. Rather than the heuris-

tic combination of image resolution, viewing distance

and angle between viewing direction and face normals

proposed in [11], we adopt a measure both simpler to

compute and easier to interpret: the total number of tex-

els (texture elements) on the mesh. Given an admissible

labeling vector ~ℓ ∈ L, this writes as a sum over faces:

Edetail(~ℓ) = −
m

∑

j=1

area
[

Πℓj
(fj)

]

(1)

The second term measures color continuity at edges

between faces assigned to different views. Let us note

ej,k a non-border edge of the mesh, adjacent to faces

fj and fk. If these two faces are assigned to differ-

ent images, i.e. ℓj 6= ℓk, then color is very likely to

be discontinuous across the edge, and ej,k is a seam

edge. In order to minimize seam visibility, the second

energy term is defined as the integral along the seams

of color discrepancy between bordering images. This

can be written as a sum over the set E of all non-border

edges:

Eseams(~ℓ) =
∑

ej,k∈E

gej,k
(ℓj , ℓk) (2)

ge(ℓ, ℓ
′) =

∫

e

‖Iℓ(Πℓ(x)) − Iℓ′(Πℓ′(x))‖ dx(3)

It must be noted that ge respects the following regu-

larity condition ∀ℓ, ℓ′, ℓ′′ ∈ {1, . . . , n}:

ge(ℓ, ℓ) + ge(ℓ
′, ℓ′′) ≤ ge(ℓ, ℓ

′′) + ge(ℓ
′, ℓ) (4)

This still holds with any metric on colors instead of the

usual Euclidean distance in RGB color space.

This regularity property is not underlined in [11],

whereas it has a considerable practical consequence:

it allows to minimize the energy functional with α-

expansion [4, 9]. It consists in translating the labeling

problem, which is generally NP-hard, to a succession

of binary minimum cut problems. Efficient solutions to

these min-cut problems are described in [3]. The whole

process monotonically decreases the energy and is guar-

anteed to converge to a strong local minimum, thereby

ensuring a close-to-optimal seam placement.

For sake of completeness, let us mention that mini-

mizing Edetail only, or equivalently, setting the weight-

ing factor of Eseams to zero, results to independently

map each face to the highest quality image. This naive

approach is experimentally evaluated in Section 3.

2.2. Multi-band blending

The texture mosaic output by the first step of our

method minimizes color discontinuities. But as later

demonstrated in Section 3, it does not suppress them

altogether, mainly due to differences in lighting condi-

tions in the original views. This makes pixel-wise color

correction in the vicinity of patch boundaries manda-

tory. In 2D, the work of Burt and Adelson [5] on multi-

band blending has prove particularly effective for image

mosaicing without blurring and ghosting artifacts. We

extend this work to our case, i.e.: (i) more than two im-

ages, and (ii) image-based texture maps.

Following [5], we use the Laplacian pyramids of the

input images as the multi-band decomposition, and we

approximate them by differences of Gaussians. In the

sequel, frequency bands are indexed by b ∈ {1, . . . , B},

with higher values represent lower frequencies. First,

let us denote by Gb(I) the bth level of the Gaussian

pyramid of some image I . The first level, G1(I), is

a copy of I: G1(I) = I . Any higher level is calcu-

lated from its previous level: Gb(I) is obtained by con-

volving Gb−1(I) by some fixed Gaussian kernel Gσ:

Gb(I) = Gb−1(I) ∗ Gσ .

We can now define the bth level of the Laplacian

pyramid of image I , denoted by Lb(I). The last level,

LB(I) is a copy of the last level of the Gaussian pyra-

mid: LB(I) = GB(I). Any lower level is calculated as:

Lb(I) = Gb(I) − Gb−1(I).
The main difficulty is now to define the color C(x)

of a point x of the surface as a proper combination of



the frequency bands of the different images:

C(x) =

B
∑

b=1

∑n

i=1
wi,b(x)Lb(Ii)(Πi(x))
∑n

i=1
wi,b(x)

(5)

where wi,b : M → R are some weighting functions on

the surface to be determined.

These weighting functions must have several prop-

erties. First, they must be continuous and smooth over

M. Second, wi,b must have high values in the patches

associated to image Ii, and must cancel in regions of

the surface not visible in Ii. Fourth, the transitions of

wi,b from zero to high values must be of proper width:

narrow enough to avoid ghosting, wide enough to avoid

a visual discontinuity. Moreover, this transition width

must be consistent with the scale of the considered fre-

quency band.

We compute wi,b as follows. First, we consider bi-

nary masks representing the useful regions in the differ-

ent images: Mi is the projection in Ii of the associated

3D patches. We generate smoothed versions Mi,b of

these masks by solving a 2D heat equation with initial

conditions Mi, until some time instant which matches

the bth level of the Gaussian pyramid. We impose zero

Dirichlet boundary conditions on exterior and occlud-

ing contours of the surface, as well as on image borders.

Note that these complex boundary conditions dismiss

the use of simple Gaussian convolution. Finally wi,b is

defined by:

wi,b(x) =

{

Mi,b(Πi(x)) if x is visible in Ii,

0 otherwise.
(6)

The interested reader can easily check that these weight

functions have all the required properties.

From a practical point of view, we discretize C in

the image domain, by iterating over the pixels of each

mask Mi. We define blended images I ′i that will be

used instead of the original Ii to create the final texture.

Then, for x ∈ fj , C(x) is stored in I ′ℓj
at pixel Πℓj

(x).

2.3. Texture atlas creation

We could render novel views from the blended im-

ages using multiple passes of projective texture map-

ping [6]. However, the creation of a single rectangular

texture map is very desirable: it increases the rendering

efficiency and allows to output portable 3D formats.

To build such a texture atlas, we first apply a mor-

phological dilation to the masks Mi with a square struc-

tural element of a few pixels, in order to provision for

automatic texture minifying during rendering. We then

compute a connected component decomposition, yield-

ing a list of texture fragments. We pack the latter using a

classical first-fit decreasing strategy: we place the frag-

ments in decreasing order of size, at the first available

slot found along a scanline search in the atlas. Finally,

we set the texture coordinates of mesh vertices accord-

ingly. Thus, the final output of our algorithm is compat-

ible with standard 3D viewers.

3. Results and discussion

In this section, we demonstrate our method on two

challenging datasets:

• ”Aiguille du Midi”: 37 images (1000 × 1332) of

a famous French peak (Chamonix, Mont-Blanc),

copyright Bernard Vallet (www.bvallet.com).

• ”Ettlingen Castle”: 19 images (1536 × 1024) of

Ettlingen Castle (Germany), courtesy Christoph

Strecha, EPFL (http://cvlab.epfl.ch/

˜strecha/multiview/).

To obtain accurate geometric models of these large-

scale scenes automatically, we first applied a recent

multi-view stereovision technique based on interest

points, 3D Delaunay triangulation and global optimiza-

tion with graph cuts [10]. The obtained models were

later refined with a deformable mesh by gradient de-

scent over some multi-view matching score [15].

Our code for computing the seamless texture at-

lases resorts to depth buffering on graphics hardware

to efficiently compute the visibility of facets in the

different views. Also, it uses the graph cuts min-

imization software by O. Veksler (http://www.

csd.uwo.ca/˜olga/code.html) and by V. Kol-

mogorov (http://www.adastral.ucl.ac.uk/

˜vladkolm/software.html).

Figure 1 displays a visual comparison of the views

synthesized following three different approaches:

• a ”naive” approach where each face is indepen-

dently mapped to the highest quality image, with-

out color correction.

• an ”optimized patchwork” approach where graph

cut optimization is used to minimize the length and

the visibility of seams, but without color correc-

tion.

• our approach combining patchwork optimization

with graph cut and color correction with multi-

band blending.

Although patchwork optimization consistently im-

proves visual quality, it cannot cope with varying light-

ing conditions and camera response. As a result,

marked intensity discontinuities are visible on the fore-

ground side of ”Aiguille du Midi” (Figure 1, top mid-

dle), and on the ground and on the background wall of

”Ettlingen Castle” (Figure 1, bottom middle). In con-

trast, no such artifact is apparent with our approach.



”Naive” ”Optimized patchwork” Our approach

Figure 1: Comparison of three different approaches on two real-world large-scale scenes. See text for details.

4. Conclusion

We proposed a method to create seamless image-

based texture atlases successfully handling real-world

large-scale scene reconstructions. Full-size images,

movies and interactive 3D views of these results

are available online at http://certis.enpc.fr/

˜allene/research-3Dblending.html.
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