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Abstract

Minimum cuts, extremum spanning forests and watersheds have been used as the
basis for powerful image segmentation procedures. In this paper, we present some
results about the links which exist between these different approaches. Especially,
we show that extremum spanning forests are particular cases of watersheds from
arbitrary markers and that min-cuts coincide with extremum spanning forests for
some particular weight functions.
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Introduction

Min-cuts (graph cuts) and watersheds are two popular tools for image segmen-
tation, which can both be expressed in the framework of graphs and are well
suited to computer implementations. Informally, a cut in a connected graph is
a set of edges which, when removed from the graph, separates it into several
connected components. Given a set of nodes or subgraphs called markers, the
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goal of these operators is to find a cut for which each induced component
contains exactly one marker and which best matches a criterion based on the
image contents. For example, the criterion is often designed in such a way that
the cut is located along the contours of the objects present in the image. To
this end, edges of the pixel adjacency graph can be weighted for example with
the inverse of the gradient modulus. The principle of min-cut segmentation
is then to find a cut (relative to the markers) whose sum of edge weights is
minimal [1].

The watershed is a well-known notion from the field of topography, introduced
for image segmentation purposes by S. Beucher and C. Lantuéjoul [2]. Intu-
itively, the watershed of a function (seen as a topographical surface) is com-
posed by the locations from which a drop of water could flow down towards
different minima. In a framework of edge-weighted graphs, the watershed is
defined in [3, 4] as a cut relative to the regional minima of the weight func-
tion, and which satisfies this “drop of water” principle. In [5], F. Meyer shows
the link between minimum spanning forests and flooding algorithms, which
are most often used to compute watersheds. There is indeed an equivalence
between watersheds defined as cuts satisfying the drop of water principle and
cuts induced by minimum spanning forests (MinSF) relative to the minima,
as proved in [3, 4].

The goal of this paper is to clarify the links between these different optimal
structures used for image segmentation. For this purpose, we first give a set
of definitions for these different paradigms in a same unifying framework of
edge-weighted graphs. We show that the cuts induced by MinSFs are particu-
lar cases of watersheds from arbitrary markers. Furthermore, these particular
cases are often preferable in practice to the watersheds. At last, we prove a
property which links graph cuts and watersheds, through the notion of MinSF.
It is well known that the MinSFs, and hence the watersheds, are invariant if
an increasing transformation is applied simultaneously to all the weights. For
example, if we raise all the weights to a same positive power n, a MinSF re-
mains a MinSF. On the contrary, min-cuts may be different for different values
of n. We show that, for any weighted graph, there exists a value n such that
min-cuts coincide with cuts induced by maximum spanning forests relative to
the markers, furthermore, this will also be true for any number greater than n.

The results of section 6 of this paper were stated, without proof, in a conference
paper [6]. In this conference paper, a link between MinSFs and a framework
based on shortest path forests was also established. This aspect is developed
in [4]. Proofs of the theorems (respectively, 5.2, 5.3 and 6.1) are given in the
appendices (respectively, A, B and C).
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1 Basic notions on graphs

In this section, we state basic notions on graphs before presenting the defini-
tions of extension and cut over a graph, which will be necessary in the sequel
of the paper.

We define a graph as a pair G = (V,E) where V is a finite set and E is
composed of unordered pairs of elements of V , precisely, E is a subset of
{{x, y} ⊆ V | x 6= y}. Each element of V is called a node or a vertex (of G)
and each element of E is called an edge (of G). We denote by G∅ the empty
graph, i.e. G∅ = (∅, ∅).

Let X = (V ′, E ′) be a graph. If V ′ ⊆ V and E ′ ⊆ E then we say that X is
a subgraph of G and we write X ⊆ G. Notice that G∅ is a subgraph of any
graph.

Let X be a subgraph of G. We denote, respectively, by V (X) and E(X) the
node set and the edge set of X.

If e = {x, y} is an edge of G, we say that x and y are adjacent (in G). If
moreover x ∈ V (X), where X is a subgraph of G, and y 6∈ V (X), we say that
y is adjacent to X (in G).

Let π = 〈x0, . . . , x`〉 be an ordered sequence of nodes of G, we say that π is a
path from x0 to x` in G (or in V ) if for any i ∈ [1; `], xi is adjacent to xi−1.
In this case, we say that x0 and x` are linked for G.
We say that π is a simple path from x0 to x` in G (or in V ) if π is a path
from x0 to x` and if all nodes of π are distinct. Notice that if there exists a
path from x0 to x` in G, then there exists a simple path from x0 to x`. We
say that G is connected if any two vertices of G are linked for G. Notice that
G∅ is connected.
Notice that you can define a path through its edges: π = 〈e0, . . . , e`−1〉 with
e0 = {x0, x1}, . . . , e`−1 = {x`−1, x`}. Then, we say that π is a path either from
x0 to x` or from e0 to e`−1 in G (or in E).

We say that X is a connected component of G if X is a connected subgraph
of G which is maximal for this property, i.e. for any connected graph X ′,
X ⊆ X ′ ⊆ G implies X ′ = X. Notice that G∅ is not a connected component
of any non-empty graph, and that G∅ is the connected component of, and only
of, G∅.

LetX and Y be two subgraphs ofG. We define (X∪Y ) = (V (X)∪V (Y ), E(X)∪
E(Y ) and (X ∩ Y ) = (V (X) ∩ V (Y ), E(X) ∩ E(Y )).
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Let X be a subgraph of G. An edge e = {x, y} of G is adjacent to X if
{x, y} ∩ V (X) 6= ∅ and e /∈ E(X). Consequently, if x ∈ V (X):

• either y ∈ V (X),
• or y is adjacent to X, in this case, we say that e is strictly adjacent to X.

If S is a subset of E, we denote by S the complementary set of S in E, that
is, S = E \ S.

Let S ⊆ E. The graph induced by S (in G) is the graph whose edge set is S
and whose vertex set is made of all points which belong to an edge in S.

We now present the notions of extension and (graph) cut which play an im-
portant role for optimal structures in edge-weighted graphs. The notion of
extension was introduced in [7] for the case of connected graphs. The follow-
ing definition presents this notion in the case of arbitrary graphs.

Definition 1.1 (Extension, spanning extension, maximal extension and cut)

Let G be a graph and let G1, G2, . . . , Gn be the connected components of G.
Let M and X be two subgraphs of G. For any i ∈ [1;n], let Mi = M ∩Gi and
Xi = X ∩Gi.

• We say that X is an extension of M if, for all i ∈ [1;n], Mi ⊆ Xi and
each connected component of Xi contains exactly one connected component
of Mi.

• We say that X is a spanning extension of M (over G) if X is an extension
of M and if V (X) = V .

• We say that X is a maximal extension of M (over G) if X is an extension
of M and if there is no extension of M which strictly contains X.

• Let C ⊆ E, we say that C is a (graph) cut relative to M (over G) if C is an
extension of M over G and if C is minimal for this property (i.e. considering
D ⊆ E, we have C = D whenever D ⊆ C and D is an extension of M over
G).

It may be seen that, if C is a cut, then the graph induced by C is necessarily a
maximal extension. Moreover, if X is a spanning extension of M , then there
exists a unique cut C relative to X which is called the cut induced by X. It
may be seen that C is also a cut relative to M .

Examples of these definitions are shown in figure 1.

Remark 1.1
Let M be a subgraph of G.

(1) A maximal extension of M is always a spanning extension of M (the
converse is not necessarily true since one can have a spanning extension
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to which one can add an edge while keeping the extension property).
(2) For any extension X of M , there exists a maximal extension Y of M

such that X ⊆ Y .
(3) For any i ∈ [1, n], if Mi = G∅, then any connected subgraph of Gi is an

extension of Mi and Gi is the maximal extension of Mi.
(4) Each edge of a cut C is adjacent to exactly two connected components of

the graph induced by C.
(5) Notice that, if any connected component of G contains no more than one

connected component of M , then the unique cut C relative to M is the
empty set.

Definition 1.2 (Forest)
Let F and M be two subgraphs of G.
We say that F is a forest relative to M if:

• F is an extension of M , and
• for any extension X ⊆ F of M , V (X) = V (F ) ⇒ X = F (i.e. we cannot

eliminate an edge of F and keep the extension property).

Definition 1.3 (Spanning forest)
Let F and M be two subgraphs of G.
We say that F is a spanning forest relative to M (over G) if:

• F is a forest relative to M , and
• V (F ) = V .

Equivalently, we say that F is a spanning forest relative to M (over G) if there
exists a spanning extension X relative to M over G such that F is obtained
by eliminating edges of X as long as it is possible to do it while preserving the
spanning extension property. In other words, a spanning forest is a minimal
spanning extension.

Examples of these definitions are shown in figures 1f and 1g.

It can be seen that if G is connected and M = (VM , ∅) where VM ⊆ V (i.e. M is
a subgraph without edge), then the notion of forest relative to M corresponds
exactly to the usual notion of forest. Furthermore, if |V (M)| = 1 then we
retrieve the usual notion of tree.

2 Notions on edge weighted graphs

In this section, we recall in particular the definition of a Minimum Spanning
Forest (MinSF) relative to a subgraph of G.

It is shown in [4] that the problem of computing a MinSF is equivalent to the
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(a) (b)

G1
G2

G3

(c)

(d) (e)

(f) (g)

Figure 1. Graph G, composed of three connected components (G1, G2 and G3), with
in bold: (a) a subgraph M ; (b) an extension relative to M ; (c) a spanning extension
relative to M ; (d) a maximal extension relative to M ; (e) a cut relative to M ; (f) a
forest relative to M ; (g) a spanning forest relative to M .

one of computing a minimum spanning tree, which has been studied for many
years in combinatorial optimization (see [8, 9]).

In the following, P will denote a map from E to R+.

The pair (G,P ) is an edge weighted graph. If e is an edge of G, P (e) is called
the weight , or the altitude, of e. The weight of a subgraph X of G, denoted by
P (X), is the sum of its edge weights (P (X) =

∑
x∈E(X) P (x)).

Definition 2.1 (Minimum spanning forest)
Let F and M be two subgraphs of G. We say that F is a Minimum Spanning
Forest (MinSF) relative to M (for P ) if F is a spanning forest relative to M
and if the weight of F is minimum, i.e. lower than or equal to the weight of
any other spanning forest relative to M .
Notice that if the weight of F is maximum instead of minimum, then we have
a Maximum Spanning Forest (MaxSF).
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An example of this definition is shown in figure 9.

Remark 2.1
Let M and F be two subgraphs of G, f : R+ → R+ be a strictly increasing
function and g : R+ → R+ be a strictly decreasing function.
From classical results on extremum spanning forests (see [9], chapter 6.1), we
know that the three following statements are equivalent:

• F is a MinSF relative to M for P ;
• F is a MinSF relative to M for (f ◦ P );
• F is a MaxSF relative to M for (g ◦ P ).

Let M be a subgraph of G and let F be a MinSF relative to M . Since F is
a spanning forest, hence a spanning extension, there exists a unique (graph)
cut relative to M induced by F . We say that this cut is a MinSF cut relative
to M .

Definition 2.2 (Threshold of a map)
For any h ∈ R+, we define Eh

P = {e ∈ E;P (e) ≤ h}.
Let X be a subgraph of G. Then, we denote by Xh

P the graph induced by E(X)∩
Eh
P and we say that Xh

P is the (inferior) threshold of X at level h for P . When
there is no ambiguity about the map, we will simply write Xh.

Examples of this definition are shown in figure 2.

(a) (b) (c)

Figure 2. Graph G and map P with in bold: (a) G2
P ; (b) G3

P ; (c) G4
P .

3 Watersheds on edge weighted graphs

The intuitive idea underlying the notion of watershed comes from the field of
topography: a drop of water falling down on a topographic surface follows a
descending path and reaches a regional minimum area. The watershed may
be thought of as the separating lines of the domain of attraction of drops of
water (see [2, 10–12]).
The regions of a watershed, also called catchment basins, are associated with
the regional minima of the map. In other words, each catchment basin contains
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a unique regional minimum, and conversely, each regional minimum is included
in a unique catchment basin: the regions of the watershed are the connected
components of an extension relative to the minima. They are separated by
a set of edges from which a drop of water can flow down towards different
minima, in the sense defined below.

A subgraph X of G is a (regional) minimum of P if:

• X is connected, and
• all the edges of X have the same altitude, that we will refer to as the altitude

of X, and
• the altitude of any edge adjacent to X is strictly greater than the altitude

of X.

We denote by Min(P ) the graph whose vertex set and edge set are, respec-
tively, the union of the vertex sets and edge sets of all minima of P .

Let π = 〈x0, . . . , x`〉 be a path in G. The path π is descending (for P ) if
∀i ∈ {1, . . . , `− 1}, P ({xi−1, xi}) ≥ P ({xi, xi+1}).

Definition 3.1 (Watershed - Def. 3 in [3])
Let C be a subset of E. We say that C is a watershed cut (for P ), or simply
a watershed (for P ), if the graph induced by C is a maximal extension of
Min(P ) and if for any e = {x0, y0} ∈ C, there exist π1 = 〈x0, . . . , xm〉 and
π2 = 〈y0, . . . , yn〉 two descending paths in C such that:

• xm and yn are nodes of two distinct minima of P , and
• P (e) ≥ P ({x0, x1}) (respectively, P (e) ≥ P ({y0, y1})), whenever m > 0

(respectively, n > 0).

The connected components of C are the catchment basins of this watershed.

An example of this definition is shown in figure 9.

Notice that a watershed is indeed a graph cut relative to Min(P ).

4 Watersheds relative to markers

Usually, when one wants to compute a watershed of a map, one obtains an
over-segmented result since the number of regions in the final result is equal
to the number of regional minima. Sometimes, it is desirable to use a set of
markers instead of the minima of the map to fix the number of regions and
mark some vertices with a specific label. Traditionally, to do this, one has
to proceed to a morphological reconstruction of the map before computing
the watershed. This reconstruction is needed on the map P for a subgraph
M of G to become the minima of a new map P ′. As a consequence, we have
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M = Min(P ′) and, then, it is possible to compute a watershed algorithm from
the marker M (see [10, 11]).

Definition 4.1 (Flooding maps [13])
We say that the map P ′ is a flooding map of P (for G) if ∀h ∈ R+, any
connected component of Gh

P ′ is a connected component of Gh
P .

We denote by F(P ) the set of flooding maps of P .

Examples of this definition are shown in figures 3 and 4.

Notice that, by definition of a flooding map P ′ of P (for G), we have ∀e ∈
E,P ′(e) ≥ P (e).

(a) (b) (c)

Figure 3. Representation in 1D of: (a) a map P ; (b,c) flooding maps of P (with P
in dashed line).

(a) (b) (c)

Figure 4. Graph G with: (a) a map P ; (b,c) flooding maps of P (with edges of
different weight in bold).

Definition 4.2 (Constrained flooding maps)
Let M be a subgraph of G.
We say that the map P ′ is a flooding map of P constrained by M if:

• P ′ is a flooding map of P (P ′ ∈ F(P )), and
• ∀e ∈ E(M), P (e) = P ′(e).

We denote by F(P,M) the set of flooding maps of P constrained by M .

Examples of this definition are shown in figures 5 and 6.

Definition 4.3 (Relative watershed)
Let M be a subgraph of G and let C be a cut relative to M .
We define the map P ′ such that:

∀e ∈ E,P ′(e) =

α if e ∈ E(M)

P (e) otherwise
(1)
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(a) (b) (c)

Figure 5. Representation in 1D of: (a) a map P with markers M (in red); (b) a
flooding map of P constrained by M (with P in dashed line); (c) a maximum
flooding map of P constrained by M (with P in dashed line).

(a) (b) (c)

Figure 6. Graph G with: (a) a map P and, in bold, a subgraph M in bold; (b,c) flood-
ing maps of P constrained by M (with edges of different weight in bold).

with α ≤ mine∈E(P (e)), and the map P ′′ as the maximum flooding map of P ′

constrained by M : P ′′ = max
p∈F(P ′,M)

(p). (2)

We say that C is a watershed relative to M (for P ) if C is a watershed for
P ′′.

Examples of this definition are shown in figures 7 and 8.

(a) (b) (c)

(d) (e) (f)

Figure 7. Representation in 1D of: (a) map P with markers M (in red); (b) map P ′

with markers M as lowest weights (with P in dashed line); (c) maximum flooding
map of P ′ constrained by M (with P in dashed line); (d) to (f) three different
watersheds (in green) relative to M .
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 8. Relative watershed on a gradient based weight function: (a) input image;
(b) markers (two sets: red and blue); (c) gradient value of the image; (d) 1D profile of
the gradient (represented by the dashed line on (c)); (e) 1D profile of the maximum
flooding map of the gradient with markers as minimum values; (f) to (h) watershed
results; (i) to (k) 1D profiles of watershed results (respectively (f) to (h)).

This morphological reconstruction is often done on node weighted graphs. Its
best algorithm is quasi-linear (see [14]).

Unfortunately, this method gives in some cases unexpected results since the
watershed relative to the markers could pass through a catchment basin of the
watershed (relative to the minima) (see figures 7f, 8k and 8h), or worse, pass
through a minimum of the original map.
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5 Relations between MinSF cuts and watersheds

In this section, we recall the equivalence between MinSF cuts and watersheds
relative to the minima of a map (see [3]) before describing a new theorem
stating that a MinSF cut relative to any marker is a relative watershed.

Theorem 5.1 (Th. 2 in [3])
Let C be a subset of E.
The set C is a MinSF cut relative to Min(P ) (for P ) if and only if C is a
watershed (for P ).

An illustration of this theorem is shown in figure 9.

(a) (b)

Figure 9. Graph G and map P with: (a) a subgraph M = Min(P ) in bold; (b) a
MinSF relative to M for P in bold and its induced cut C in dashed edges. It can
be seen, from definition 3.1, that C is indeed a watershed.

The two following theorems lead us to the conclusion that reconstruction plus
watershed can be advantageously replaced by a single MinSF computation for
doing a segmentation from markers.

Theorem 5.2
Let M be a subgraph of G and P ′ a flooding map of P (P ′ ∈ F(P )).
If F is a MinSF relative to M over G for P , then F is a MinSF relative to
M over G for P ′.

An illustration of this theorem is shown in figure 10.

Remark 5.1
Notice that the converse of theorem 5.2 is, in general, not true (see figures 10j
and 10k).

Theorem 5.3
Let M be a subgraph of G and C be a subset of E.
If the set C is a MinSF cut relative to M (for P ), then C is a watershed
relative to M (for P ).

An illustration of this theorem is shown in figure 11.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 10. Graph G with: (a) a map P and, in bold, a subgraph M ; (b,c) flood-
ing maps, respectively P ′ and P ′′, of P (with edges of different weight in bold);
(d) to (f) MinSF F1 relative to M over G for, respectively, P , P ′ and P ′′;
(g) to (i) MinSF F2 relative to M over G for, respectively, P , P ′ and P ′′; (j,k) MinSF
relative to M over G for, respectively, P ′ and P ′′ but not for P . In dashed edges
are the cuts induced by the MinSFs.

Remark 5.2
Notice that the converse of theorem 5.3 is, in general, not true (see figures 11h
to 11`).

Any minimum spanning tree algorithm can be employed to compute a MinSF
and, as a consequence, a watershed (see a survey in [8, 9]). The best of them
does this in quasi-linear time (see [15]). Algorithms specific to watersheds run
in linear time (see [3]).

As mentioned above, a relative watershed could lead the cut to pass through
a catchment basin or even a minimum of the original map (see figures 11h
to 11`), whereas a MinSF cut could not. In figure 8, only results of figures 8f
and 8g can be obtained with a MinSF computation.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

(k) (`)

Figure 11. Graph G with: (a) a map P and, in bold, a subgraph M ; (b,c) respectively
maps P ′ and P ′′ as described in definition 4.3 (with edges of different weights in
bold); (d,e) respectively F1 and F2 which are both MinSFs relative to M over G
for P ; (f,g) respectively F1 and F2 which are both MinSFs relative to M over G for
P ′′ as well; (h) to (l) MinSFs relative to M over G for P ′′ but not for P . In dashed
edges are the cuts induced by MinSFs which are also watersheds relative to M .

In cases where pertinent cuts should follow the crests of the original map, a
MinSF should be used rather than a relative watershed. This method is also
of interest for implementation of hierarchical segmentation schemes (see [5,12,
16]). Otherwise, there exists strategies to get watersheds which are “centered”
in plateaus that are created by the morphological reconstruction (see [10]).
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6 Link between minimum cuts (min-cuts) and MaxSF cuts

In this section, we show that min-cuts and MaxSF cuts are linked through
a modification of the map P preserving the order and increasing the weight
difference between the edges. Let us first recall the notion of minimum cut.

Let M be a subgraph of G and let C ⊆ E. We say that C is a minimum
cut (min-cut) relative to M (for P ) if for any cut C ′ ⊆ E relative to M ,
P (C) ≤ P (C ′). It can be seen that a cut C relative to M is of minimum
weight if and only if C is a (spanning) extension of maximum weight relative
to M . Examples of this definition are shown in figure 13.

A fundamental result in combinatorial optimization states that, given two
isolated nodes of an edge-weighted graph (called source and sink), finding a
min-cut that separates these two nodes is equivalent to finding a maximum
flow between them (see [17], chapter 6.2). This problem is equivalent to finding
a min-cut relative to a subgraph having exactly two connected components
(consider adding two extra nodes to G, the source and the sink, and highly
weighted edges from each one of them to all the nodes of each of the com-
ponents of M). The first algorithm to solve the maximum flow problem was
created by L. R. S. Ford and D. R. Fulkerson [18] in 1956. Specific variants
of maximum flow algorithms have been developed (e.g. for computer vision
applications) which allow fast computation [19]. On the other hand, finding a
min-cut relative to a subgraph with more than two connected components is
NP-hard [20], but there exists approximation algorithms [1].

We denote by P [α], and say P to the power α, the map from E to R+ defined
by, for any e ∈ E, P [α](e) = [P (e)]α.

Theorem 6.1
If M is a subgraph of G, then there exists a real number β such that, for any
α ≥ β, any min-cut relative to M for P [α] is a MaxSF cut relative to M for
P [α].

Theorem 6.1 is illustrated in figures 12 and 13.

It has to be noticed that the converse of theorem 6.1 is, in general, not true.
See figure 15 where the MaxSF cut relative to M for P in 15b is not a min-cut
relative to M for P , but any min-cut is a MaxSF cut.

From remark 2.1, we know that the MaxSF cut relative to M for P [α] is also
a MaxSF cut relative to M for P and conversely since the change of map
preserves the order. An intuitive interpretation of theorem 6.1 is to consider
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Color image segmentation using: (a) markers superimposed to the original
image; (b) MaxSF cut on P ; (c) min-cut on P ; (d) min-cut on P [1.4]; (e) min-cut
on P [2]; (f) min-cut on P [3]; (g) zoom of MaxSF cut on P ; (h) zoom of min-cut on
P [2]; (i) zoom of min-cut on P [3].

the MaxSF cut as a greedy heuristic to obtain a min-cut. The efficiency of
this heuristic becomes higher when differences between the weights increase.
More formally, the min cut method (with power α as a parameter) can be
considered as a general scheme in which MinSF is a particular case. When
the power α is high enough, MinSF cuts are a good alternative to min cuts
because of the low computational cost for an exact result with an unlimited
number of markers. However, in other cases, a min cut computation cannot
be replaced by a MinSF cut computation.

Figure 12 illustrates the link between these two well known segmentation
paradigms through the evolution of the min-cut with different values of α.
Notice that the power of the map P could then be considered as a smoothing
term for the min-cut method. Indeed, when this power decreases, shortest cuts
are found whereas, when it increases, longer cuts are found. These longer cuts
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(a) (b)

(c) (d)

Figure 13. Graph G and map P with: (a) in bold, a subgraph M ; (b) in bold, the
MaxSF relative to M for P and, in dashed edges, its induced cut; (c) in dashed
edges, the min-cut relative to M for P ; (d) in bold, the MaxSF relative to M for
P [2] and, in dashed edges, its induced cut which is also the min-cut relative to M
for P [2].

(a) (b) (c)

Figure 14. Color image segmentation: (a) markers superimposed to the original
image; (b) MaxSF cut on P ; (c) min-cut on P .

(a) (b) (c)

Figure 15. Graph G and map P with: (a) in bold, a subgraph M ; (b) in bold, a
MaxSF relative to M for P and, in dashed edges, its induced cut, which is not a
min-cut; (c) in dashed edges, a min-cut relative to M for P .

can surround more details as well as noise. Therefore, releasing this smoothing
term is not always suitable. See, for example, figure 14 where the min-cut result
can be considered as better than the MaxSF cut result.
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Conclusion

In the framework of edge-weighted graphs, the notions of minimum spanning
forest relative to the minima of a map and watershed are equivalent [3, 4].
The first contribution of this paper is to clarify the extension of this result
to relative watersheds, that is, watersheds from arbitrary markers. We proved
that any relative MinSF is a relative watershed, but the converse is not true.
Furthermore, the relative watersheds which are not MinSFs are not interesting
for usual segmentation tasks, thus MinSFs should in most practical cases be
preferred to relative watersheds. The second contribution of this paper is a
link between MinSFs (and thus also watersheds) and minimum cuts in edge-
weighted graphs. Although different in general, we proved that both notions
coincide for particular weight functions.
It can be noticed that the β in theorem 6.1 that we provide in the proof (see
appendix C) as sufficient can be a very large number while, experimentally,
quite smaller bounds are usually sufficient in practical cases. Finding a lower
bound for β remains an open problem.
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A Proof of theorem 5.2

To prove theorem 5.2, we will use a well-known characterization of minimum
spanning trees on a connected graph (proposition A.1) to obtain a character-
ization of MinSFs (proposition A.2). Then we show that this characterization
is preserved through flooding maps (proposition A.3).

Considering that G is connected, let T be a spanning tree over G. For any
e = {x, y} ∈ (E \ E(T )), we denote by π(T,e) the unique simple path in T
going from x to y (i.e. π(T,e) = 〈x, y, . . . , x〉).

Proposition A.1 [Minimum spanning tree property - In [9], chapter 6.1]
The spanning tree T over G is a minimum spanning tree over G for P if and
only if ∀e ∈ (E \ E(T )), P (e) = maxu∈π(T,e)

P (u).

Let F be a spanning forest over G. For any e = {x, y} ∈ (E\E(F )), we denote
by π(F,e) the unique simple path in F \M such that:

• either π(F,e) = 〈x, y, . . . , x〉,
• or π(F,e) = 〈m1, . . . , x, y, . . . ,m2〉 with m1,m2 ∈ V (M).

Proposition A.2 [MinSF property]
Let M be a subgraph of G.
The spanning forest F over G is a MinSF relative to M over G for P if and
only if ∀e ∈ (E \ E(F )), P (e) = maxu∈π(F,e)

P (u).

Proof of proposition A.2:
It was shown in [4] that a MinSF can be viewed as a minimum spanning tree
in an enlarged graph where the markers and the connected components of G
are linked by additional edges with zero weight. As a consequence, properties
on MinSFs (and in particular this theorem) are deduced from properties on
minimum spanning trees. 2

Now, this property is preserved through the flooding maps according to the
following proposition applied to the paths π(F,e) with e ∈ (E \ E(F )).

Proposition A.3 [Flooding maps property]
Let π = 〈e0, . . . , e`−1〉 be a path in E and let e ∈ π such that P (e) =
maxu∈π P (u).
If P ′ is a flooding map of P for G, then P ′(e) = maxu∈π P

′(u).

Proof of proposition A.3:
Let us prove the result by contradiction.
Assume that P ′ is a flooding map such that there exists an edge e′ ∈ π with
P ′(e′) > P ′(e). Then there exists h ∈ R+ with P ′(e′) > h > P ′(e). Then the
connected component X of Gh

P ′ which contains e does not contain e′. Since P ′
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is a flooding map, X is a connected component of Gh
P . Since any edge ẽ of π

satisfies P (ẽ) ≤ P (e) ≤ P ′(e) < h, all edges of π are in X, and in particular
e′. This contradicts the premise. 2

As a consequence, if F is a MinSF relative to M over G for P , then F is a
MinSF relative to M over G for P ′.

B Proof of theorem 5.3

Suppose that C is a MinSF cut relative to M for P and let P ′ and P ′′ defined
as in definition 4.3.

Since changing the weights of edges in M does not affect the MinSF property,
C is a MinSF cut relative to M for P ′. By theorem 5.2, we deduce that C is
also a MinSF relative to M for P ′′ and, by theorem 5.1, a watershed relative
to M for P .

C Proof of theorem 6.1

In the following of this proof, the extensions and forests considered are all
relative to the subgraph M , and they are over graphs for which the set of
vertices is V = V (G), so that we introduce the following convenient notation.

Notation:
For a set of edges E(M) ⊆ E ′ ⊆ E = E(G):

• an E ′-MaxSF is a MaxSF relative to M over (V,E ′).
• an E ′-spanning forest is a spanning forest relative to M over (V,E ′).
• an E ′-extension is an extension relative to M over (V,E ′).
• an E ′-spanning extension is a spanning extension relative to M over (V,E ′).
• an E ′-maximal extension is a maximal extension relative to M over (V,E ′).

Let r = min
{
P (ei)
P (ej)

s.t. (ei; ej) ∈ E2 with P (ei) > P (ej)
}

and take

β =
log |E|
log r

. (C.1)

Let C be a min-cut relative to M for P [α] with α ≥ β. Let F be a E-MaxSF.
Let F̃ be a C-MaxSF, where we recall C = E \C. Let P (X) be the weight of
a subgraph X of G.
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To prove the result, i.e. that F̃ is a E-MaxSF, we will show that:

(i) P (F̃ ) = P (F ),
(ii) F̃ is a E-spanning forest.

To obtain (i), we will prove that F and F̃ have the same number of edges of
each type of weights.

Let P = 〈p1, . . . , p`〉 be the different weights of the edges in G, such that:

∀i ∈ {1, . . . , `},∃e ∈ E | P (e) = pi, (C.2)

∀e ∈ E,∃i ∈ {1, . . . , `} | P (e) = pi (C.3)

and

∀i, j ∈ {1, . . . , `}, if i 6= j then pi 6= pj, (C.4)

presented in decreasing order with

p1 > · · · > p`. (C.5)

We say that P is the induced sequence of G.

Let nh(X) be the number of edges of weight ph of a subgraph X of G. Then,
we obviously have

|E(X)| =
∑̀
h=1

nh(X), (C.6)

and the weight of X may be expressed as

P (X) =
∑̀
h=1

nh(X)ph. (C.7)

To get (i), it suffices to show that for any h ∈ {1, . . . , `},

nh(F ) = nh(F̃ ). (C.8)

We define

Eh = {e ∈ E;P (e) ≥ ph} ∪ E(M) (C.9)

and introduce

F h =
(
V,E(F ) ∩ Eh

)
(C.10)

F̃ h =
(
V,E(F̃ ) ∩ Eh

)
(C.11)

Figure C.1 illustrates these notations.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure C.1. Graph G and map P (which induced sequence is 〈9, 8, 7, 6, 5, 4, 3, 2, 1〉)
with in bold: (a) a subgraph M ; (b) a MaxSF relative to M for P ; (c) G2 (p2 = 8);
(d) G4 (p4 = 6); (e) G6 (p6 = 4); (f) F 2; (g) F 4; (h) F 6.

Note that F = F ` and F̃ = F̃ `. To obtain equation (C.8), we will prove by
induction on k that for any 1 ≤ h ≤ k,

nh(F
k) = nh(F̃

k). (C.12)

The proof of equation (C.12) requires the three following lemmas.

Lemma C.1
For any h ∈ {1, . . . , `}, F h is a Eh-spanning forest.

Proof of lemma C.1:
Let Gh =

(
V,Eh

)
. We start with two obvious statements:

• Any connected component of M is included in a connected component KFh

of F h, since by definition of F h we have E(M) ⊆ F h.
• The connected graph KFh cannot contain more than one connected compo-

nent of M since, otherwise, one of the connected components of F would
contain more than one connected component of M , which is impossible.

So to prove that F h is a Eh-extension, it suffices to check that for any con-
nected component KGh of Gh (whether V (KGh) ∩ V (M) is empty or non-
empty), the graph KGh ∩ F h is connected. We will prove it by contradiction.
Assume that it is disconnected. Then there exists e = {x, y} ∈ E(KGh) such
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that e /∈ E(F h). Since P (e) ≥ ph, then we also have e /∈ E(F ). So there is
either a simple path in F between x and y containing an edge e′ ∈ E \ Eh or
a simple path in F from x to a node of M containing an edge e′ ∈ E \ Eh.
In both cases, if we remove e′ and add e to F , we obtain a E-spanning forest
whose weight is greater than the one of F (since P (e) ≥ ph > P (e′)). This
contradicts the fact that F is a E-spanning forest with maximal weight. So
F h is a Eh-extension.

Now let e′′ ∈ E(F h). The subgraph
(
V,E(F h) \ {e′′}

)
is not a Eh-extension

since one can check that otherwise
(
V,E(F ) \ {e′′}

)
would be a E-extension,

which contradicts the fact that F is a E-spanning forest. So F h is a Eh-
spanning forest. 2

Remark C.1
Using the same kind of construction as the one used to prove that F h is a
Eh-extension, one can prove that F h is in fact a Eh-MaxSF but we will not
use it here.

Lemma C.2
For any h ∈ {1, . . . , `}, F̃ h is a Eh-spanning forest.

Proof of lemma C.2:
Let Ẽh = Eh \ C, G̃h = (V, Ẽh) and Gh = (V,Eh). Let us prove that G̃h is a
Eh-extension. We start with noting that:

• any connected component of M is included in a connected component KG̃h

of G̃h, since the cut C relative to M over G does not cut edges of E(M),
• the connected graph KG̃h cannot contain more than one connected com-

ponent of M since, otherwise, one of the connected components of G̃` =
(V,E \C) would contain more than one connected component of M , which
is impossible by definition of C.

So to prove that G̃h is a Eh-extension, it suffices to check that for any con-
nected component KGh of Gh (whether V (KGh) ∩ V (M) is empty or non-
empty), the graph KGh ∩ G̃h is connected. We will prove it by contradiction.
Assume that it is disconnected. Then there exists e = {x, y} ∈ E(KGh) such
that e ∈ C, i.e. e is in the min-cut C relative to M over G. Since the vertices
x and y are not both in V (M), starting with C, we can build a cut C ′ relative
to M over G by removing the edge e and by adding edges from E \ Eh in
order to ensure that C ′ is a cut. For P [α], the total weight of the edges added
to C \ {e} is smaller than P [α](e), since from equation (C.1) and α ≥ β, we
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have

α ≥ log |E|
log ph

ph+1

,

log
pαh
pαh+1

≥ log |E|,

pαh ≥ |E|pαh+1

(C.13)

and, consequently,

P [α](e) = [P (e)]α ≥ pαh ≥ |E|pαh+1 >
∑̀
i=h+1

ni(G)pαi . (C.14)

So the cut C ′ would satisfy P (C ′) < P (C), which is impossible. Therefore G̃h

is a Eh-extension.
Let us now prove by contradiction that it is also a Eh-maximal extension.
Assume that there exists an edge e which you could add to G̃h such that
Ǧh =

(
V,E(G̃h)∪{e}

)
is also a Eh-extension. Let Čh = E(Gh)\E(Ǧh). Then,

starting with Čh, you can build a cut C ′ relative to M over G by adding edges
from E \ Eh in order to ensure that C ′ is a cut. Using the same argument
than in equation (C.14), one can check that this would lead to P (C ′) < P (C),
which is impossible. So G̃h is simultaneously a maximal extension relative to
M over Gh and a maximal extension relative to M over G̃h.
Since a maximal extension is a spanning extension, we deduce from the second
way to define a spanning forest (in definition 1.3) that F̃ h is a Eh-spanning
forest. 2

Remark C.2
As a by-product of this proof, we have that Eh ∩C is a min-cut relative to M
over (V,Eh).

Lemma C.3
Let E(M) ⊆ E ′ ⊆ E. Any E ′-spanning forest has the same number of edges.

Proof of lemma C.3:
It suffices to check that the number of edges of a E ′-spanning forest F ′ is
exactly

|E(F ′)| = |E(M)|
+
∑
H

{
|V (H)| −N(H ∩M)−max

(
|V (H ∩M)| − 1, 0

)}
, (C.15)

where the summation is taken over the connected components of (V,E ′), and
N(X) denotes the number of connected components of X. 2
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Now that we have proved our three lemmas, let us go back to the proof of
equation (C.12) as follows.

Proof by induction on k of equation (C.12):

• For k = 1: from lemmas C.1, C.2 and C.3, F 1 and F̃ 1 have the same
number of edges. Now since in both subgraphs the only edges of weight
smaller than p1 are exactly the edges in M of weight smaller than p1, we
obtain n1(F

1) = n1(F̃
1).

• Assume now that equation (C.12) holds for k. Let us show that it then holds
for k + 1. For any 1 ≤ h ≤ k, we have

nh(F
k+1) = nh(F

k) = nh(F̃
k) = nh(F̃

k+1), (C.16)

where the second equality uses equation (C.12) for k. Now, from lemmas C.1,
C.2 and C.3, F k+1 and F̃ k+1 have the same number of edges. Since in both
subgraphs the only edges of weight smaller than pk+1 are exactly the edges
in M of weight smaller than pk+1, we obtain nk+1(F

k+1) = nk+1(F̃
k+1),

which finishes the induction. 2

So the proof of (i) is finished. For (ii), it suffices to note that, since we have
E = E` and F = F `, it is a direct consequence of lemma C.2.

Remark C.3
In the proof of theorem 6.1, the fact that α is large enough is only required to
ensure that for any h ∈ {1, . . . , `− 1}, Gh = (V,Eh \ C) is a Eh-extension.
In image processing, it often occurs that the min-cut relative to P [γ] with
small γ (typically γ = 1) oversmooths the contours, and that we want to
try higher values for γ to obtain tighter contours.
The previous remark can be used to speed up computations of the min-cut
for P [γ′] with γ′ > γ when the min-cut for P [γ] has already been computed.
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