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ABSTRACT

A new method for in vivo conductivity estimation of head
tissues is proposed, in the case of a realistic piecewise con-

stant model. Unlike classical electrical impedance tomogra-

phy methods, for which the conductivity is inferred from a

current injection on the scalp, we use an evoked source inside

the brain that comes from a somatosensory experiment. The

resulting uncertainty with respect to the source is then bal-

anced by strong constraints : we assume the source to be a

single dipole located in the cortex, with orientation normal to

the cortical surface. Using only EEG data, we are then able

to estimate conductivity values, using the MUSIC method to

recover the position of the source. Results on simulations

show robustness to noise, and the applicability of the method

is demonstrated on real data.

Index Terms— Electroencephalography (EEG), conduc-
tivity estimation, realistic meshes

1. INTRODUCTION

Electroencephalography (EEG) is becoming a more and more

common functional brain imaging modality. Thus, it is of

interest to improve the resolution of the inverse EEG prob-

lem, which is spatially poorer than magnetoencephalography

(MEG) and functional magnetic resonance imaging (fMRI).

The main problem in EEG is its sensitivity to electrical prop-

erties of head tissues. In particular, the bad knowledge of

skull conductivity can greatly affect the EEG source localiza-

tion [1]. Further, the skull conductivity value varies highly

among subjects. For the purpose of better source estimation,

it is hence essential to be able to estimate in vivo conductivi-
ties of head tissues.

The main approach taken to achieve conductivity estima-

tion is electrical impedance tomography (EIT), in which a

low-intensity current is imposed on the scalp through selected

EEG electrodes, and conductivity values are then inferred from

potential measurements at the remaining electrodes [2, 3, 4].

One drawback of EIT arises from the insulating effect of the

skull, which forces most of the injected current to flow into

the scalp, and so lowers the significance of EEG measure-

ments. A different approach is to consider a natural source

inside the brain, which allows for more significant measure-

ments of scalp potential. In this case, the electrical source can

be controlled by using well-understood stimuli (like median

nerve stimulation), combined with MEG for source localiza-

tion [4, 5, 6].

In this paper, we present a method that follows the lat-

ter approach described above, but differs in our attempt to

control the brain source without using MEG source localiza-

tion, i.e. with only EEG. This is briefly considered in [6],

but only on spherical head models and with no constraint on

the source, which we demonstrate to have poor robustness to

noise with respect to conductivity estimation. Here, our first

aim is to achieve a high level of accuracy with the use of re-

alistic meshes and the symmetric boundary element method

(BEM) for the forward EEG problem [7]. We also attempt to

maintain control of the electrical source position and orienta-

tion by constraining it to the cortical surface, and by localiz-

ing it with the multiple signal classification (MUSIC) method,

which is robust to noise [8]. We present results of the method

applied to both simulated and real data.

2. SYMMETRIC BEM

2.1. Forward model for EEG

Consider an electric potential V which satisfies, inside the

head volume Ω with conductivity σ, a Poisson equation

∇ · (σ∇V ) = f in Ω (1)

with the following boundary condition on the scalp:

σ∂nV = j on ∂Ω . (2)

In an EEG model, the sources inside the brain are represented

by f . Also, the current on the scalp, j, vanishes because the

medium around the head (air) is non-conducting.

In this paper we consider a three-layer head model. Con-

ductivities of the brain, the skull and the scalp are respectively
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denoted σ1, σ2 and σ3. The surfaces enclosing these homoge-

neous conductivity regions are denoted S1 (inner skull bound-

ary), S2 (skull-scalp interface) and S3 (scalp-air interface).

2.2. Symmetric BEM formulation

Careful application of the Green representation theorem to

system (1)-(2) leads to a linear relationship through integral

operators between the potential V and the normal current σ∂nV

on each of the surfaces1, driven by a source term involving the
inner current sources f and/or the injected current j. More

precisely, let Vi, resp. pi = (σ∂nV )i denote the restriction

to surface Si of the potential, resp. the normal current. With

the formalism presented in [7], the system (1)-(2) for a three-

layer head model becomes:

Aσ [V1 V2 V3 p1 p2]
T = Bσ (3)

where Aσ is a symmetric matrix and Bσ a vector, described

below. The matrix Aσ has a block structure

Aσ =

(
Nσ DT

D Sσ

)
(4)

with

Nσ =

⎡
⎣ (σ1 + σ2)N11 −σ2N12 0

−σ2N21 (σ2 + σ3)N22 −σ3N23

0 −σ3N32 σ3N33

⎤
⎦

Sσ =

[
(σ−1

1
+ σ−1

2
)S11 σ−1

2
S12

σ−1

2
S21 (σ−1

2
+ σ−1

3
)S22

]

D =

[
−2D11 D12 0
D21 −2D22 0

]

The blocks Nij , Sij and Dij only depend on the geometric

structure of the meshes, and not on the conductivities. The

blocks Nij and Dij map a potential Vj on surface Sj to a

quantity defined on Si. The blocks Sij map a normal current

pj on Sj to a quantity defined on Si.

The vector Bσ on the right-hand side of (3) was derived

in [7] for the EEG case: supposing f to be supported in the

brain compartment, and j in (2) to vanish on the scalp, then

Bσ = [(σ1∂nv)1 0 0 (v)1 0]
T

(5)

where v is the solution of σ1Δv = f , i.e. a potential driven

by the same source term, but in an infinite domain with con-

ductivity σ1.

2.3. Discretization with P1-P0 elements

The vector of unknowns [V1 V2 V3 p1 p2]
T , once dis-

cretized, combines the P1 coefficients of the potential V on
all vertices of surface S1, S2 and S3, and the P0 coefficients
of the flux p = σ∂nV on triangles of surfaces S1 and S2, as

the flux p vanishes on S3.

1Here, n denotes the outward-pointing normal. Unlike ∂nV , the quantity
σ∂nV is continuous and it is legitimate to consider its restriction to a surface
of discontinuity of conductivity.

3. INVERSE SOLUTION

We model the source by a single dipole. Although it is very

simple, it corresponds well to the very focal activity observed

in the primary sensory cortex at short latency (before 50 ms),

in response to a sensory stimulus such as median nerve stim-

ulation.

3.1. Single dipole localization using MUSIC on the corti-
cal surface

In this section, we present a method for single dipole local-

ization for a fixed conductivity distribution σ = (σ1, σ2, σ3).
As in imaging approaches, such as minimum-norm, we use

the cortical surface obtained from subject MRI to constrain

the localization of the source. Then, in contrast to classical

least squares dipole fitting, we search the most probable lo-

cation of the dipole source within a predefined set of points

(the cortical mesh vertices). This allows us to employ scan-

ning methods. Our choice is to use the MUSIC method [8],

which gives good results when time series of the sources are

independent. Here we assume a single source, and so there

cannot be two synchronous sources.

Consider a dipole at a cortical mesh vertex i, normal to

the cortical surface and with unitary moment. If we solve the

system (3) for this dipole and interpolate the values of V3 at

the electrode positions, we obtain a column vector gi
σ , called

the gain field (of this dipole).

Now we consider the EEG measurement data M , which

is an n ×m matrix, where n is the number of electrodes and

m is the number of time samples. Let M = USV be the

singular value decomposition ofM . For the MUSIC method,

we define a signal subspace and a noise subspace. Here, in

the case of a single source, the signal subspace is spanned by

the first left singular vector in U , call it u1, and P = I−u1u
T
1

is the orthogonal projector on the noise subspace.

Next we can define a cost function with respect to the cor-

tical mesh vertices :

J(i) =
‖Pgi

σ‖
2

‖gi
σ‖

2
. (6)

When J(i) is close to zero, this corresponds to most of the
gain field gi

σ being in the signal subspace, in which case there

is a high likelihood for there to be a source located at vertex

i. In our case of a single dipole, the estimated source position

is given by the vertex where J achieves its minimum.

Finally, once we know this vertex and its gain field gσ , we

can compute the amplitude time series s of the dipole using

the simple relation s = 1

gT
σ

gσ

gT
σ M , which is the minimum of

‖gσs−M‖2 .

3.2. Definition of a cost function for conductivities

For a given conductivity distribution σ = (σ1, σ2, σ3), we are
able to find the most probable location of the dipole source
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within the set of cortical mesh vertices, and we know the cor-

responding gain field gσ and time series s. The value of the

cost function for this conductivity distribution is then simply

defined as

E(σ) = ‖gσs−M‖2 . (7)

This represents the error between the data and the fitted

model. The minimum of this cost function corresponds to

the parameters of the model (dipole location and conductivity

distribution) which give the best fit between simulated and

measured scalp potentials. This minimum can be found using

an iterative direct search algorithm such as the Nelder-Mead

method. At each iteration of the algorithm, a new MUSIC

dipole localization is performed.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

The data was recorded at Hopital la Timone (Marseille, France),

with a 64-channel EEG helmet. An electrical stimulator was

positioned on the subject’s wrist, and the intensity of the cur-

rent was chosen according to the sensitivity threshold of the

subject, i.e. when the stimulation produced movement of the

thumb (around 10 mA). The stimulation was repeated at a

frequency of 5 Hz while the potential was sampled at 5 kHz.

We then averaged the data over about 1000 artifact-free trials

to obtain somatosensory evoked potentials (SEP). Two runs

were performed, one for the left wrist and one for the right

wrist.

4.2. Head model and system assembly

A magnetic resonance image of the subject’s head was seg-

mented into four surfaces. The ABSOLUt software (Odyssée

laboratory, INRIA) was used for the scalp and the cortical sur-

face, and the Brainvisa MEG/EEG toolbox (CNRS UPR 640

- LENA) for inner and outer skull surfaces. The three meshes

needed for the BEM (scalp, inner and outer skull) were then

decimated using Yams (Gamma laboratory, INRIA) and the

final number of vertices per surface was 785 for the inner

skull, 842 for the outer skull and 870 for the scalp. For each

SEP, we kept only a part of the cortical surface. For instance

for the right hand, we kept a region in the left hemisphere

that largely included the primary sensory area. The original

refinement given by ABSOLUt used about 4000 vertices to

compose this cortical region. For a fixed conductivity distri-

bution, the EEG system matrix Aσ and the source term Bσ

were assembled, requiring approximately 10 and 20 minutes,

respectively, on a Pentium PC with 3.8 GHz CPU and 4 GB

of RAM. Updating these matrices for different σ is straight-

forward given (4) and (5), and so the assembly is performed

just once.

4.3. Simulations and robustness to noise

To test this method, we produced simulations of EEG data

which resemble SEP. We chose a dipole position near the cen-

tral sulcus, but not exactly on the segmented cortical surface,

to take into account the imprecision of the cortex segmenta-

tion, as well as the thickness of gray matter. The orientation of

the dipole was chosen to be roughly normal to the closest part

of cortical surface (figure 1.a). To simulate the short latency

response to median nerve stimulation, we took ten samples of

a sinusoid around one peak. This corresponds to what can be

recorded during 2 ms at a sampling rate of 5 kHz. We then

solved the forward problem for this source, for the following

dimensionless conductivity values : 1 for brain, 1

50
for skull,

1 for scalp 2. Finally we interpolated the values of the scalp
potential at 60 electrode positions, and added white Gaussian

noise with a SNR of 13 dB, which corresponds to the noise

level of evoked potentials.

For the sake of clarity, let us just consider variations of

skull conductivity. Without constraint on the source, the po-

sition of the estimated dipole using a dipole fit method varies

greatly over a range of physiologically relevant skull conduc-

tivity values. In figure 1.b, the estimated dipole location is

shown for three values of skull conductivity : 1

30
(yellow), 1

43

(orange) and 1

70
(red). The actual dipole is indicated in blue.

The depth of the estimated source positions is particularly af-

fected. A plot of the fit error E as a function of the inverse of

the skull conductivity value (figure 1.d) shows no clear mini-

mum. This is due to the fact that the dipole position has much

more weight on the fit error than the conductivity.

With cortical constraint, the dipole is always localized at

the same position for all skull conductivity values (figure 1.c,

note that the MUSIC map is the inverse of J). As a result,

the cost function E strongly depends on the conductivities.

The plot of E has a well-defined shape (figure 1.e). The min-

imum is achieved for a skull conductivity of about 1

43
, and

corresponds to a relative error of 15%. This demonstrates the

interest of the method : with the estimated skull conductiv-

ity value, the dipole fit method gives a good estimation (1.b,

orange point) of the actual position (1.b, blue point). The dis-

tance between the two is 2.8 mm.

4.4. Real data

In figures 2.a and 2.b, we show the normalized fit error E

as a function of the inverse of the skull conductivity value

(for brain and scalp conductivities fixed to 1), for both right

hand and left hand SEP. In both cases, the fit error has a well-

defined minimum. We obtained the following skull conduc-

tivity values when searching with the Nelder-Mead method

: 0.0112 for the right hand and 0.0123 for the left hand. The

relative difference between the two is 9%. These values are in

2Conductivity values are normalized with respect to brain conductivity,
which is then equal to 1.
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(a) Dipole position. (b) Dipole fits. (c) MUSIC map.

Normalized fit error with respect to the inverse of skull conductivity

30 35 40 45 50 55 60 65 70
0.200

0.202

0.204

0.206

0.208

0.210

0.212

0.214

0.216

0.218

0.220

0.222

(d) No cortical constraint.

Normalized fit error with respect to the inverse of skull conductivity

30 35 40 45 50 55 60 65 70
0.2265

0.2270

0.2275

0.2280

0.2285

0.2290

0.2295

0.2300

0.2305

0.2310

(e) Cortical constraint.

Fig. 1. Simulations.

Normalized fit error with respect to the inverse of skull conductivity

50 60 70 80 90 100 110 120
0.2125

0.2130

0.2135

0.2140

0.2145

0.2150

0.2155

0.2160

0.2165

(a) Right hand.

Normalized fit error with respect to the inverse of skull conductivity

50 60 70 80 90 100 110 120
0.3276

0.3278

0.3280

0.3282

0.3284

0.3286

0.3288

(b) Left hand. (c) Dipole positions.

Fig. 2. Real data from SEP experiment.

the same range as the results of other real experiments [3, 4, 5,

6], and the rather small difference between left and right hand

suggests that the results are indeed reproducible. Figure 2.c

shows the positions of the dipoles estimated by the method :

blue is for the right hand stimulus and red is for the left hand

stimulus.

5. CONCLUSION

We have presented a new approach for conductivity estima-

tion, using only an evoked source and EEG. We showed that

in the presence of noise, it is hard to estimate both one single

dipole and the conductivity distribution without adding con-

straints. We localized the source by scanning the vertices of

a cortical surface mesh, and used the MUSIC method to re-

duce sensitivity to noise. With this constraint, the variations

of the model-data fit error depends much more on conductiv-

ity values than on the dipole position, which makes conduc-

tivity estimation possible in presence of noise. On real data,

the results were consistent between right and left hand stimu-

lus, and were in agreement with previous literature.
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