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Abstract

Reliable segmentation of the left ventricle is a long
sought objective in medical imaging for automatic retrieval
of anatomical and pathological measurements and detec-
tion of malfunctions. In this paper, we propose a novel
model-constrained approach to address this task. The
method is based on an implicit representation of the shape
model used in a shape registration framework with a Thin
Plate Spline transform to retrieve possible deformations.
The main innovation of our approach resides in the use of
uncertainties defined on the registered shape to augment the
training set and improve the robustness of the statistical de-
formable model. We use ICA to reduce the dimensionality of
the space of deformations and provide a good separation of
the different deformable parts of the heart. Furthermore the
estimation of uncertainties is also introduced in the segmen-
tation process which is addressed in a variational frame-
work where prior knowledge and visual support are con-
sidered. The method lead to very promising qualitative and
quantitative experimental results in CT.

1. Introduction

Segmentation is one of the most critical problems in
medical image analysis. The extraction of volumetric and
geometric information about organs from images can be a
valuable tool in computer-aided diagnosis. In the literature,
both model-free and model-based methods have been con-
sidered.

Model-free methods do not make any prior assumptions
on the geometric or iconic properties of the structure of in-
terest. Therefore these algorithms aim to highlight homo-
geneity directly on the grey levels or through the use of fil-
ters capable of separating textures. Methods based on clus-
tering, snakes, and MRFs are the most prominent in this
direction.

Medical imaging is one area where domain knowl-

edge is available and can be considered to impose con-
straints and improve the solution obtained from images.
Deformable templates [10], shape-driven snakes, shape-
constrained level sets deformable contours, active shape and
appearance models [1] as well as models based on non-
parametric densities are the most prominent approaches to
knowledge-based segmentation of the left ventricle. These
methods make the explicit assumption that a training set is
available. Once a model (statistical representation of the
samples) has been built, the goal of segmentation is to re-
cover a solution that is both supported by the observed im-
age and present in the learned statistical model.

Model-based segmentation of the left ventricle of the
heart has been investigated quite well in the past. In [8]
a method that combines a shortest path algorithm and shape
matching is present. In [13] a more specific prior model was
considered in the space of level set functions. Deformable
surfaces as well as active shape and appearance models [12]
and their robust variants have proven to be quite efficient
prior models. An overview of a large set of statistical anal-
ysis methods applied to medical models was recently pre-
sented in [9].

The most important criticism of these methods is the fact
that model construction and segmentation are considered
separately. Recently, attempts were made to retain more in-
formation from every sample of the training set than a sheer
point of a high dimensional vector space. For instance by
adding locality information on the shape [11] or constrain-
ing deformations to legal displacements using m-reps [5].

In the context of this paper, we aim to address this fun-
damental limitation of existing methods in a different and
computationally efficient manner. To this end, a prior defor-
mation model using Thin Plate Splines (TPS) is constructed
that consists of a set of control points attached to a distance
function. The main innovation of the method refers to the
estimation of registration uncertainties that are propagated
to the model construction process. Then, an Independent
Component Analysis (ICA) is used to capture the variations
in the training set where the registration uncertainties are



explicitly transmitted to the statistical model. Segmentation
is then performed using a multi-phase propagation with cost
terms attached to the TPS implicit representation. Uncer-
tainties are also computed during the segmentation to assess
the quality of the results.

The remainder of the paper is organized as follows. In
section 2 we discuss registration with uncertainties and
TPS, while in section 3 we propose a modified ICA that
encodes registration uncertainties. Section 4 is dedicated
to the segmentation. Experimental results are discussed in
Section 5. Conclusions are given in Section 6.

2. Shape Registration through Thin Plate
Spline Transformation

Smoothness and topology preservation are desirable
properties in registration. Our model fulfills both by ap-
plying TPS deformations whose partial derivatives are all
continuous.

In the present framework, a 3D shape S representing the
left ventricle myocardium is embedded in a higher dimen-
sional space through the use of Euclidean distance trans-
form.The distance transform of the shape S is denoted φS ,
it is assumed negative inside (muscle) and positive outside
(blood pool and external parts) (Fig. 1).

Figure 1. The average shape model of the left ventricle with its 90
control points and signed distance function. Used as a reference
for registration and segmentation.

Such a space is invariant to translation T and rotation R
and can also be modified to account for scale variations s:

S2 = (s.R + T ) ◦ S1 ⇒ s.φS1 = φS2 ◦ (s.R + T ). (1)

In the most general case an explicit relation between the
distance function of the source and the target does not exist.

Now consider a smooth diffeomorphism L defined on
the domain Ω and depending upon a vector of parameters

Θ ∈ Rn. Standard point-based registration consists of find-
ing L applied to the source shape S which minimizes the in-
tegral defined on S of some metric error between the trans-
formed source and the target T . In order to prevent the min-
imization process of such energy to fall into local minima,
one can extend registration within a band including numer-
ous isosurfaces of the source distance transform. Therefore,
a robust quadratic registration energy is proposed:

Eα(L(Θ)) =
∫

Ω

1α(φS(x)) (φS(x)− φT (L(Θ,x)))2 dx

(2)
where 1α is the indicator function of the segment

[−α/2, α/2]. This approach is a generalisation of [6] where
the registration energy was defined considering the entire
domain Ω.

This energy is minimized through the calculus of varia-
tions. Within such a process the selection of the parameter
α is crucial, since to some extent, it refers to the scale of
the shapes to be registered. Therefore minimization is per-
formed for a decreasing set of α values while the number of
degrees of freedom of the transformation L also increases.
The considered transformations do not preserve the distance
transform constraint, therefore a correction process is ap-
plied to the source implicit representation when refining the
narrow band [15].

The objective function (2) is used to address global reg-
istration as well as local deformations.

When designing a shape model it is desirable to separate
global motion from deformation and therefore build a sta-
tistical model invariant under a certain class of global trans-
formations [14]. Within our approach, shapes are initially
registered with respect to a similarity transformation to es-
timate motion.

We use a Thin Plate Spline (TPS) transformation [2] to
address local deformations using an increasing set of con-
trol points. Consider N control points Θ = {Pi}N

i=1 lo-
cated on the surface of the source shape S. TPS is defined
as the transformation L minimizing the bending energy un-
der hard constraints on the displacement of control points.
The bending energy is the Froebenius norm of the Hessian
matrix of the transformation:

Ef =
∫

Ω

‖HL(x)‖2F dx, under constraintL(Pi) = P ′
i ,

where ‖HL(x)‖2F = tr(HL(x)HL(x)T ),
(3)

where HL(x) is the Hessian matrix of L(Θ,x) and P ′
i is

the new position of the control point Pi.
The minimum of this functional verifies the biharmonic

equation and the solution may be written with the form

x′ = L(x, A, T, Vi) = A.x+T +
N∑

i=1

ViU(‖Pi−x‖), (4)



where A.x + T represent the affine part of the transfor-
mation and the set of vectors {Vi}n

i=1 the weights of the
non affine warping. U(r) is a radial basis function, so-
lution of the biharmonic equation, that is in 3 dimensions
U(r) = −|r|.

The parameters of the transformation (V,A, T ), can be
expressed as a linear combination of the displacement of the
control points. Therefore in the next section we will refer to
the transformation with the formula:

L(Θ,x) = x + X (x).Θ, (5)

with X (x) a (3× 3N) matrix.
All computations in the article make use of discrete sets

of points, therefore all non linear computations representing
the matrix X (x) are performed at initialization and subse-
quent transformations of the sets of points are computed in
linear time.

To prevent non invertible transformations to appear dur-
ing the minimization process, a regularisation term with de-
creasing influence was added according to [2]. This addi-
tional term is actually the bending energy defining the TPS,
this term is smoothing out the local part of transformation
and can be expressed directly as a quadratic form on the
position of the control points.

2.1. Similarity-Invariant TPS

The registration process separates the global transforma-
tion from the deformations in the sense that the initially esti-
mated similarity transformation is subtracted from the target
mesh. However the subsequently estimated TPS transform
also contains an affine transform. We use the general form
of the TPS to extract and remove the remaining similarity
closest to this affine. We choose constrain the global trans-
formation to a similarity rather than an affine to prevent the
shape from anisotropic scaling and shearing.

The extraction of the similarity can be implemented by
determining the projection of the affine part of the TPS (eq.
4) in the manifold of similarity transformations.

This projection is obtained by extracting the affine part
A of the TPS and minimizing the Froebenius norm ‖A −
sR‖F with respect to a rotation R and a scaling factor s.
This minimization problem has a closed form solution [3].
Consider the SVD decomposition of the affine matrix A =
V.D.WT , the closest similarity is:

S = s.R with R = V.WT and s = trace(D)/3 (6)

In order to obtain an efficient approximation of the simi-
larity transform, it is is necessary to locate the center of
rotation at the center point of the initial shape. Finally this
transformation is subtracted from both the target shape and
the current transformation to preserve the similarity invari-
ant warp of shapes.

Figure 2. Left side: Registration of the shape model to segmented
data extracted from CT volumes. Right side: Registration obtained
from MRI data with missing apex and valves. Registration results
are obtained with 90 TPS control points located on both endo-
cardium and epicardium. Left: View of the epicardium; Right:
Clipped view showing the endocardium. (Colormap errors mea-
sures are expressed in mm).

The output of the process is a deformation field that su-
perposes the deformed source shape and the target shape
(see Fig. 2). In order to assess the quality of the solution
and how its support varies spatially, we can determine some
measures of uncertainties which relate the obtained solution
with the observable data support.

2.2. Uncertainty estimation on registered shapes

We aim to recover uncertainties on the vector Θ in the
form of a [3N × 3N ] covariance matrix by adapting a
method initially introduced in [15] to 3D with thin plate
spline. This approach is based on an approximation of the
Hessian of the registration energy (2) when reaching a local
minimum. These uncertainties should only account for the
local variability of the shape, so that we only consider the
registration energy in a very thin narrow band, surrounding
the model shape. We use the first order approximation of
the energy in the same way as the Gauss Newton method
applied to quadratic energies.

One notices that localizing the global minimum of the
objective function E is equivalent to finding the major mode
of a random variable with density exp(−E/β). The coef-



ficient β corresponds to the allowable variation in the en-
ergy value around the minimum. In the present case of a
quadratic energy, the covariance and the Hessian of the en-
ergy are directly related by Σ−1

Θ = HΘ/β. The choice of
TPS transformation ensures the Hessian matrix to be invert-
ible. This leads to the following expression for the covari-
ance :

Σ−1
Θ =

1
β

∮
∂S
X (x)T .∇φT (x′).∇φ(x′)T .X (x)dx (7)

where x′ = L(Θ,x) represents the position of a trans-
formed point. Fig. 3 shows a projection of the uncertainties
on two training shapes.

An important use for the uncertainty is to overcome the
limited size of the training set available on myocardial data:
these are used to generate new samples and will be devel-
oped the Section 3.

Figure 3. Projection of the uncertainty covariance matrix ΣΘ on
the TPS control points. Uncertainty is represented as a set of ellip-
soids which do not account for correlation between control points.
Left: CT registration; Right: MRI registration showing very large
uncertainties in areas with missing data.

2.3. Building the Training Set

In the following we consider the source shape represent-
ing the left ventricle S as a unique model used for both the
registration and segmentation process. In order to perform
high quality registration and efficient dimensionality reduc-
tion, it is desirable for S to be smooth and represent an ”av-
erage shape” in the space of deformations [1].

We dispose of a training set of N semi-automatically
segmented ventricles without prior using a graph-based al-
gorithm [4]. Our training set is also composed of manu-
ally segmented samples acquired from MRI. All the MRI
datasets were missing slices at the valves and the apex, thus
resulting in incomplete training sets. One can see from Fig.
(2,3) that the areas where data is absent show high uncer-
tainty on the control points. Similarity invariant registra-
tion with computation of uncertainty was performed on both

training sets. In order to estimate the average deformation
Θ̄ over the whole training set, we use the Mahalanobis dis-
tance with the estimated uncertainty for each sample:

Θ̄ = arg min
Θ

(
∑

i

(Θ−Θi)T Σ−1
Θi(Θ−Θi)) (8)

3. Dimension reduction using ICA
Conventional techniques of shape modeling assume a

reference average shape (M) and then build statistical den-
sities on the space of deformations [1] between the refer-
ence shape and the training examples.

Independent component analysis (ICA) is a statisti-
cal/computational technique that can determine the statisti-
cal nature for sets of random variables, measurements, or
signals. This technique proposes a linear decomposition
of a multidimensional model, just as Principal Component
Analysis (that computes directions of largest variance) and
Factor Analysis (that explain a statistical measurements as
a linear combination of a certain number of factors).

ICA relies on a different model. Like PCA, it requires
multidimensional random variables, but retrieves indepen-
dent directions. This means that the projections of the ob-
served data along these directions are independent scalar
random variables [7]. On the other hand factor analysis uses
a set of candidate factors to retrieve the weights that gener-
ate the one dimensional observed data, while ICA directly
uses multivariate data to estimate both the factor and the
weights.

In brief ICA relies on a generative model that assumes
that the data can be generated as a linear combination of
random variables. These latent variables are assumed non-
Gaussian and mutually independent, they are called the ’in-
dependent components’ of the observed data. Regarding
our application to modeling of shape deformations, this
means that any sample shape can be explained as a lin-
ear combination of specific independent deformations. The
simplest proof of independence is found in the fact that it
affects different parts of the shape under study:

Θ = A.s, (9)

where Θ is the observed data vector, s a m-dimensional
random vector with independent components, and A a con-
stant mixing matrix. Several approaches were developed to
robustly compute statistical independence of random vari-
ables and estimate the values of the de-mixing matrix for a
fixed number of independent components:

s = W.Θ = A+.Θ. (10)

ICA was previously used in shape modeling [16] where the
authors proposed a method to order and select the ”most rel-
evant” independent components. Their method represents



shapes using the point distribution models in a very high di-
mensional space. Our representation of deformations is in
much lower dimensional space. Thus, our application does
not require classification of independent components, we
therefore directly compute m components using the Fast-
ICA algorithm. The components of s being independent,
their distributions can be expressed as the product of 1-
dimensional random variables densities:

p(s) = Πm
i=1pi(si) (11)

where a Gaussian mixture model is fitted with EM algo-
rithm to estimate the actual density of each components :

pi(si) =
Mi∑
j=1

αj .N (µi,j − si, σi,j). (12)

In practice, the choice Mi = 2 is sufficient to enclose the
variability of the training set. Fig. 4 shows the training
samples projected on the first 3 components. This method
can produce a compact statistical model given a training set
where all samples are brought to the same pose. However,
it does not account for the uncertainties determined during
the registration process. In order to include the registra-
tion uncertainties in the model building, we generate addi-
tional data prior to ICA. Our approach consists of sampling
each measurement on the training set using the normal law
centered on the registration results with uncertainty being
the covariance matrix N (Θi,ΣΘi

). For each example the
same number of samples is drawn using the correspond-
ing densities. Such a process will lead to an augmentation
of the training set where samples of low uncertainty will
have more influence on the model to be recovered. On the
other hand, for registration results showing high values of
the covariance matrix determinant, the drawn samples will
be dispersed and therefore will have limited influence in the
model construction. The augmented set of variables can
now be used within the Independent Component Analysis
framework to produce a multi-component density of defor-
mations.

Figure 4. Density plot of independent components s = W.Θ,
independence and gaussian mixture estimation of components ap-
pears relevant.

4. Shape Inference from Images
Computer-aided diagnosis is a growing application do-

main of medical image analysis. Segmentation of cardiac
structures is used to assist physicians in various stages of
treatment of cardiovascular diseases. In particular, mea-
suring the blood volume, wall motion and wall thicken-
ing properties of the left ventricle (LV) is of great impor-
tance because the LV pumps oxygenated blood out to dis-
tant tissue in the entire body and malfunction leads to severe
pathology. Automatic detection, segmentation, and tracking
of the LV are powerful tools to assist physicians in calculat-
ing these measurements efficiently.

4.1. Segmentation of the Left Ventricle

Figure 5. Left: the rough segmentation of the left ventricle, simply
using the endocardium and minimized with respect to a similarity
transform. Right: the histograms of the greylevels of different
areas of the myocardium.

Let I represent a 3D CT-scan of the heart. We take ad-
vantage of the Hounsfield units and the characteristic gray
values of the blood and muscle to propose a region based
segmentation strategy [8]. It is natural to separate the seg-
mentation into 4 classes: Blood Pool (BP), Myocardium
(MC), Lung (L) and Right Ventricle (RV). The first three
classes have a single monochromatic component (see Fig.
5) while the right ventricle actually shows a more com-
plex mixture. We assume that the visual properties of these
classes were learned from training samples and are known
{πBP(), πMC(), πL()andπRV()}. Then segmentation of the
ventricle is equivalent to the minimization of the following
energy with respect to the parameters Θ under the assump-
tion that pixels of the same class are statistically indepen-



dent, that is often considered in computer vision and medi-
cal imaging:

Eimage(Θ) =
∑

Ωi={BP,MC,L,RV}

∫
RΩi

−LΩi(L(Θ,x))dx

(13)

where LΩi refers to the log likelihood of a pixel inten-
sity (LΩi() = log [πΩi

(I())]). Direct calculus of varia-
tions with respect to Θ involves image gradient, deriva-
tion of densities (πBP, πMC, πL, πRV), and often con-
verges to erroneous solutions. In our case, we change
the integration domain to the image by implicitly intro-
ducing the inverse transformation as was introduced in
[15]. In the case of the heart, the 4 phase segmentation
takes the form of 3 integrals on the interfaces: the endo-
cardium [Blood Pool/Myocardium] and epicardium [My-
ocardium/Right Ventricle] and [Myocardium/Lung], as the
other interfaces are not relevant or do not exist.

dEimage(Θ)
dΘ

=∑
i,j

−
∫

∂CΩi/Ωj

LΩi/Ωj(L(Θ,x))∇φS′(x′)T ∂L
∂ΘT

(Θ,x)dx

(14)

with LΩi/Ωj = LΩi − LΩj being the difference of the
log likelihood of two regions sharing an interface. In
this equation, we use the following interfaces defined with
(Ωi,Ωj) = {(BP,MC), (RV,MC), (L,MC)}. ∇φS′(x′)
is the gradient of the transformed shape, evaluated at the
transformed position x′ = L(Θ,x). In practice, this can be
explicitly computed as a function of the initial source shape
gradient and the transformation:

∇φS′(x′) = com
(

∂L
∂xT

(x,Θ)
)

.∇φS(x), (15)

where φS is the signed distance transform of the original
left ventricle, negative on the muscle (see Fig. 1), and[
com

(
∂L

∂xT (Θ,x)
)]

denotes the matrix of cofactors of the
Jacobian of the transformation.

We use standard estimates from the training set for the
densities πBP, πMC, πL, πRV. Initially, a rough segmenta-
tion is performed by aligning the model with respect to a
similarity transform and considering only the myocardium
and blood pool regions, taking advantage of the high con-
trast between blood and muscle. Subsequently the 4 class
segmentation is used to adjust the position of the epi-
cardium. The gray level distributions of the 4 classes are re-
covered in an incremental fashion using the Mumford-Shah
principle.

The shape based energy term is defined on the entire
space of deformation and makes use of the prior density

function (eq. 11). However, recall that only the local de-
formation component of the transformation was learned, so
we need to remove the similarity part of the transforma-
tion from the current estimate of Θ before projecting onto
the space of independent components. The current simi-
larity carried by the TPS is extracted using the same ap-
proach as presented in subsection (2.1). The inverse of this
transformation is subsequently applied to the control points
to remove the pose parameters associated with the current
segmentation and lead to the similarity invariant parameter
vector Θ′.

The shape prior energy term is equivalent to the maxi-
mization of the log likelihood of the current vector of pa-
rameter Θ.

Eshape(Θ) = −
m∑

i=1

log(pi([W.Θ′]i)), (16)

where W.Θ′ refers to the projection of the current shape
on the independent components. pi refers to the density es-
timated in (eq. 11) and (eq. 12) for the ith ICA component.

The global energy is minimized with respect to the
parameters Θ through the calculus of variations on the
blended objective function E = Eimage + αEshape and im-
plemented using standard gradient descent. This process is
demonstrated in Fig. (6,5) with the initial, intermediate and
final stages.

4.2. Segmentation Uncertainties

Medical imaging is an area where errors could be critical.
Furthermore, computer-aided diagnosis should not aim at
replacing humans but should be a tool that helps the physi-
cians to make more appropriate decisions. Therefore meth-
ods being able to determine the quality of the obtained so-
lution are required. As stated earlier, this can be done using
the uncertainties of the process that relate the Hessian ma-
trix of the objective function to the variance of the distribu-
tion describing the space of solutions.

To validate the segmentation results in a quantitative
manner we propose to estimate uncertainties on the defor-
mation, expressed on the position of TPS control points.
These uncertainties are actually based on the structure ma-
trix of the image near the shape boundary and projected on
the vectors of parameters Θ. In practice, these uncertain-
ties are expressed in the same fashion as (eq. 7) where
the local shape information part [∇φT (x′).∇φT (x′)T ] is
replaced with the following symmetric matrices:

Σ+
i =

‖ai‖
‖bi‖

.bi.bT
i +

‖bi‖
‖ai‖

.ai.aT
i

with
{

ai = ∇(LΩi/Ωj
(yi))

bi = ∇(φS′(yi))

(17)

where integration is performed along the interfaces con-
sidered for segmentation. This quantity represents a fair



Figure 6. Results of the segmentation process. Left: Segmentation of the myocardium displaying the distance to the groundtruth along
with a colormap considering four different sample cases outside of the learning database. All results are displayed for a TPS deformation
using the ICA shape model with 90 control points. Middle column: The intersection of the segmentation with the data, papillary muscles
are correctly segmented. Right: Distribution of errors displayed as histograms. All numerical values are expressed in millimeters.

approximation of the Hessian of the image energy term (eq.
13) where∇φS′(x′) contributes to the uncertainty along the
shape surface and ∇(LΩi/Ωj(x

′)) represents the quality of
region separation on the interface (edge information). If the
direction of these two vectors match exactly, then the un-
certainty is concentrated in the contour direction. If these
directions differ, uncertainties are also present in the direc-
tion normal to the contour. This contribution is integrated
along the segmented interface and projected on the param-
eter space (eq. 7) to define the segmentation uncertainty
information.

5. Results

In order to validate our approach, we have used seg-
mented CT and MRI volumes. This set includes both
healthy and pathological hearts. The model was constructed
using a set of 25 diastolic CT samples which were semi-

automatically segmented using the method presented in [4]
and 18 diastolic MRI samples which were manually seg-
mented. Large errors were induced in the training set (erro-
neous samples) which aimed to demonstrate the importance
of uncertainties estimation and propagation to the model
construction (Fig. 3). Our thin plate spline model con-
tains 90 control points, located on the endocardium and epi-
cardium. Using the uncertainty estimate on the registration,
we generate 300 random samples for each registration, for a
total of 12900 shapes for the entire training set. Then using
the FastICA algorithm, we extract 15 independents com-
ponents. Each component distribution is modeled using a
mixture of 2 Gaussians with an Expectation-Maximization
algorithm.

Energy and gradients are computed using discrete points
sets. Therefore the integral in (eq. 14) is discretized us-
ing a narrow band surrounding the ventricle surface. This
improves stability and favors convergence of the gradient



descent.
Subsequently, segmentation is performed in 3 succes-

sive steps using gradient descent on the global energy E =
Eimage + αEshape. First, image based (α = 0) affine seg-
mentation of the endocardium, then image based segmenta-
tion of the entire left ventricle with 60 control points, then
segmentation with prior of the entire ventricle with 90 con-
trol points. Fig. 6 shows that we obtain very promising re-
sults with this method. For the first 3 examples, the average
error is around 1.5 mm and the maximum error is less than
5mm. The errors are larger for the last example because
this patient has a thick layer of fat around the heart and the
method mistakenly combines the fat with the myocardium.
In the future we are planning to breaden the lung class with
a fat class.

6. Conclusion

In this paper we have proposed a novel method of image
segmentation. The method exploits recent results on shape
registration with uncertainties to build a compact statisti-
cal model. In these problems, a quantitative and qualitative
solution is obtained where the final output encodes the spa-
tially varying support of geometric (surface) and photomet-
ric features (image).

Improving the modeling as well as the inference aspect
of our approach involves a number of potential future direc-
tions. Future work will make the shape learning framework
available in the coarse to fine approach used for the TPS
transformation, that means also learning deformation for
lower degrees of freedom in the TPS transformation. The
algorithm does not suffer from any limitation regarding the
number of classes to be segmented, the next step will be to
amend the model including right ventricle atria and aorta.
Furthermore, the introduction of more advanced photomet-
ric properties, like texture recognition, could also improve
the segmentation method.
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