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Abstract. In the context of shape and image modeling by manifold learning,
we focus on the problem of denoising. A set of shapes or images being known
through given samples, we capture its structure thanks to the Diffusion Maps
method. Denoising a new element classically boils down to the key-problem of
pre-image determination, i.e.recovering a point, given its embedding. We pro-
pose to model the underlying manifold as the set of Karcher means of close sam-
ple points. This non-linear interpolation is particularly well-adapted to the case
of shapes and images. We define the pre-image as such an interpolation having
the targeted embedding. Results on synthetic 2D shapes and on real 2D images
and 3D shapes are presented and demonstrate the superiority of our pre-image
method compared to several state-of-the-art techniques in shape and image de-
noising based on statistical learning techniques.

1 Introduction

Manifold learning, the process of extracting the meaningful structure and correct geo-
metric description present in a set of training points Γ = {s1 · · · sp} ⊂ §, has seen re-
newed interest over the past years. These techniques are closely related to the notion of
dimensionality reduction, i.e.the process of recovering the underlying low dimensional
structure of a manifold M that is embedded in a higher-dimensional space §. Among
the most recent and popular techniques are the Locally Linear Embedding (LLE) [5],
Isomap [6], Laplacian eigenmaps [7] and Diffusion Maps [8,9,10]. In this paper we fo-
cus on Diffusion Maps. Their nonlinearity, as well as their locality-preserving property
and stable behavior under noise are generally viewed as a major advantage over clas-
sical methods like principal component analysis (PCA) and classical multidimensional
scaling [8]. This method considers an adjacency graph on the set Γ of training samples,
which matrix (Wi,j)i,j∈1,...,p captures the local geometry of Γ - its local connectivity
- through the use of a kernel function w. Wi,j = w(si, sj) measures the strength of
the edge between si and sj . Typically w(si, sj) is a decreasing function of the distance
d§(si, sj) between the training points si and sj . In this work, we use the Gaussian ker-
nelw(si, sj) = exp (−d2

§(si, sj)/2σ
2), with σ estimated as the median of the distances

between all the training points [2, 10].
The kernel function has the property to implicitly map data points into a high-

dimensional space, called the feature space. This space is better suited for the study
of non-linear data. Computing the Diffusion Maps amounts to embed the data into the
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feature space through a mapping Ψ . While the mapping from input space to feature
space is of primary importance , the reverse mapping from feature space back to input
space (the pre-image problem) is also useful. Consider for example the use of kernel
PCA for pattern denoising. Given some noisy patterns, kernel PCA first applies linear
PCA on the -mapped patterns in the feature space, and then performs denoising by pro-
jecting them onto the subspace defined by the leading eigenvectors. These projections,
however, are still in the feature space and have to be mapped back to the input space in
order to recover the denoised patterns.

1.1 Related Work

Statistical methods for shape processing are very common in computer vision. A sem-
inal work in this direction was published by Leventon et. al. [11] adding statistical
knowledge into energy based segmentation methods. Their method captures the main
modes of variation by performing a PCA on the set of shapes. This was extended to non-
linear statistics by Cremers et al. in [12]. The authors introduce non linear shape priors
by using a probabilistic version of Kernel PCA (KPCA). Dambreville et.al [1] and Arias
et al. [2] developed a method for shape denoising based on Kernel PCA. So did Kwok
et al. [3] in the context of image denoising. Both methods compute a projection of the
noisy datum onto a low dimensional space. In [13,4] the authors propose another kernel
method for data denoising, the so called Laplacian Eigenmaps Latent Variable Model
(LELVM), a probabilistic method. This model provides a dimensionality reduction and
reconstruction mapping based on linear combinations of input samples. LELVM per-
forms well on motion capture data but fails on complex shapes (see Fig. 1). Further we
would like to mention the work of Pennec [14] and Fletcher [15] modeling the man-
ifold of shapes as a Riemannian manifold and the mean of such shapes as a Karcher
mean [16]. Their methodology is used in the context of computational anatomy to solve
the average template matching problem. Closer to our work is the algorithm proposed
by Etyngier et. al. [17]. They use Diffusion Maps as a statistical framework for non lin-
ear shape priors in segmentation. They augment an energy functional by a shape prior
term. Contrary to us, they do not compute a denoised shape but propose an additional
force toward a rough estimate of it.

Fig. 1. Digit images corrupted by additive Gaussian noise (from left to right, σ2 =
0.25, 0.45, 0.65, 0.85). The different rows respectively represent, from top to bottom: the original
digits; the corrupted digits; denoising with [1]; with [1]+ [2]; with [3]; with [3]+ [2]; with [4];
with our Karcher means based method. See table 2 for quantified results.
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1.2 Our Contributions

In this paper, we propose a new method to solve the pre-image (see Section 3) problem
in the context of Diffusion Maps for shape and image denoising. We suggest a manifold
interpretation and learn the intrinsic structure of a given training set. Our method relies
on a geometric interpretation of the problem which naturally leads the definition of the
pre-image as a Karcher-mean [16] that interpolates between neighboring samples ac-
cording to the diffusion distance. Previous pre-image methods were designed for Kernel
PCA. Our motivation for using Diffusion Maps comes from the fact that the computed
mapping captures the intrinsic geometry of the underlying manifold independently of
the sampling. Therefore, the resulting Nyström extension (see Section 2.2) proves to be
more “meaningful” far from the manifold and leads to quantitatively better pre-image
estimations, even for very noisy input data. In the case of shape denoising, we compare
our results to the work proposed by Dambreville [1] and for image denoising, to several
denoising algorithms using Kernel PCA: [3], [2], [4]. Results on 3D shapes and 2D
images are presented and demonstrate the superiority of our method.

The rest of the paper is organized as follows. Section 2 presents the Diffusion Maps
framework and the out-of-sample extension. Section 3 introduces our pre-image
methodology. Numerical experiments on real data are reported in section 4 and
section 5 concludes.

2 Learning a Set of Shapes

Let Γ = {s1 · · · sp} be p independent random points of a m-dimensional manifold M
locally sampled under some density qM(s) (m << p). The manifold M is assumed
to be a smooth finite-dimensional sub-manifold embedded in a (potentially infinite-
dimensional) space S. The density qM(s) is unknown and might not be uniform. In this
work, we consider more general spaces than the traditional Euclidean space R

n and
only assume that the input space S is equipped with a distance dS.

2.1 Diffusion Maps

To extract the meaningful structure present in the training set Γ , classical manifold
learning techniques minimize a quadratic distortion measure of the desired coordinates
on the data, naturally leading to the eigenfunctions of Laplace-type operators as mini-
mizers [8, 9]. Unfortunately, most unsupervised learning methods generate coordinates
(the embedding) that combine the information of both the density qM and the geome-
try [9, 10, 18]. Diffusion Maps construct a discrete density-independent approximation
of the Laplace-Beltrami operator ΔM defined on M and provide an embedding that
captures the intrinsic geometry independently of the sampling density. We quickly re-
view the construction of Diffusion Maps [8]. In a first step, we build a fully connected
graph on the set Γ where each node correponds to a sample ∈ Γ . Based on the distance
(dS) between samples, nodes are connected if their mutal distance is less or equal to σ,
with σ being the median distance between all shapes. In order to build the normalized
Laplacian matrix we use the diffusion kernel w(., .)

Pi,j = p(si, sj) =
w(si, sj)
g(si)

. (1)
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The diffusion kernel w(si, sj) encodes the probability of transition between si and sj
and g(si) normalizes the quantity in (1) such that

∑
j p(si, sj) = 1. Therefore, the

quantity p(si, sj) can be seen as the probability of a random walker to jump from si to
sj and P encodes a Markov Chain on Γ . The function g(si) measures the number of
incident edges to the node corresponding to the shape si. If we introduce a time t and
denote pt the elements of P t (the tth power of P ), then pt(si, sj) corresponds to the
probability of transition after t time steps. When t → ∞ the random walk converges
to a unique stationary distribution ϕ0. We have ϕT0 P = ϕT0 . Using a well known fact
from spectral theory, Coifman [8] introduces the following eigen-decomposition of the
kernel pt :

pt(si, sj) =
∑

l

λtlψ
t
l (si)ϕ

t
l(sj), (2)

where {λtl} is the decreasing eigenspectrum of P t and {ϕtl(sj)} respectively {ψtl (si)}
the corresponding biorthogonal left and right eigenvectors. They verify

ϕ0(x)ψl(x) = ϕl(x). (3)

Note that because of the fast decaying sequence of eigenvalues only a few terms need
to be retained to approximate the probability pt(., .) within a certain relative accuracy.
Then the diffusion distance Dt(si, sj) between two points si and sj can be written as

D2
t (si, sj) =

∑

l

(pt(si, sl) − pt(sj , sl))2

ϕ0(sl)
. (4)

This simple L2-weighted distance between the two conditional probabilities pt(si, .),
pt(sj , .) defines a metric on the data that measures the amount of connectivity of the
points si and sj along paths of length t. In order to relate the diffusion distance we have
to combine (2) and (4) and find with the biorthogonality relation between left and right
eigenvectors(cf. [10]) that

D2
t (si, sj) =

∑

l≥1

(λtlψ
t
l (si) − λtlψ

t
l (sj))

2. (5)

(since ψ0 is a constant vector, it is left out of the sum). Equation (5) shows that the
right eigenvectors of Pt can be used to express the diffusion distance. To this end, we
introduce the family of Diffusion Maps indexed by a time parameter t

Ψt(s) =

⎛

⎜
⎝

λt0ψ
t
0(s)

λt1ψ
t
1(s)
...

⎞

⎟
⎠

In the sequel we will omit the parameter t and assume it set to a fixed value [10]. From
Equation (5), we can see that Diffusion aps generate a quasi-isometric mapping since
the diffusion distance is approximately equal to the L2 metric in the new coordinate
system when retaining the first m eigenvectors. Also note that methods like LLE or
Laplacian Eigenmaps do not provide an explicit metric which is crucial for the contri-
bution in this paper.
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2.2 Out-of-Sample Extension

In general, the mapping Ψ , also referred to as an embedding, is only known over the
training set. The extension of the mapping to new input points is of primary impor-
tance for kernel based methods whose success depend crucially on the “accuracy” of
the extension. This problem, referred to as the out-of-sample problem, is often solved
using the popular Nyström extension method [2, 19, 18]. Instead of recomputing the
whole embedding, which can be costly for very large datasets because it involves a
spectral decomposition, the problem is solved through a method borrowed from nu-
merical analysis [20]. With this technique in hand and considering that every training
sample verifies:

∀sj ∈ Γ ∀l ∈ 1, . . . , p
∑

si∈Γ
p(sj , si)ψl(y) = λlψl(si),

the embedding of new data points located outside the set Γ can similarly be computed
by a smooth extension Ψ̂ of Ψ :

Ψ̂ :

⎧
⎨

⎩

S → R
p, s �→ (ψ̂1(s), . . . , ψ̂p(s))

∀l ∈ 1, ..., p ψ̂l(s) = λl
∑

y∈Γ
p(s, y)ψl(y). (6)

It is obvious that the extension depends on the data and recomputing the whole em-
bedding with the new datum would yield a different embedding. But in general the
approximation works well and is used throughout the literature. In addition, the reverse
mapping from the feature space back to the input space is often required. After opera-
tions are performed in feature space (these operations necessitate the extension of the
mapping), corresponding data points in input space often needs to be estimated. This
problem, known as the pre-image problem, is the problem to be addressed in this paper.
We now tackle the problem of pre-image computation using Diffusion Maps.

3 Pre-image as Karcher Means

We push the manifold interpretation and define the pre-image of φ ∈ R
p as the point

s = Ψ−1
|M(φ) in the manifold M such that Ψ(s) = φ. Although Diffusion Maps extract

the global geometry of the training set and define a robust notion of proximity, they
cannot permit the estimation of the manifold between training samples, i.e. the local ge-
ometry of the manifold is not provided. Following [21], we propose to approximate the
manifold as the set of Karcher means [16] interpolating between correctly chosen sub-
sets ofm+ 1 sample points,m being the fixed dimension reduction parameter. Usually
it is chosen by observing the eigenvalues of the eigenvectors. As mentioned in Section
2.1 only a few eigenvectors are needed to approximate well the diffusion distance. And
the parameterm is exactly the number of eigenvectors retained. From a dimensionality
reduction point of view this parameter corresponds to the degree of freedom in the data
set but which cannot be computed automatically and therefore must be guessed. In [21],
these subsets are the Delaunay simplices of a m-dimensional Delaunay triangulation of
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the sample points. This limits in practice m to small values. Here, we simply exploit
the Euclidean nature of the feature space: for a given φ, we choose the interpolating
subset as its m+ 1 nearest neighbors with respect to the diffusion distance D. We then
define the pre-image s = Ψ−1

|M(φ) as a Karcher mean that minimizes the mean-squared
criterion:

s = arg min
z∈S

‖Ψ(z) − φ‖2 (7)

3.1 Shape Interpolation Using Karcher Means

Given a set of neighboring points N = {s1, · · · , sm+1} (i.e.neighboring for the diffu-
sion distanceD), we assume that the manifold M can be locally described (i.e.between
neighboring samples) by a set of weighted-mean samples {sΘ} that verifies:

sΘ = arg min
z∈S

∑

1≤i≤m+1

θidS(z, si)2, (8)

where dS is the distance in the input space and
(
θi ≥ 0,

∑m+1
i=1 θi = 1

)
. The coeffi-

cientsΘ = {θ1, . . . , θm+1} are the barycentric coefficients of the point sΘ with respect
to its neighbors N in S. Proposed by Charpiat el al. [22], this model proved to give
natural shape interpolations, compared to linear approximations. One classical choice
is the area of the symmetric difference between the regions bounded by the two shapes:

dSD(s1, s2) =
1
2

∫

|χΩ1 − χΩ2 | , (9)

where χΩi is the characteristic function of the interior of shape si. This distance was
recently advocated by Solem in [23] to build geodesic paths between shapes. But the
drawback is that this distance yields no unique geodesics. We proved this behavior an-
alytically in the context of our method. But in the simulations we did not encounter
any problems with the symmetric distance function. Another definition has been pro-
posed [11, 24, 22], based on the representation of a curve in the plane, of a surface in
3D space, by its signed distance function. In this context, the distance between two
shapes can be defined as the L2-norm or the Sobolev W 1,2-norm of the difference be-
tween their signed distance functions. Let us recall that W 1,2(Ω) is the space of square
integrable functions over Ω with square integrable derivatives:

dL2(s1, s2)2 = ||Ds1 − Ds2 ||2L2(Ω,R) , (10)

dW 1,2 (s1, s2)2 = ||Ds1 − Ds2 ||2L2(Ω,R) + ||∇Ds1 −∇Ds2 ||2L2(Ω,Rn) , (11)

where Dsi denotes the signed distance function of shape si (i = 1, 2), and ∇Dsi its
gradient.

3.2 Pre-image and Manifold Interpolation

We propose to define the pre-image of a target point φ in the feature space, as the point
sΘ that minimizes the energyEΨ (sΘ) = ‖Ψ(sΘ)−φ‖2, sΘ being expressed a Karcher
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mean for the neighborhood N made of the m + 1 samples of Γ which embedding are
the m+ 1-closest neighbors of φ in the feature space equipped with D:

Ψ−1
|M(φ) = argmin

sΘ

‖Ψ(sΘ) − φ‖2, (12)

where sΘ = argmin
z∈S

∑

1≤i≤m+1

θidS(z, si)2

When the input space is some Euclidean space R
n with its traditional L2-norm, this

indeed amounts to assuming that the manifold M is piecewise-linear (i.e.linearly inter-
polated between neighboring training samples). For shapes, we will see that this yields
natural pre-images. By simple extension, we define the projection of any new test sam-
ple s on the manifold M by ΠM(s) = Ψ−1

|M(Ψ(s)).

3.3 Implementation Issues

The pre-image Ψ−1
|M(φ) is computed by gradient descent. Instead of optimizing over

Θ, we use a descent over sΘ itself (Equation 13), constraining it to remain a Karcher
mean (Equation 8). This boils down to projecting the deformation field ∇sEψ onto
the tangent space T

M
sΘ

of M at point sΘ . Note that to compute this tangent space, we
are implicitly assuming that the space S has a manifold structure, in particular that the
tangent space T

S
sΘ

of S at location sΘ (i.e.the space of local deformations around sΘ)
is equipped with an inner product that we denote 〈.|.〉S.

The optimality condition of Equation 8 is:

∀β ∈ T
S
sΘ
,

m+1∑

i=1

θidi〈∇sdi|β〉S = 0,

where we denote N = {s1, ..., sm + 1} and di = dS(sΘ, si). In order to recover the
tangent space T

M
sΘ

at sΘ, one needs to relate the m-independent modes of variations of

the coefficient Θ (remember that
∑m+1

i=1 θi = 1) with local deformation fields dsΘ ∈
T
S
sΘ

. To a small variation of the barycentric coefficients Θ → Θ + dΘ, corresponds
a small deformation of the sample sΘ → sΘ + dsΘ. Differentiating the optimality
condition with respect to Θ and sΘ provides the relation between dΘ and dsΘ. For
example, when the input space is taken to be the Euclidean space, i.e.S = R

n, we
obviously obtain dsΘ =

∑m+1
1 dθisi. Remembering

∑m+1
1 dθi = 0 and fixing the

dθi appropriately, we can recover T
M
sΘ

. Therefore we optimize for sΘ without explicitly
computing Θ. The gradient descent generates a family of samples s : τ ∈ R

+ �→
s(τ) ∈ M such that

s(0) = s0,
ds

dτ
= −vM(sτ ),

with s0 ∈ N (in practice, the nearest neighbor of φ). The velocity field vM(sτ ) is the
orthogonal projection of the deformation field ∇sτEΨ = (Ψ(sτ ) − φ)TΛΨT∇sτ psτ

onto the tangent space T
M
sτ

. Here Λ is a diagonal matrix of eigenvalues and Psi are the
corresponding eigenvectors. Note that before projecting onto T

M
sτ

we first orthogonalize
the tangent space by using Gram-Schmidt. In the case of the L2-norm the Θ’s can be
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Fig. 2. Interpolation using Karcher means for 39 three-dimensional sample shapes. From left to
right: a) a new shape not in the given sample b) the same shape with an occlusion c) the 3 nearest
neighbors of the corrupted shape according to the diffusion distance (in red, green and blue) d)
the original shape (in yellow) and our interpolation (in red). See text for quantitative results.

easily recovered. When using a different distance function such as the symmetric differ-
ence or the Sobolev W 1,2-norm then one needs to solve additionally a system of linear
equations in each step of the gradient descent.

4 Results

In order to validate the proposed method, we run several experiments on real and
synthetic data. First, we test the Karcher mean interpolation with the reconstruction prob-
lem of occluded 3D medical shapes [1]. In a second experiment we validate the pur-
pose of the projection of the gradient onto the tangent space. Finally, a third experiment
demonstrates the superiority of our method for a standard denoising problem on images.

4.1 Remaining on the Manifold

To validate both the Karcher means modeling of the manifold and our projecting con-
straint (section 3.3), we generate a set of 200 synthetic shapes parameterized by an
articulation angle and a scaling parameter (Fig. 3a). The corresponding embeddings are
shown Fig. 3b. Choosing two distant shapesA andB, we compute a path s(τ) fromA to
B be mean of a gradient descent starting from s(0) = A and minimizing dS(s(τ), B).
Fig. 3c and 3b show in red the intermediate shapes and the corresponding embeddings.
In purple are shown the same path when projecting the gradient in order to remain on
the manifold. Observe how the intermediate shapes look more like the original sample
ones in that case. Note also that when remaining on M, the interpolating path is almost
a straight line with respect to the diffusion distance.

4.2 Projection and Manifold as Karcher Means

We here test the validity of using Karcher means as a manifold interpolation model. We
consider the space of two-dimensional surfaces embedded in R

3. For such a general
space, many different definitions of the distance between two shapes have been pro-
posed in the computer vision literature but there is no agreement on the correct way
to measure shape similarity. In this work, we represent a surface si in the Euclidean
embedding space R

3 by its signed distance function Dsi . In this context, we define the
distance between two shapes to be the L2-norm of the difference between their signed
distance functions [11]:

dS(s1, s2)2 = ||Ds1 − Ds2 ||2L2
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Table 1. Average reconstruction error for a set of 9 noisy shapes

Avg err of shapes with occlusion Nearest neighbors(NN) Mean of NN [1] Our method
4.67 1.81 1.96 1.1 0.58

Fig. 3. Synthetic sample of 200 articulated and elongated shapes. From left to right: (a) a subset
of the sample. (b) triangulated 2-dimensional embedding computed using Diffusion Maps and a
gradient descent from an initial shape to a target one, without (red dots) and with (purple dots)
remaining on the interpolated manifold. (c) Some shapes of the resulting evolution (left column:
without projection, right column: with projection.

Note that, in order to define a distance between shapes that is invariant to rigid displace-
ments (e.g.rotations and translations), we first align the shapes using their principal mo-
ments before computing distances. Note also that the proposed method is obviously not
limited to a specific choice of distance [22, 17]. We use a dataset of 39 ventricles nu-
clei extracted from Magnetic Resonance Image (MRI). We learn a random subset of
30 shapes and corrupt the nine remaining shapes by an occlusion (Fig. 2a,b). In order
to recover the original shapes we project the shapes onto the shape manifold with our
method. We then compare the reconstruction results with the nearest neighbor, the mean
of the m+1 nearest neighbors and the method of Dambreville [1]. The parameters of
this experiments is m = 2. In Figure 2-d one example of a reconstructed shape (red)
is obtained from the m+ 1 nearest neighbors of s• (Fig. 2c). In order to quantitatively
evaluate the projection, we define the reconstruction error as e(s) = dS(s◦, s)/σ, where
s◦ is the original shape and s is the reconstructed shape. The occluded shape has an er-
ror of e(s•) = 4.35, while the nearest-neighbor has an error of 1.81. In Table 1 we see
that our method is superior the one proposed by Dambreville [1].

4.3 Application: Denoising of Digits

To test the performance of our approach on the task of image denoising, we apply the
algorithm on the USPS dataset of handwritten digits1. In a first experiment, we compare

1 The USPS dataset is available from http://www.kernel-machines.org.
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Table 2. Average PSNR (in dB) of the denoised images corrupted by different noise levels σ.
Training sets consist in 60 samples (first 4 rows) and 200 samples (last 4 rows).

σ2 [1] [3] [2]+ [1] [2]+ [3] [4] Our method
0.25 8.50 15.71 10.17 16.18 14,01 17.71
0.45 9.05 13,87 9.98 15,42 13,91 17.52
0.65 9,78 13,10 9,58 13,60 13,89 17.38
0.85 9.06 12,58 8,61 13,91 13,87 17.32
0.25 9.35 16.08 11.97 16.21 15,27 17.95
0.45 9.64 15.70 10.18 15.98 14,85 17,85
0.65 9.41 13.97 10.26 15.85 14,13 17,79
0.85 9,24 13.06 10.25 15.07 14,07 17,75

our method to five state-of-the-art algorithms [1], [1]+ [2], [3], [3]+ [2] and [4]. For
each of the ten digits, we form two training sets composed of randomly selected sam-
ples (60 and 200 respectively). The test set is composed of 40 images randomly selected
and corrupted by some additive Gaussian noise at different noise levels. The process of
denoising simply amounts to estimating the pre-images of the feature vectors given by
the Nyström extension of the noisy samples. For all the methods, we takem = 8 for the
reduced dimension (number of eigenvectors for the kernel-PCA based methods). Ta-
ble 2 shows a quantitative comparison based on the pixel-signal-to-noise ratio (PSNR).
Our method outperforms visually (Fig. 1) and quantitatively other approaches. Inter-
estingly, it is less sensitive to noise than other ones and yields good results even under
heavy noise.

5 Conclusions and Future Work

In this paper, we focused on the pre-image problem. We provide a solution to the pre-
image problemusing Diffusion Maps. Following a manifold interpretation of the train-
ing set, we define the pre-image as a Karcher mean interpolation between neighboring
samples with respect to the diffusion distance. Results on real world data, such as 3D
shapes and noisy 2D images, demonstrate the superiority of our approach. In the con-
tinuation of this work several ideas may be exploited. In the perspective of working on
complex shape spaces, our projection operator, defined from a manifold point-of-view,
could be used in different tasks, such as segmentation with shape priors, interpolation
and reconstruction of shapes, and manifold denoising. Interestingly, our approach is
able to deal with manifolds of complex topology. In the context of manifold denoising
this property can be useful. So far, none of the pre-image problems were tested when the
training data itself contains heavy noise. We are currently investigating these directions.

References

1. Dambreville, S., Rathi, Y., Tannenbaum, A.: Statistical shape analysis using kernel PCA. In:
IS&T/SPIE Symposium on Electronic Imaging (2006)

2. Arias, P., Randall, G., Sapiro, G.: Connecting the out-of-sample and pre-image problems in
kernel methods. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, June 18-23 (2007)



Pre-image as Karcher Mean Using Diffusion Maps 731

3. Kwok, J.T., Tsang, I.W.: The pre-image problem in kernel methods. IEEE Transaction in
Neural Network 15(6), 1517–1525 (2004)

4. Carreira-Perpiñan, M.A., Lu, Z.: The Laplacian Eigenmaps Latent Variable Model. JMLR
W&P 2, 59–66 (2007)

5. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Sci-
ence 290, 2323–2326 (2000)

6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

7. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computation 15(6), 1373–1396 (2003)

8. Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric
diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps.
PNAS 102(21), 7426–7431 (2005)

9. Hein, M., Audibert, J.Y., von Luxburg, U.: From graphs to manifolds - weak and strong
pointwise consistency of graph Laplacians. Journal of Machine Learning Research, ArXiv
Preprint (forthcoming) (2006)

10. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion
maps. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1784–1797
(2006)

11. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active con-
tours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 316–323
(2000)

12. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford shah based
segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS,
vol. 2351, pp. 93–108. Springer, Heidelberg (2002)

13. Lu, Z., Carreira-Perpinan, M., Sminchisescu, C.: People tracking with the laplacian eigen-
maps latent variable model. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances
in Neural Information Processing Systems, vol. 20, pp. 1705–1712. MIT Press, Cambridge
(2008)

14. Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measure-
ments. Journal of Mathematical Imaging and Vision 25(1), 127–154 (2006); a preliminary
appeared as INRIA RR-5093 (January 2004)

15. Davis, B., Fletcher, P., Bullitt, E., Joshi, S.: Population shape regression from random design
data. In: ICCV, vol. 1 (2007)

16. Karcher, H.: Riemannian center of mass and mollifier smoothing. Comm. Pure Appl.
Math. (30), 509–541 (1977)

17. Etyngier, P., Segonne, F., Keriven, R.: Shape priors using manifold learning techniques. In:
11th IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil (October
2007)

18. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for dimen-
sionality reduction, graph partitioning, and data set parameterization. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28(9), 1393–1403 (2006)

19. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-
sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In: Thrun, S.,
Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16.
MIT Press, Cambridge (2004)

20. Baker, C.T.H., Baker, C.T.H.: Numerical analysis of volterra functional and integral equa-
tions. In: Duff, I.S., Watson, G.A. (eds.) The state of the art in numerical analysis, pp. 193–
222. University Press (1996)



732 N. Thorstensen, F. Segonne, and R. Keriven

21. Etyngier, P., Keriven, R., Segonne, F.: Projection onto a shape manifold for image segmenta-
tion with prior. In: 14th IEEE International Conference on Image Processing, San Antonio,
Texas, US (September 2007)

22. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application
to shape warping and empirical shape statistics. Foundations of Computational Mathemat-
ics 5(1), 1–58 (2005)

23. Solem, J.: Geodesic curves for analysis of continuous implicit shapes. In: International Con-
ference on Pattern Recognition, vol. 1, pp. 43–46 (2006)

24. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr,
G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer,
Heidelberg (2002)


	Pre-image as Karcher Mean Using Diffusion Maps: Application to Shape and Image Denoising
	Introduction
	Related Work
	Our Contributions

	Learning a Set of Shapes
	Diffusion Maps
	Out-of-Sample Extension

	Pre-image as Karcher Means
	Shape Interpolation Using Karcher Means
	Pre-image and Manifold Interpolation
	Implementation Issues

	Results
	Remaining on the Manifold
	Projection and Manifold as Karcher Means
	Application: Denoising of Digits

	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


