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Abstract. We propose a novel method for pose-consistent segmenta-
tion of non-rigid 3D shapes into visually meaningful parts. The key idea
is to study the shape in the framework of quantum mechanics and to
group points on the surface which have similar probability of presence
for quantum mechanical particles. For each point on an object’s sur-
face these probabilities are encoded by a feature vector, the Wave Ker-
nel Signature (WKS). Mathematically, the WKS is an expression in the
eigenfunctions of the Laplace–Beltrami operator of the surface. It char-
acterizes the relation of surface points to the remaining surface at various
spatial scales. Gaussian mixture clustering in the feature space spanned
by the WKS signature for shapes in several poses leads to a grouping
of surface points into different and meaningful segments. This enables
us to perform consistent and robust segmentation of new versions of the
shape.

Experimental results demonstrate that the detected subdivision agrees
with the human notion of shape decomposition (separating hands, arms,
legs and head from the torso for example). We show that the method is
robust to data perturbed by various kinds of noise. Finally we illustrate
the usefulness of a pose-consistent segmentation for the purpose of shape
retrieval.

1 Introduction

Research in cognitive science suggests that human shape understanding is based
on a decomposition of the shape in smaller parts [7]. Inspired by this insight,
many algorithms in three-dimensional shape analysis rely on a segmentation of
the objects’ surface in meaningful parts.

Such a segmentation can be the building block of shape retrieval techniques
where an object is recognized as the sum of its parts [23, 24, 12]. Other interesting
applications include CAD, reverse engineering and medical image analysis [1],
texture mapping [10] and texture superresolution [6].

In this work we propose a method for automatically determining visually
meaningful, pose-consistent segmentations of non-rigid 3D shapes. Our approach
builds upon a quantum mechanical feature descriptor and upon Gaussian mix-
ture clustering in the feature space over several articulations of a shape.
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Fig. 1. The basic idea of our segmentation is to group those points in which quan-
tum particles of different energy levels have similar probabilities to be measured. The
clustering is achieved with an Expectation-Maximization using a Gaussian mixture
distribution. Thus, any cluster is described by a mean descriptor and its variance.

1.1 Related Work

Shape segmentation is a classical problem in shape analysis. For recent surveys
on existing methods we refer the reader to [17, 1, 3].

The problem of pose-consistent segmentation of shapes has only recently be-
come to the focus of researchers. The task consists in extracting a meaningful
partitioning of a shape which identifies the segments consistently over several
poses of the shape.

Following the intuition that meaningful shape parts should be rigid, some
approaches cluster points whose movement through the different poses is ap-
proximately described by the same Euclidean motion. The works [2, 8, 16] fall
in this category. Of course, these methods depend on a precomputed correspon-
dence between the articulated shapes which is computationally a very demanding
problem.

Other methods employ local feature descriptors and group points with simi-
lar signatures. In [24], Toldo et al. cluster convex regions of similar curvature
using normalized graph cuts. This approach is inspired by the minima rule in
cognitive science. Because the principal curvatures are not isometry-invariant,
pose-consistency is not theoretically granted. Indeed, typically the intrinsic dis-
tances on a shape do not change significantly from one pose to another, which
make isometric deformations a good mathematical model for shape articula-
tions. Shapira et al. [18] use the Shape Diameter Function (SDF) for clustering.
The SDF measures at each point the diameter of the shape in inward-normal
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direction and therefore captures volumetric information on the shape’s surface.
Again, the SDF is not isometry-invariant whence the segmentation results are
not guaranteed to be pose-invariant.

A class of very powerful, isometry-invariant tools for shape analysis rely
on the study of the spectrum of the Laplace–Beltrami operator. Our approach
belongs to this class. In the geometry processing community, these ideas first
appeared in the work [9] of Lévy. Rustamov [15] introduced the Global Point
Signature which encodes all local and global information about a point on the
shape’s surface. Very nice shape segmentation results where shown as an applica-
tion. However, because the signs and the ordering of the Laplace eigenfunctions
can flip from one articulation to another, it is not easy to identify segments
over different poses. Reuter [14] proposed a watershed-based segmentation em-
ploying a single, user-selected Laplace eigenfunction. Robustness is ensured by
persistence-based denoising of the basins. In order to identify labels over dif-
ferent poses, Reuter proposes to align the eigenfunctions of different shapes by
comparing persistence diagrams. In [19], Sharma et al. use a constrained spec-
tral clustering approach to segment a single deformable shape. The constraints
enforce certain pairs of points to belong to the same segment or to belong to
different segments and are given by user input. Label transfer to different shape
poses is achieved by registering the shapes. Again, this step involves reordering
and sign-flipping of the Laplace eigenfunctions.

To overcome the sign and ordering problem, Sun et al. [22] introduced a very
nice, physically motivated feature descriptor, the Heat Kernel Signature (HKS)
which encodes the heat dissipation process on the surface. They showed that the
HKS contains all information to characterize points uniquely. While the HKS
proved to be the current state-of-the-art feature descriptor [5], it has several
draw-backs. First of all, the natural parametrization domain for the HKS is
time which does not have an intrinsic meaning for a shape. Secondly, due to the
exponential decay in diffusion processes, the HKS mixes local and global scales
in an intransparent way. In contrast to this, our quantum mechanical feature
descriptor, the WKS, is parametrized on the energy domain which has by means
of eigenenergies an intrinsic interpretation for a shape. Furthermore, different
scales are clearly separated by the WKS.

A persistence-based segmentation technique using the HKS was presented
by Skraba et al. [20]. Similarly to Reuter’s work, this method is based upon the
watershed approach using the HKS function for a user-fixed value of the time
t. This value determines whether more local or global features should guide the
segmentation.

1.2 Contribution

In this work we present a novel approach for automatically finding pose-consistent
segmentations of 3D shapes. Our work builds upon a quantum mechanical fea-
ture descriptor, the Wave Kernel Signature (WKS). A segmentation is computed
in two steps: In a learning step we use several different poses of a shape to build
clusters of points for which the probability to find quantum mechanical particles
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at different energy levels is similar. In the segmentation step, new poses of the
shape are partitioned by sorting each point in the most likely cluster. The main
contributions can be summarized as follows.

– We show how to incorporate the framework of Quantum Mechanics to pose-
consistent shape segmentation. By grouping points in which particles over
different energy levels have similar probabilities to be measured, we exploit
global as well as local shape information in the segmentation process.

– Our method inherently guarantees consistent transfer of labels to different
shape poses, without the need of computationally expensive shape registra-
tions.

– Relying on a clustering in the feature space, our method is easily imple-
mented and fully automatic.

Experimental results show that our segmentation results agree with the hu-
man intution, that labels are consistently carried over to new poses and that
our method can cope with perturbed data. Finally, we illustrate the usefulness
of meaningful shape decompositions with an experiment on shape retrieval.

2 The Wave Kernel Signature – A Quantum Mechanical
Feature Descriptor

In this section we describe a quantum mechanical feature descriptor, the WKS,
which assigns with each point on an object’s surface a vector in RM . This vector
encodes the probability to measure particles of different energy levels in the
point. After a brief review of the dynamics of quantum particles on surfaces in
2.1, we give the definition of WKS in 2.2. In 2.3 we outline why WKS is useful for
shape analysis, and in particular why it is more convenient than the previously
defined HKS. For a more detailed study of the WKS we refer the reader to [4].

2.1 Quantum Particles on Surfaces

A quantum mechanical particle moving on a closed, differentiable surfaceX ⊂ R3

is completely described by its wave function ψ(x, t) : X×R>0 → C. This function
solves Schrödinger’s equation

i
∂ψ

∂t
(x, t) = −∆Xψ(x, t), (1)

where ∆X is the Laplace–Beltrami operator of X. While the wave function itself
does not have an easy intuitive explanation, for fixed t > 0 its squared norm
|ψ(x, t)|2 : X → R is the probability density function of the position of the
particle at time t.

We now focus on the following physical experiment: Consider a quantum
particle on X. Assume that we measure at time t = 0 the energy E of this
particle and that subsequently we want to determine its position at time t > 0.
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By the Heisenberg uncertainty relation, we cannot be precise in both, energy
and position simultaneously. Thereby, we have to consider a superposition of
eigenenergies and eigenstates. Mathematically, the eigenstates and eigenenergies
are given by the orthonormal eigenfunctions φ0, φ1, φ2, . . . and by the correspond-
ing eigenvalues 0 = E0 > −E1 ≥ −E2 ≥ . . . of the Laplace–Beltrami operator
∆X . Assume now that the eigenvalues Ek are pairwise distinct which is the case
with probability 1. For a particle with energy distribution f2E (hence allowing
for uncertainty in the energy), its wave function is given by

ψE(x, t) =
∑
k≥0

fE(Ek) exp (−iEkt)φk(x). (2)

Using that the functions exp (−iEkt)k≥0 are orthogonal for the L2-norm, the
average probability that the particle is measured in a point x ∈ X, is computed
as

lim
T→∞

1

T

∫ T

0

|ψE(x, t)|2dt =
∑
k≥0

fE(Ek)2φk(x)2. (3)

2.2 The Wave Kernel Signature

Now we work out how to use the above insights to design a feature descriptor
for shape analysis. For this, it remains to choose the energy distributions f2E .

Recall that we aim for a segmentation of shapes undergoing strong pose
changes, which correspond mathematically to near-isometric deformations. There-
fore we have to optimize our descriptor for robustness to small non-isometric
deformations. A perturbation-theoretical analysis which we leave out here due
to the lack of space shows that the eigenenergies of a shape under articulation
can be modeled as log-normally distributed random variables. More details on
this can be found in [4].

This leads us to choose fE in (3) as a Gaussian distribution in the logarithmic
energy e = log(E) for fE and we define the Wave Kernel Signature at a point x
as

WKS(x, ·) : R→ R, e 7→ 1

Ce

∑
k≥0

exp

(
− (e− log(Ek))

2

2σ2

)
φ2k(x), (4)

where Ce =
∑
k≥0 exp

(
− (e−log(Ek))

2

2σ2

)
.

2.3 Comparison of WKS and HKS

The eigenfunctions of the Laplace–Beltrami operator on X can be seen as a
generalization of the classical Fourier basis. In this interpretation, eigenvalues
play the role of frequencies. Consider a point on a surface as a signal by means of
its delta function. Both, the Heat Kernel Signature (HKS) [22] which is defined
by

HKS(x, t) =
∑
k≥0

exp(−Ekt)φ2k(x) (5)
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and WKS defined by equation (4) are symmetric expressions in the squared
Fourier coefficients. Note that the Laplace eigenfunctions depend on the choice
of a basis: even in the case of non-repeated Laplace eigenvalues there is a sign
ambiguity. Luckily, HKS and WKS are independent of the choice of an orthonor-
mal basis of eigenfunctions. Both descriptors characterize points up to non-rigid
motion (cf. [22, 4]).

The difference between HKS and WKS lies in the way Fourier coefficients
are filtered. HKS can be seen as a collection of low-pass filters parametrized over
the time t. The higher t, the more high frequencies are suppressed. In contrast,
WKS is a collection of delta filters in the Fourier domain. The precise form of
these delta filters is chosen in such a way that robustness to pose changes is
granted as outlined in Section 2.2.

Thereby, WKS should allow for more precise localization of features of points
in the frequency domain and thus for a higher precision in recognizing corre-
sponding points. For a thorough experimental comparison of HKS and WKS
confirming this heuristic we refer the reader to [4].

3 Learning Pose-Invariant Shape Segmentation

Assume now that we are given a shape in several different poses. Our segmen-
tation aims at grouping points in which quantum particles at different energy
levels have similar probabilities to be detected. We build clusters in the following
way:

– Pick a subset of training poses which are used for learning the clusters.
Typically we used 3-5 training poses.

– Compute the WKS for all points of all training shapes, leading to a point
cloud in RM , where M is the number of evaluation energies of the WKS
(which is 100 in all our experiments).

– Fit a Gaussian mixture model with K clusters to these training signatures.
The computation was done using the EM algorithm initialized by K-means.

Once the learning step is completed, we can segment both the training poses
and new poses by assigning with each point the label of the cluster, on which its
WKS has the highest score in the Gaussian mixture distribution.

Of course, we could also use other clustering schemes, leading to similar
results. In some cases, we found that imposing the same variance to all the
Gaussians of the mixture can lead to slightly more robust results. Indeed, this
is a simple way to avoid overfitting: if some scale is very consistent in a cluster,
the variance for the corresponding Gaussian at this scale will be so small that
a slight change at this scale in a test shape will attribute the points to another
cluster. A shared variance will avoid that kind of effects.
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Fig. 2. Fully unsupervised segmentation of 3D shapes: for different shape classes
and for different numbers of clusters, our segmentation algorithm is able recognize
semantically meaningful parts and to transfer correctly labels through strong pose-
deformations. The left and the middle column show segmentations of shapes from the
training set, while the right column visualizes the segmentation of new poses. The
shapes are courtesy of [25, 5, 21].

4 Experimental Results

4.1 Computational Details

For computing the WKS on triangle meshes, we discretized the Laplacian us-
ing the cotan scheme introduced by Pinkall and Polthier [13]. Boundaries were
treated with Neumann conditions. We computed the first N = 300 eigenvalues
and evaluated the WKS at M = 100 values of e ranging from emin = log(E1)

to emax = log(EN )
1.02 with linear increment δ = emax−emin

M . The variance was set to
σ = 7δ. All these values were fixed in all our experiments.

4.2 Segmentation Results

Figure 2 shows results of segmentations of different shapes in several poses for
a varying number of clusters. Notice that the labels, visualized by colors, are
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Fig. 3. Robustness of the segmentation results tested on shapes from the SHREC 2010
robustness dataset [5]. On the top, one shape from the training set and at the bottom
test shapes with different perturbations. From the left to the right: topology, holes,
and shot noise.

automatically transferred correctly to the different articulations and that they
are naturally spatially consistent.

4.3 Robustness

To test the robustness of our segmentation, we used the data of the SHREC 2010
benchmark [5]. This dataset contains different shapes undergoing a large variety
of poses and of different kinds of perturbations such as topological changes, noise
or holes. The method proves stable to such data as can be seen in Figure 3 where
some results are visualized.

4.4 Shape Retrieval

As an application of our pose-invariant shape segmentation framework we show
an experiment on shape retrieval on the dataset of the SHREC 2010 non-rigid
shape retrieval contest [11]. This dataset consists of 10 shape classes each of
which contains 20 different shape poses. We choose 5 training shapes from each
class and learn a segmentation of these training shapes. As a result of this learn-
ing step, we dispose of a Gaussian mixture probability distribution for each
shape class. Given a query shape from the database which was not included
in the learning process, we compute its WKS at all points and evaluated the
negative log-likelihoods of the Gaussian mixtures. The query shape is sorted to
the shape class with the maximal log-likelihood. In Figure 4 we visualize the
resulting log-likelihood of a query shape for four different shape classes.
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query shape 0.7457 0.6662 0.3850 -0.0881

Fig. 4. Shape segmentation applied to shape retrieval on the SHREC 2010 dataset
[11]. The four columns on the right show representatives of four shape classes. For each
shape class a Gaussian mixture distribution was computed as outlined in Section 3.
The resulting segmentations are color encoded. The log-likelihood of the query shape
(leftmost column) with respect to these distributions is displayed below each class.

On the 150 query shapes we achieved 72% of correct assignments which is
a proof of concept that our part decomposition of shapes is of high informative
value for shape recognition.

5 Conclusion

We proposed a novel method for fully unsupervised, pose-consistent 3D shape
segmentation which arises from a Quantum Mechanical analysis of shapes. By
grouping those points in which quantum particles of different energy levels have
similar probabilities to be detected, we get an unsupervised partitioning of the
shape. Label transfer to different poses is granted by construction without the
need of user input or of computationally expensive shape registrations. Inter-
estingly, the computed part decomposition of shapes is consistent with human
notions of shape decomposition (torso, head, arms, legs, etc). Finally, we demon-
strate that such a segmentation can be efficiently used for shape retrieval.
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segmentation-a comparative study. In: Shape Modelling International (SMI). IEEE
Computer Society (2006)

4. Aubry, M., Schlickewei, U., Cremers, D.: The Wave Kernel Signature - A Quantum
Mechanical Approach to Shape Analyis. Tech. rep., TU München, Germany (June
2011)

5. Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno,
B., Guibas, L., Kokkinos, I., Murino, V., Ovsjanikov, M., et al.: SHREC 2010:
robust feature detection and description benchmark. Proc. 3DOR (2010)



10 M. Aubry, U. Schlickewei and D. Cremers

6. Goldluecke, B., Cremers, D.: Superresolution texture maps for multiview recon-
struction. In: IEEE International Conference on Computer Vision (ICCV). Kyoto,
Japan (2009)

7. Hoffman, D.: Visual intelligence: How we create what we see. WW Norton and
Company (2000)

8. James, D., Twigg, C.: Skinning mesh animations. ACM Transactions on Graphics
(SIGGRAPH 2005) 24(3) (August 2005)
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