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Abstract

We introduce the Wave Kernel Signature (WKS)
for characterizing points on non-rigid three-dimensional
shapes. The WKS represents the average probability of
measuring a quantum mechanical particle at a specific lo-
cation. By letting vary the energy of the particle, the
WKS encodes and separates information from various dif-
ferent Laplace eigenfrequencies. This clear scale separa-
tion makes the WKS well suited for a large variety of appli-
cations. Both theoretically and in quantitative experiments
we demonstrate that the WKS is substantially more dis-
criminative and therefore allows for better feature match-
ing than the commonly used Heat Kernel Signature (HKS).
As an application of the WKS in shape analysis we show
results on shape matching.

1. Feature Descriptors for Shape Analysis

The central component in the analysis of three-
dimensional shapes is a feature descriptor which character-
izes each point on the object’s surface regarding its relation
to the entire shape. The key idea is to associate with each
point on a surface in R3 a feature vector in Rn or more
generally a scalar function on R which ideally contains all
relevant local and global information about this point.

In shape matching this descriptor is used for detecting
potential correspondences among pairs of points on either
shape. In shape segmentation the descriptor may serve for
clustering shapes into semantically coherent parts. In shape
retrieval, the descriptors are used in several ways to define
shape signatures [20]. For example they can allow to repre-
sent a shape as a collection of “geometric words” [21]. In
this paper, we introduce a novel shape descriptor called the
Wave Kernel Signature which is significantly more discri-
minative than previous approaches.

1.1. Related Work

Existing descriptors can be roughly divided in two
classes according to the level of invariance they have. The

Figure 1. Schrödinger’s cat [24] and its Wave Kernel Signatures.
Based on the Schrödinger equation each point on an object’s sur-
face is associated with a Wave Kernel Signature. Note that the
signature captures shape variations in the environment of the con-
sidered point at various spatial scales: While the two points of
the bottom are quite similar for large scales (small values of the
energy), the two others are quite different.

more classical approaches like Shape Context [3] or the
Spin Images [12] are invariant under rigid motion. Such de-
scriptors also include the Integral Invariants [19], the Multi-
scale Local Signature [14] and the Point-Aware Metric [18].

More recently researchers considered descriptors which
are invariant under non-rigid motion. Examples include
[15, 11, 8], who used ideas similar to the Shape Context
in a geodesic distance framework. Lipman et al. [17, 16]
suggested to compare neighborhoods of points in the frame-
work of conformal geometry.

Most related to our approach is a variety of works from
the non-rigid category which are based upon the spectrum
of the Laplace–Beltrami operator on the surface. These
techniques were introduced to the geometry processing
community by Lévy [13]. Precursors using the (Euclidean)
Laplace operator in the interior of the shape were developed
by Tari et al. [27, 26] and by Gorelick et al. [10]. Inspired
by the work [4], Rustamov [23] used the Laplace eigen-
functions to define an embedding of the surface in the space
of convergent sequences `2(R). This embedding has the
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nice property of containing all intrinsic information of each
point, its drawback is that it depends on the choice of a basis
of eigenfunctions. Even in the case of non-repeated eigen-
values of the Laplace–Beltrami operator there is a sign to
choose for each component. This problem was resolved by
the introduction of the Heat Kernel Signature [25, 9] and
its scale-invariant version [7]. The heat kernel is intimately
related to the diffusion distance between points which has
been used intensively for shape analysis recently (cf. e.g.
[6]).

1.2. Heat Equation and Heat Kernel Signature

The Heat Kernel Signature (HKS) is based on analyz-
ing the heat diffusion process on the shape governed by the
equation:

∂u

∂t
(x, t) = ∆u (x, t) . (1)

Let E0 = 0 > −E1 ≥ −E2, . . . denote the eigenvalues of
the Laplace–Beltrami operator ∆, and let φk (x) denote the
corresponding normalized eigenvectors.

The idea of the Heat Kernel Signature is to focus on the
following phenomenon: Suppose that at time t = 0 all the
heat energy is concentrated in a point x. Which amount of
heat energy remains at the same point x for time t > 0? The
mathematical solution to this problem is:

HKS(x, t) = kt(x, x), (2)

where kt is the heat kernel:

kt(x, y) =

∞∑
k=1

e−Ektφk(x)φk(y). (3)

From the point of view of signal processing, the HKS
has the following interpreation: The Laplace eigenfunc-
tions are the natural generalization of the Fourier basis. If
a point x ∈ X is interpreted as a signal by means of its
delta function δx, then HKS(x, t) is an expression in the
squared Fourier coefficients φ2k(x) of δx. While the Fourier
coefficients φk(x) depend on the choice of the sign of the
eigenfunctions and of the ordering in case of repeated eigen-
values, HKS(x, t) does not. This is an important property
when comparing two different shapes.

The SHREC benchmark [5] proves that the HKS is cur-
rently the state of the art feature descriptor.

1.3. Open Challenges

Despite its success and elegant physical interpretation,
the Heat Kernel Signature and its extension suffer from a
number of drawbacks:

• The HKS of a point x ∈ X is a collection of low-
pass filters parametrized over the time t. The larger
t, the more high frequencies are suppressed. In this

way, HKS mixes information from various different
frequencies in an intransparent way.

• The HKS is highly dominated by information from low
frequencies, which correspond to macroscopic proper-
ties of the shape. This is devastating for applications
like high-precision matching where small scale infor-
mation plays a crucial role.

• The time parameter and its discrete version play a cen-
tral role in this kernel. Yet although it is related to
scale, it does not have any straightforward interpreta-
tion with respect to properties of the shape itself. Thus,
the appropriate choice of the time segment and of a
logarithmic discretization is a purely heuristic choice
validated merely by experiments.

1.4. Contribution

In this paper, we introduce a novel shape descriptor
which is derived from studying shape in the framework
of Quantum Mechanics. Rather than considering the heat
equation, we consider the Schrödinger equation governing
the temporal evolution of quantum mechanical particles.
We introduce an analogous Wave Kernel Signature (WKS)
which like the HKS is invariant to isometries and robust to
small non-isometric deformations. Yet it resolves the above
limitations of the HKS. In particular:

• As a collection of smoothed delta filters parametrized
over frequencies rather than time, the WKS clearly
separates the influence of the different frequencies and
therby of different spatial scales.

• Since the WKS allows access even to very high fre-
quency information, it gives rise to substantially more
accurate matching than the HKS.

• The appropriate choice of parameterization of the
WKS arises naturally from a theoretical stability anal-
ysis. In this way, WKS is optimized for analyzing
shapes undergoing non-rigid deformations.

Quantitative results on two different datasets show that
the WKS is significantly more accurate than the currently
leading HKS. In numerous experiments, we demonstrate the
usefulness of the WKS for 3D shape analysis as well as its
robustness to perturbed data.

An application of the WKS to pose-consistent shape seg-
mentation was presented in [1].

2. The Wave Kernel Signature
In this section we introduce the Wave Kernel Signature.

The basic idea is to characterize a point x ∈ X by the av-
erage probabilities of quantum particles of different energy
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Figure 2. The key idea is to compute the average probability (over
time) to measure a particle with an energy distribution fE at the
location x. The two figures above show the result for two different
values of E. Red correspond to high probabilities

levels to be measured in x. Since energies of particles corre-
spond to frequencies, in this approach information from all
frequencies is captured while at the same time influences
from different frequencies are clearly separated.

We will start in Section 2.1 by determining the probabil-
ity of measuring a quantum particle of a certain energy dis-
tribution in a given location. In Section 2.2, we will perform
a theoretical stability analysis which leads us to a choice of
the energy uncertainty which is adapted to non-rigid shape
analysis. In Section 2.3 we will define the WKS and in Sec-
tion 2.4 we will outline some of its most important proper-
ties.

2.1. Schrödinger’s Equation and Energy Measure-
ment

The evolution of a quantum particle on the surface is
governed by its wave function ψ(x, t) which is a solution
of the Schrödinger equation:

∂ψ

∂t
(x, t) = i∆ψ (x, t) (4)

Although superficially similar to the heat equation the in-
duced dynamics are drastically different (oscillations rather
than mere dissipation).

Consider the following physical experiment: A quantum
particle with unknown position is on the surface. At time
t = 0 we make an approximate measurement of its energy
E. We choose here an approximate energy measurement
because this will allow us in Section 2.2 to cope with per-
turbations of eigenenergies under non-rigid deformation of
the shape. As a result of this approximate measurement we
obtain an energy probability distribution f2E with expecta-
tion value E. Assume now that the Laplace spectrum of the
shape has no repeated eigenvalues (which is the case with
probability 1). Then the wave function of the particle is
given by

ψE(x, t) =

∞∑
k=0

eiEktφk(x)fE (Ek) . (5)

The probability to measure the particle at a point x ∈ X is
then |ψE(x, t)|2.

The time parameter has no straightforward interpretation
in the characteristics of the shape, so we choose not to con-
sider it. Instead we define the WKS as the average proba-
bility (over time) to measure a particle in x:

WKS(E, x) = lim
T→∞

1

T

∫ T

0

|ψE(x, t)|2 (6)

Since the functions of e−iEkt are orthogonal for the L2

norm, we thus have:

WKS(E, x) =

∞∑
k=0

φk(x)2fE (Ek)
2 (7)

Interestingly in this function, the time parameter has
been replaced by energy. This is a very useful aspect be-
cause the energy is directly related to the eigenvalues of the
Laplace–Beltrami operator and therefore to an intrinsic no-
tion of scale in the shape. To derive a descriptor which char-
acterizes the properties of the shape at different scales inde-
pendently we merely need to choose the appropriate dis-
tributions f2E in (7), and to define an appropriate distance
between wave kernels.

2.2. Stability Analysis of Eigenenergies

In the following we will derive an appropriate distribu-
tion f2E from a perturbation-theoretical analysis. The key
idea is that we want the descriptor to be robust to small
non-isometric perturbations of the considered surface while
being as informative as possible.

Assume that a surface X is slightly deformed in a non-
isometric way. Mathematically we can interpret such a de-
formation as a perturbation g(ε) of the metric g = g(0)
on X for a real parameter ε with |ε| small. Assume that
the deformation is regular in the sense that g(ε) = g(0) +
εg1 + ε2g2 + . . . and the corresponding Laplace–Beltrami
operators ∆(ε) = ∆(0) + ε∆1 + ε2∆2 + . . . depend an-
alytically on ε (compare also [22, Def. 3]). For simplicity,
we assume that the Laplace–Beltrami operator ∆(0) corre-
sponding to g(0) has no repeated eigenvalues. By [22, Satz
2], for each eigenvalue −Ek of ∆(0), there exists an ana-
lytic family Ek(ε) with Ek(0) = Ek and −Ek(ε) in the
spectrum of ∆(ε).

Proposition. Denote by C = ||g1||g(0) the first order norm
of the metric deformation, where the space of symmetric
tensors TX∗ ⊗ TX∗ is endowed with the norm induced by
g(0). Then for |ε| > 0 sufficiently small we have

|Ek(ε)− Ek| ≤ CEk · |ε|+O(ε2).

Proof. The proof is somewhat lengthy and is deferred to our
technical report [2].



Figure 3. Variation of eigenvalues of the Laplace–Beltrami opera-
tor for four articulated shapes (blue circles) in log scale.

The proposition implies that there exist ck with |ck| ≤ C
such that

Ek(ε) = (1 + εck)Ek +O(ε2).

This can be reformulated as

log

(
Ek(ε)

Ek

)
= log(1+εck+O(ε2)) = εck+O(ε2). (8)

If deformations are independently distributed, we may
assume ck to be normally distributed random variables with
zero mean. In view of (8) this implies

log(Ek(ε)) ∼ N (log(Ek), σ). (9)

This assumption is confirmed by the experiments in Figure
3. This reasoning shows that the eigenenergies of an artic-
ulated shape X are log-normally distributed random vari-
ables. Hence energies in the measurement need to follow
the same distribution so that we choose f2E as a log-normal
distribution.

2.3. Definition of the Wave Kernel Signature

With the above insights we are now ready to concretize
(7). We define the Wave Kernel Signature at a point x ∈ X
as a real valued function in the logarithmic energy scale e =

log(E), writing Ce =

(∑
k e

−(e−logEk)2

2σ2

)−1


WKS(x, ·) : R→ R,

WKS(x, e) = Ce

∑
k

φ2k(x)e
−(e−logEk)2

2σ2 .
(10)

To compare Wave Kernel Signatures for different loca-
tions x ∈ X and y ∈ Y on respective shapes X and Y , we
simply define a distance using the L1 norm of the normal-
ized signature difference:

dWKS(x, y) =

∫ emax

emin

∣∣∣∣WKS(x, e)−WKS(y, e)

WKS(x, e) + WKS(y, e)

∣∣∣∣ de
(11)

HKS scaled-HKS WKS

Figure 4. Comparison of the Heat Kernel Signature (first column),
the scaled Heat Kernel Signature (second column) and the Wave
Kernel Signature (third column) for two different points (first and
second line). Note that while remaining robust to deformations
the WKS captures more information including shape differences
at finer scales.

where emin ∈ R and emax ∈ R correspond to the largest
and smallest considered energy scales. The bigger emax,
the more local information included.

In all our experiments, the parameters were fixed. We
computed N = 300 eigenvalues of the Laplacian and we
evaluated at M = 100 values of e. We used emin =
log(E1) + 2σ, the logarithm of the smallest eigenvalue dif-
ferent from 0 and emax = log(EN )− 2σ. The increment δ
in e was (emax − emin)/M , the variance σ was set to 7δ.

2.4. Properties of the Wave Kernel Signature

The Wave Kernel Signature has a number of properties
that make it well suited for shape analysis and shape com-
parison:

• The WKS is intrinsic in the sense that it is invariant to
non-rigid motions, i.e. if T : X → Y is an isometry,
then WKS(x, e) = WKS(T (x), e) for all x ∈ X .

• The WKS is informative: Assume that the Laplace–
Beltrami spectrum of two closed surfaces X,Y has
no repeated eigenvalues (this is true for every generic
shape) and that T : X → Y is a homeomorphism.
Then WKS(x, e) = WKS(T (x), e) for all x ∈ X and
e ∈ R if and only if T is an isometry. The proof of this
statement is analogous to the one in [25].

• The Wave Kernel Signature has a natural notion of
scale since it is a function of energy levels which are
directly related to scales. Large energies correspond
to highly oscillatory particles which are mostly influ-
enced by the local geometry whereas small energies
correspond to properties induced by the global geom-
etry.

Mathematically, we can interpret the WKS as a collec-
tion of smoothed delta filters on the squared Fourier
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Figure 5. The figures show the logarithmic distance between the descriptor of a point in the reference frame (on the leg) and the descriptor of
other points in the same frame (first column) and in another (second and third column). Since it does not overweight the small eigenvalues
the Wave Kernel Signature provides not only a unique correspondence (no false matches at the shoulders obtained with the HKS), but it
also provides a more accurate correspondence highly localized around the correct correspondent (shown in the closeup on the right).

coefficients of (delta functions of) points.

• By construction, the WKS is stable under perturba-
tions of the shape – see the examples in Figure 4.
Thereby, it is well-suited for the analysis of articulated
shapes.

• While the physical model and the mathematical sta-
bility analysis were presented under the simplifying
assumption that the Laplace–Beltrami operator of the
shape has no repeated eigenvalues, we note that the
WKS is well-defined even in the case of repeated
eigenvalues.

• The WKS can easily be made scale-invariant as done
in [7] for the heat kernel signature. We omit the details
because the steps are exactly the same as for the heat
kernel, except that the WKS naturally lives in a log
space.

3. Experimental Results

In the following we will present both qualitative and
quantitative evidence showing that the proposed Wave Ker-
nel Signature is superior to the traditional Heat Kernel Sig-
nature. Furthermore, we will show a straight-forward appli-
cation of the WKS to shape matching.

3.1. Informative Shape Signatures

Figure 4 shows respective signatures of a specific point
on the shape before (blue) and after (red) deformation of
the shape. In contrast to the HKS and the scaled HKS, the
WKS maintains information on several spatial scales indi-
cating on which scales shape changes have occurred: The
shape has changed, so signatures should not be identical,
yet it is the same point on the shape, so signatures should
be sufficiently similar to allow for reliable matching.

Figure 5 shows the distance from the point marked as a
red cross to the other points of the same shape and to points
from a different shape: it proves that matching is possible
even for not specific points (while standard point descriptors
only work well for feature points).

3.2. Robustness

For real world applications it is of great importance to di-
pose of a feature descriptor which is robust to various types
of perturbed data. The SHREC feature descriptor bench-
mark [5] provides a very good dataset for testing such ro-
bustness. It includes shapes undergoing a variety of pertur-
bations such as noise, shotnoise, holes, topological changes,
scale, and localscale. We tested the Wave Kernel Signa-
ture on this data. In general, the WKS proves very stable
under perturbations. Even in the strongest transformation
classes proposed in the benchmark, we get good correspon-



Figure 6. Robustness of the WKS: The red lines connect a reference point on the shape in the background (standing David) with its 50
best matches on the perturbed shape in the foreground (sitting David). The color encodes the feature distance to the reference point, blue
indicating proximity and red large distance in the feature space. The experiments visualized here are done with shapes in the strongest
perturbation category of the SHREC 2010 feature descriptor dataset. Left image: Visibly, the deformed shape is very noisy. WKS can
still locate the correspondence of the shoulders. Note that an isometry invariant feature descriptor cannot distinguish the left and the right
shoulder. Middle image: The reference mesh has 52565 vertices, while the perturbed mesh has 2634 vertices. Right image: The deformed
shape has many holes.

dences as visualized in Figure 6. There, we show results
on the transformation types noise, sampling and holes. The
red lines indicate the best 50 correspondences of a refer-
ence point on the shape in the background with a perturbed
shape.

3.3. Quantitative Comparison

To make the qualitative statements about precision and
robustness of our feature descriptor measurable, we com-
pared WKS and HKS regarding their quantitative perfor-
mance on shape matching. To this end, we evaluated on
two different datasets.

• We used the dataset provided by Vlasic et al. [28]. It
contains human shapes in a large variety of different
poses. To measure the quality of a descriptor we pro-
ceeded as follows:

1. Detect feature points by means of farthest point
sampling, i.e. sequentially detect the most distin-
guished feature points (those which are most dis-
tant in feature space). Both for HKS and WKS
these feature points typically coincide with char-
acteristic surface locations that humans would se-
lect (i.e. the head, the hand, the foot, etc.) – see
Figure 7.

2. For each of these reference points, select the k
best matches on a deformed shape, k running
from 1 to N/100. Here, N is the number of ver-
tices on the deformed mesh.

3. Plot the hit rate, that is the percentage of fea-
ture points for which the correct correspondent
is among the k best matches. On the x-axis we
choose the percentual scale 100 · k/N which al-
lows for comparisons between meshes in differ-
ent resolutions.

The left graph in Figure 8 shows the hit rate for in-
creasing values of 100 · k/N obtained for the (scaled)
HKS as proposed by Sun et al. [25] in their implemen-
tation and the WKS. This evaluation shows that the
matching precision of the WKS is clearly superior to
that of the HKS, finding for about 87 % of the refer-
ence points their correspondents among the first 1 %
of the best matches.

• Evaluation on the SHREC 2010 benchmark dataset
[5]. The evaluation on this data allows us to quan-
tify the robustness of our descriptor to perturbed data.
Again, we used the hit rate as a quality measure.

The right graph in Figure 8 shows the result on this
benchmark. While of course on data underlying such



Figure 7. Matching result using the Wave Kernel Signature with
the algorithm outlined in 3.4 with 40 feature points selected on the
left shape. Using these points, it is the easy to compute a dense
matching using geodesic distances for all other points. Yet, such a
dense matching is difficult to visualize.

challenging transformations, the results are less accu-
rate than on the Vlasic dataset, we see that the hit rate
of the WKS is still substantially above the hit rate of
the HKS, achieving 63 % of correct correspondences
among the first 1 % of best matches.

3.4. Shape Matching

Estimating a dense spatially regularized matching of two
3D shapes is a difficult computational challenge which is
beyond the scope of this work. Nevertheless we will demon-
strate that the proposed WKS is sufficiently informative so
as to compute a meaningful matching of 3D shapes using
the following simple and greedy strategy:

1. For both shapes select the N most discriminative fea-
ture points.

2. For each feature point on one shape select the k best
matching feature points on the other shape.

3. Select as first corresponding pair the one with smallest
feature distance.

4. Iteratively match pairs of points for which the geodesic
distances to the already matched points are most sim-
ilar. This last aspect introduces the regularity into the
matching.

Figure 7 shows a matching computed with the above al-
gorithm for a human figure in two different poses. It is
straight-forward to extend this matching to all points of the

mesh starting from this sparse matching, yet we omit such
dense matching results here as they are not easily visual-
ized.

4. Conclusion
Based on a quantum mechanical approach to shape anal-

ysis, we introduced the Wave Kernel Signature (WKS) as
a novel feature descriptor. As the Heat Kernel Signature
(HKS), it is based on the Laplace–Beltrami operator and
carries a physical interpretation: While the HKS arises from
studying the heat equation on the surface, the WKS arises
from studying the Schödinger equation governing the dis-
sipation of quantum mechanical particles on the geometric
surface. In contrast to the HKS, the WKS clearly separates
influences of different frequencies, treating all frequencies
equally. Appropriate parameterization of the WKS is de-
termined by a theoretical stability analysis aiming at fea-
tures which are both highly informative yet robust to non-
isometric perturbations of the shape. Experimental results
confirm that due to a better separation of scales and a better
access to fine scale information, the WKS allows for sub-
stantially more accurate feature matching than the HKS.
Even with strongly perturbed data, the WKS can still cor-
rectly detect feature correspondences. We demonstrated the
usefulness of the WKS for computing shape matching.
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