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Abstract

We introduce a spatially dense variational approach to
estimate the calibration of multiple cameras in the con-
text of 3D reconstruction. We propose a relaxation scheme
which allows to transform the original photometric error
into a geometric one, thereby decoupling the problems of
dense matching and camera calibration. In both quanti-
tative and qualitative experiments, we demonstrate that the
proposed decoupling scheme allows for robust and accurate
estimation of camera parameters. In particular, the pre-
sented dense camera calibration formulation leads to sub-
stantial improvements both in the reconstructed 3D geome-
try and in the super-resolution texture estimation.

1. Introduction
1.1. Camera Calibration and Geometry Estimation:

A Chicken-and-Egg Dilemma

The problem of multi-view 3D reconstruction is one of
the most fundamental and extensively studied problems in
computer vision with numerous applications beyond its do-
main. Following recent improvements in digital photogra-
phy, it has undergone a revolution in recent years and is now
competitive to the most reliable techniques for 3D model-
ing [14, 18]. At the core of each multi-view reconstruc-
tion pipeline is the calibration of the cameras, i. e. the esti-
mation of position, orientation and intrinsic parameters for
each camera.

In the last and the first half of the current decade, great
efforts have been focused on automatic camera calibration
based on image information alone. As a result, we now
have a number of publicly available software packages by
Klein et al. [9] and Snavely et al. [15] which allow to au-
tomatically determine the camera parameters from a collec-
tion of images. Yet, in the context of image-based model-
ing, the question of where each camera was located is ob-
viously tightly intertwined with the estimation of geome-
try and texture. A highly accurate estimate of the object’s
geometry/texture – as for example generated by the recent
super-resolution approach of Goldluecke and Cremers [5]
– should help to further improve the estimation of cam-
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Figure 1. The proposed variational dense estimation of calibration
parameters using a decoupling of photometry and geometry allows
to drastically improve the estimation of 3D structure.

era parameters. Analogously, a geometry/texture modeling
method could benefit from a more precise camera calibra-
tion. In other words, the problems of camera calibration and
geometry/texture estimation are highly coupled. As a con-
sequence, any progress in one of these fields opens up new
ranges in the other.

Up to date, it could be observed that while geometry
and color are reconstructed in a dense manner, camera cali-
bration methods typically rely on sparse feature correspon-
dences. As the calibration problem is highly overdeter-
mined (only 11 parameters are to be estimated for each cam-
era in the full setting), a straightforward way to address it
is to robustly pick a small subset of the provided informa-
tion (feature points) for the estimation process. This natu-
rally leads to the investigation of sparse feature-point based
methods [8] which have become an established tool. Yet,
the accuracy of the obtained parameters strongly depends
on the precision of the underlying feature-point detector
as well as the reliability of the matching procedure. Even
though multiple heuristics have been proposed to tackle
these tasks, like epipolar constraints and robust model fit-
ting, the exploration of dense formulations to better under-
stand the nature of the registration process deserves more
attention (see figure 1).

1.2. Related Work

Sparse calibration, also referred to as structure-from-
motion, has undergone exhaustive analysis. Research has
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been conducted in various directions – ranging from the
identification of salient image points [7, 12] and corre-
sponding descriptors [12, 19] to the determination of min-
imal point sets needed [13] and their robust matching [3].
A key ingredient of a multi-camera calibration system is
a global optimization step involving all camera parameters
and estimated sparse 3D geometry, called bundle adjust-
ment [20]. Usually, the calibration pipeline is split into mul-
tiple sequential stages: First, feature points and correspond-
ing descriptors are estimated, then, an initial matching and
3D structure are established, and finally, a global refinement
step is performed while filtering out mismatches and out-
liers. Thereby, the feature points are estimated only once
at the beginning and held fixed during the entire calibration
process so as to break the ill-posedness of the problem. Ob-
viously, the accuracy of the obtained calibration parameters
strongly depends on the precision of the underlying feature
points and respective descriptors. Yet, in practice their pre-
cision is limited, since the computations are performed on a
pixel basis without any knowledge of the observed geome-
try. In this work, we show how estimated dense 3D structure
can be exploited to further improve a given calibration.

Recently, Furukawa and Ponce suggested a stereo-based
approach for calibration refinement [4]. The method starts
with initial calibration parameters and a sparse 3D point
cloud representing the observed geometry and assigns an
oriented patch to each point. The optimal calibration pa-
rameters and the precise localization of each 3D point in
space are obtained by finding the local orientation giving
rise to the most consistent patch distortion. Although this
approach significantly improves upon classical sparse meth-
ods, it is still limited by the underlying local planarity as-
sumption.

Multiple researchers have tried to use silhouettes to
jointly estimate dense geometry and camera parameters.
While the approaches of [22] and [2] require given object
outlines in a binary form, the method of [23] is more gen-
eral and proposes a unified framework for image segmenta-
tion and camera calibration. Although these techniques also
have been shown to improve the calibration in certain cases,
they are limited to specific objects and camera motion. For
example, when panning around a spherical object, the ob-
served silhouette may not change at all, which introduces a
severe ambiguity in the optimization. In general, silhouette-
based methods suffer from the fact that they do not exploit
the whole available information, ignoring all color consis-
tency between modeled and observed scene inside the ob-
ject.

The refinement of camera parameters in spatially dense
reconstruction methods has been further generalized in the
variational approach of Unal et al. [21]. There, the authors
suggest a generative model of image formation and subse-
quently estimate by gradient descent minimization both in-

trinsic parameters (focal length and skew) and extrinsic pa-
rameters (translation, rotation). However, the proposed for-
mulation is based on particular assumptions regarding the
radiance of the 3D scene – piecewise smoothness for the
object and constancy for the background.

A closer analysis of this latter approach reveals that the
camera parameters are estimated based on minimizing a
photometric error (color difference between modeled and
observed scene). Interestingly, this is fundamentally differ-
ent from the geometric error (reprojection error) that most
sparse state-of-the-art algorithms like bundle adjustment
minimize. In contrast, the current work could be regarded
as an effort for a dense formulation of bundle adjustment.

1.3. Contributions

In this paper, we revisit variational camera calibration
in a spatially dense setting and propose a novel algorithm
which is shown to provide more robust and accurate camera
parameters. The proposed method improves over the work
of Unal et al. [21] in several ways:

• The variational approach includes a super-resolution
model of the object’s texture, giving rise to more accu-
rate camera parameters.

• We introduce a relaxation technique which allows to
decouple the estimation of point correspondences and
camera parameters. In this manner, we show that the
original minimization problem can be solved by alter-
nating dense correspondence estimation given by an
optical-flow like algorithm with camera parameter es-
timation given by a continuous form of bundle adjust-
ment.

• We experimentally demonstrate that the proposed vari-
ational camera calibration leads to substantial im-
provements both in the computed geometry and in the
estimated texture.

2. Dense Calibration: Variational Formulation
2.1. Image Formation Model

Given a texture and a 3D model, the optimal camera pa-
rameters are those which minimize the reprojection error.
We employ a super-resolution model of the reprojection er-
ror similar to the one formulated in [6]. Assume that we
observe an object with known surface geometry Σ in n cam-
eras, modeled by their projections πi : R3 → Ω mapping
from 3D space into an image plane Ω. Let Ii : Ω → R3,
i = 1, . . . , n denote the corresponding color images. Fol-
lowing the state-of-the-art super-resolution model [17], a
real-world camera downsamples the input by integrating
over the rays incoming in each sensor element. This pro-
cess can be modeled by convolution with a kernel b derived
from the properties of the camera [1].
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Figure 2. The image T is obtained by rendering the current 3D
model and the respective texture map by means of the back-
projection map β of each camera. We propose to use the optic
flow v between I and T as a measure for the geometric reprojec-
tion error and minimize it with respect to the projection π.

Let T : Σ→ R3 be the estimated texture map of the sur-
face extracted from the input images. Then, the reprojec-
tion error in terms of the texture and the unknown camera
parameters πk is given by

E(T, π) :=

n∑
i=1

∫
Si

‖b ∗ (T ◦ βi)− Ii‖ dx. (1)

Here, the back-projection mappings βi : Si → Σ assign the
visible point on the surface to each point in the silhouettes
Si := πi(Σ) ⊂ Ω, see figure 2. They satisfy βi ◦ πi = idΣ

on the part of the surface visible in camera i, and so depend
on πi and Σ in a complicated way. Thereby, the convolu-
tion b is applied in the individual color channels separately.
The term T ◦βi yields the observed intensity of the textured
object in the view of the ith camera, which is transformed
according to the super-resolution camera model and com-
pared with the respective input image Ii. The norm ‖.‖ in
(1) and in the following denotes the Euclidean norm.

While measuring the reprojection error in the individual
images, the model in (1) differs from previously proposed
ones on variational calibration [21] in two ways. Firstly, it
relies on a super-resolution formulation which is expected
to capture finer object texture details and thus leads to a
more precise calibration. Secondly, we propose to exchange
the L2-norm used in [21, 6] with the L1-norm which is the-
oretically more robust and which we found to give better
results in practice.

2.2. Camera Reprojection Error

It was shown in [6] how to compute an accurate, super-
resolved texture map by minimizing the energy (1). In this
work, we focus on improving the camera calibration. That
is, we assume the texture T as well as the 3D model Σ are
pre-computed using an approximate initial camera calibra-
tion and minimize the energy (1) with respect to π in order

to get a more accurate calibration. Of course, both the 3D
model as well as the texture map can then iteratively be im-
proved once the calibration becomes more accurate. For ge-
ometry reconstruction, we employ the algorithms proposed
in [10] and [11]. While the energy optimized in their work
to obtain the surface is different from the one above, it is
still closely related to our variational approach.

Note that if T is kept fixed, each term of the sum in (1) is
completely independent of the others, and can be minimized
separately. For this reason, we will consider in the follow-
ing only a single term of the sum and omit the dependence
on the index i to simplify notations.

The derivatives of the back-projection β are very difficult
to compute and depend on the 3D model whose accuracy is
hard to predict. For this reason, we transform the energy (1)
onto the surface and obtain

Ecam(π) =

∫
β(S)

‖I ◦ π − T‖ det(Dπ) ds (2)

as the contribution of a single camera to the total repro-
jection error E. Thereby, det(Dπ) is the Jacobian of π
which accounts for surface area foreshortening in terms of
projection distortion [16]. Integration takes place over the
back-projected silhouette β(S) ⊂ Σ, i.e. the part of the
surface visible in the respective camera. We exploit the
super-resolution model only for computing an accurate tex-
ture map, since it would be computationally prohibitive to
optimize it with respect to the projections. Therefore, in (2)
we set the kernel b to identity.

2.3. Direct Minimization via Gradient Descent

In order to minimize energy (2) with respect to π, we
need a suitable parametrization of π by a set of parame-
ters (gi)1≤i≤m. In our implementation, we limit ourselves
to the camera extrinsics, i.e. rotation and translation, giving
rise to m = 6 degrees of freedom. Yet, a generalization to
a more complex camera model is straightforward.

The simplest approach to minimize energy (2) is to per-
form gradient descent in the parameters gi. In order to avoid
an expensive recomputation of I ◦ π in each step, one can
switch to a Taylor expansion of π with respect to calibration
parameter updates δg1, . . . , δgm

(I ◦ π)(g1 + δg1, . . . , δgm + δgm) ≈

(I ◦ π)(g1, . . . , gm) +DI

(
m∑
i=1

dπ

dgi
δgi

)
,

(3)

where DI denotes the Jacobian of I with respect to the
projection parameters. Plugging this into (2) yields the fol-
lowing functional∫

β(S)

∥∥∥∥∥I ◦ π +DI

(
m∑
i=1

dπ

dgi
δgi

)
− T

∥∥∥∥∥det(Dπ) ds.

(4)



Now, (4) is minimized with respect to the calibration up-
dates δgi, i = 1, . . . ,m. To compute the derivatives of π,
we make use of the exponential parametrization. For tech-
nical details, we refer to [21].

2.4. Limitations of the Direct Approach

The above approach is a generalization of the model
in [21]. While also relying on the reprojection error, the
main differences are the use of a L1-norm and a super-
resolution texture estimation. However, experiments indi-
cate that local minimization of this highly non-convex op-
timization problem gives rise to suboptimal solutions and
often does not lead to substantial improvements in the esti-
mated camera parameters. In the next section, we will pro-
vide reasons for this shortcoming and propose a decoupling
strategy which leads to a considerably more robust calibra-
tion method.

3. Decoupling Photometry and Geometry
A closer look at functional (1) reveals that the camera

parameters are being estimated so as to minimize the pho-
tometric error between modeled and observed texture. In-
terestingly, this is in sharp contrast to the established bundle
adjustment approach for accurate camera calibration which
aims at minimizing the geometric error between observed
points and the corresponding back-projected 3D points.
In particular, the problems of estimating point correspon-
dences and minimizing the geometric error are treated sep-
arately. This is important because, upon gradual improve-
ment of the camera parameters, the geometric error is likely
to decrease, whereas – in particular for high-resolution tex-
tures – the photometric error is more likely to oscillate
(rather than decrease), thus leading to bad convergence of
algorithms based on pure photometric criteria. In other
words, incorporating a geometric measure reduces the num-
ber of local minima and gives clearer evolution directions.
Furthermore, the success of established tools like bundle
adjustment indicates that for accurate camera calibration
based on high-resolution textures, one should separate the
algorithmic problems of correspondence estimation and cal-
ibration.

In the following, we will demonstrate that a relaxation
scheme for minimizing energy (1) provides exactly the de-
sired solution to the above problem.

3.1. Decoupled Energy

To achieve the goal of decoupling the two subproblems,
we introduce for each camera an additional displacement
field v : Ω → R2 defined on the image plane, which re-
sembles the error in the projection. The key observation is
that the image formation model shall be matched exactly if
each point is displaced by v to account for the error. At the
minimum, v should of course be as small as possible. By

reformulating a single term of energy (1) in terms of this
new displacement field, we arrive at

E(π, v) =

∫
S

‖I(x+ v(x))− T (x)‖ dx +α ‖v‖1,1 , (5)

where α > 0 is a weighting parameter and T := b ∗ (T ◦β)
is the appearance of the object using the current calibration
and texture. The model in (5) can be interpreted as a relax-
ation of energy (1), since if α → ∞, the displacement v is
forced to be zero and we arrive at the original solution for π.
To regularize v, we choose the Sobolev norm ‖·‖1,1, since
in order to stabilize the solution, it is necessary to not only
penalize large displacements but also large changes of the
displacements, i.e. the first derivative.

Comparing the energy functional in (5) to the methodol-
ogy of sparse calibration methods, we observe that the pro-
posed dense formulation allows to propagate neighboring
information by regularizing the underlying displacement
field v. Thereby, well-textured regions prevail, while ho-
mogeneous regions give rise to displacements close to zero.
It should be noted that the formulation in (5) can easily be
“sparsified” by integrating in the first term a weighting func-
tion w : Ω → {0, 1} (or a relaxed version w : Ω → [0, 1])
which accounts for the reliability of the respective pixel
measurement. Yet, we found out that this is usually not
necessary in practice.

One can observe that the energy model in (5) is expressed
in terms of two conceptually different arguments – the pro-
jection π and the image-based displacement field v. Thus,
a straightforward way to accomplish the minimization is to
split the functional into two parts E1(v) +E2(π) and to op-
timize iteratively E1 with respect to v and E2 with respect
to π.

3.2. Computing the Geometric Reprojection Error

In the proposed formulation, the first part of the energy
is comprised of the data term and the derivative part of the
Sobolev norm

E1(v) =

∫
S

‖I(x+ v(x))− T (x)‖+α ‖Dv(x)‖ dx. (6)

It resembles a TV-L1 optical flow model and can be mini-
mized with the algorithm detailed in [24].

This step allows to compute a geometric error v, while
minimizing the photometric error.

In order to make the approach applicable to the non-
Lambertian case, i.e. to make it robust to illumination
changes, in a preprocessing step we perform classical nor-
malization of the image intensities. In particular, we trans-
form the images I and T to achieve a contrast invariant
form of the error term. Denoting by µ(I, x) the local mean
of the image I at x and by σ(I, x) the respective standard



deviation, the transformation for I is defined as

I(x)− µ(I, x)

σ(I, x)
(7)

and analogously for T . In our experiments, we applied this
procedure on 5× 5 patches.

3.3. Optimization w.r.t. the Projection

The idea behind the second part of the energy is to ex-
plain the error v in the projection by the error in the calibra-
tion - that is, we want to adapt π such that it leads to a reduc-
tion of the observed error v in the next iteration. Comparing
the total energy (5) and the first part (6), we observe that the
missing term for the second part is the L1-norm of v. We
now make the dependence on the projection explicit.

The intuition behind the displacement field v(x) ob-
tained at a point x in the silhouette is that the point should
instead be projected onto x + v(x) for an optimally photo-
consistent match, see figure 2. We can achieve this goal by
rewriting the second part of the energy in terms of π and
then updating the projection accordingly. Therefore, we in-
troduce a mapping p : β(S)→ Ω, which assigns the (possi-
bly erroneous) projection to each point on the visible part of
the surface. The defining equation is (p◦β)(x) = v(x)+x.
Thus, p could be regarded as a generalized projection tak-
ing the correction field v into account. Note that it is kept
fixed during the subsequent optimization of π. In order
to match the desired updated projection to the observed
error, note that for a visible point s on the surface, we
have v ◦ π(s) = p(s) − π(s), since β ◦ π(s) = s. Us-
ing this identity, we can transform the second part of the
energy up to the surface and rewrite it as

E2(π) =

∫
Ω

‖v(x)‖ dx =

∫
β(S)

‖p− π‖ det(Dπ) ds.

(8)
This equation resembles the standard discrete bundle ad-
justment process in which

∑
j (xj − π(sj))

2 is being mini-
mized, where sj are the different discrete 3D points and xj
– the corresponding projections. Note that we have an addi-
tional term which accounts for the foreshortening of the sur-
face under perspective projection. In fact, modeling this im-
portant aspect in a rigorous way is only possible in a dense
formulation.

We minimize E2 in the same way as already described
for the energy in paragraph 2.3. Plugging in the Taylor
expansion of the projection around the currect values of
the projection parameters, we again end up with an energy
which we can minimize with respect to the calibration pa-
rameter updates (δg1, . . . , δgm). The energy (8) written in
terms of these updates appears in step 5 of the complete al-
gorithm, which is summarized in table 3.

INPUT: 3D model, texture model T , input images Ik, cam-
era parameters gki

1: for all k do
2: repeat
3: compute T ◦ βk
4: compute optical flow v between T ◦ βk and Ik by

minimizing E1(v)
5: compute

{
δgki
}
i

to minimize∫
βk(S)

∣∣∣∣∑m
i=1

dπ

dgi
δgi − v ◦ πk

∣∣∣∣det(Dπ) ds

6: for all i do
7: gki ← gki + δgki
8: end for
9: until convergence

10: end for
11: RETURN

{
δgk
}
k

Figure 3. Algorithm for decoupled variational calibration.

4. Experiments and Results

We evaluate the performance of the proposed calibration
approach by examining the improvements of the estimated
texture map as well as the reconstructed 3D geometry.

4.1. Direct vs. Decoupled Approach

In figure 4, we compare the results of the decoupled
method and the direct photometric solution described in
section 2.3. We used an image sequence capturing a bunny
figurine consisting of 33 views with manually distorted cal-
ibration parameters1. It can be observed that while the pho-
tometric error converges to a similar value for both meth-
ods, the geometric error, which is represented by the optical
flow, converges to a substantially smaller value with our al-
gorithm than with the direct approach. Furthermore, the
decoupled model leads to less outliers, a faster convergence
rate and more resilience to local minima. Contrary to sparse
feature-point based methods, the proposed formulation also
has the advantage of not favoring any particular regions de-
pending on the number of salient points. This is important
to avoid scene-specific accumulation effects.

4.2. Improving the Texture

A first experiment, which shows that our framework in-
deed improves the camera parameters, is to compute a tex-
ture map for a fixed geometric model before and after ap-
plying the proposed calibration optimization (see figure 5).
In order to be independent from the particular approach for
texture estimation, we show comparisons for the naive av-
eraging method as well as the super-resolution method of
[6].

1The image sequences in figure 4 and 6 are publicly available on our
webpage, http://cvpr.in.tum.de/research/datasets
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Figure 4. Comparison of the direct method and the method improved by our relaxation. While the photometric errors converge to similar
values in both cases, the geometric error is much lower with the proposed decoupling method. This can be understood by looking at the
optical flow evolution, where we can see that the direct method gets stuck in a local minimum. In our proposed scheme the magnitude of
the flow, which represents the geometric reprojection error, is overall much lower and converges steadily.

It can be observed that the simple color averaging tech-
nique produces quite blurry results. Nevertheless, the pro-
posed calibration procedure leads to a visible enhancement
of the texture pattern.

The improvements are even more notable when applying
the super-resolution framework. In this case, visual artifacts
are removed to obtain a high-quality texture map. Note that
even some of the fine-scale texture details are clearly vis-
ible. Moreover, with the improved calibration of the im-
ages approximately 10 times less iterations of the super-
resolution algorithm were necessary to converge to the vi-
sualized result. This is not surprising, since a better cali-
bration gives rise to more accurate costs and thus – more
precise derivative directions which guide the optimization
process.

4.3. Improving the Geometry

By applying the proposed variational calibration ap-
proach, we observed substantial improvements also in the
reconstructed 3D models. Generally, the changes are more
notable for small image sequences, since for large datasets

calibration inaccuracies sum up and balance each other.
Note, however, that a reduced number of images pose a
great challenge for classical sparse calibration methods due
to the large baselines which considerably exacerbate the
matching process.

Our first test sequence captures a bird figurine from 21
vantage points. The original calibration was obtained by
applying a classical LED-based calibration procedure. A
traditional visual hull computation with the original and re-
fined camera parameters already shows some small but con-
siderable improvements, see figure 6. This is clearly visible
at the leg, where miscalibrations cause notable artifacts.

In our second test case, we explore the sensibility of
a multi-view stereo algorithm [10] on calibration refine-
ment, see figure 7. The dataset consists of 16 image of a
temple replicate and is used in the well-known Middlebury
multi-view stereo evaluation challenge as “templeSparseR-
ing” (see [14]). Clearly, the reconstruction with the orig-
inal camera parameters exhibits more irregularity than the
reconstruction with the parameters optimized with our al-
gorithm. This is additionally confirmed by a quantitative
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Figure 5. Texture improvements after refining the camera param-
eters with the proposed approach for the bird data set (see fig. 6).
The original calibration was obtained by applying a classical LED-
based calibration procedure. Visualized are zoomings of an aver-
age texture map (left) and a super-resolution texture map (right).
Note the enhancement of the texture pattern as well as the removal
of visual artifacts obtained with the refined calibration parameters.

evaluation. The percentage of points within a band of 2 mil-
limeters was increased by 2%, and the mean accuracy of the
99% best points was improved by 1.45 millimeters, whereas
the percentage of points within a band of 1.25 millimeters
was increased by 2.7%, and the mean accuracy of the 90%
best points was improved by 0.16 millimeters. These results
point out the strong reduction of the number of outliers, as
well as a general improvement in accuracy. This conclusion
is in agreement with the observations in [4].

5. Conclusion and perspective

We have proposed a novel method to perform variational
camera calibration in a spatially dense setting. Using a re-
laxation technique, which allows to decouple the estima-
tion of point correspondences and camera parameters, we
break down the original minimization problem into two dis-
tinct subproblems and solve them alternately. The first sub-
problem is a dense correspondence estimation which is ad-
dressed by an optical flow algorithm, the second – a camera
parameter estimation which resembles a continuous dense
form of bundle adjustment. Experiments demonstrate that
the decoupling strategy leads to a more accurate result than
a direct minimization approach. The refined camera param-
eters provided by our method lead to a significant improve-

input images (3/21)

original improved
calibration calibration

Figure 6. On the bird dataset, refining the calibration parameters
with the proposed approach leads to small but substantial improve-
ments in the subsequently computed visual hull. The original cal-
ibration was obtained by applying a classical LED-based calibra-
tion procedure.

ment of the estimated super-resolved texture maps as well
as the reconstructed 3D models.

As a future work, it would be interesting to explore if the
proposed formulation could be extended by incorporating
further established concepts from sparse calibration meth-
ods like epipolar constraints to additionally increase the ro-
bustness of the approach. Moreover, a generalization uni-
fying camera calibration, texture and geometry estimation
in a single framework seems to be challenging but quite ap-
pealing.
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