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Abstract

In this survey, we argue that using structured vocabularies is capital to the

success of image annotation. We analyze literature on image annotation uses and

user needs, and we stress the need for automatic annotation. We briefly expose

the difficulties posed to machines for this task and how it relates to controlled

vocabularies. We survey contributions in the field showing how structures are

introduced. First we present studies that use unstructured vocabulary, focusing

on those introducing links between categories or between features. Then we

review work using structured vocabularies as an input and we analyze how the

structure is exploited.
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1. Introduction

Digital images are ubiquitous in modern life. Professional databases are used

by journalists or in the advertising industry; videosurveillance generates tera

bytes of data every day; remote sensing images are integrated in user friendly

environments. The evolution of the Internet and communication facilities has

given access to huge mass of data to a general public eager to share experience

and information on so called Web 2.0 applications.
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Two-time Formula One champion

Mika Hakkinen drives a McLaren Mer-

cedes F1 car down a section of the pro-

posed F1 street circuit in Singapore

March 30, 2008. Hakkinen says the

first night race on a Singapore street

circuit will pose unique challenges to

drivers but safety concerns can be al-

layed by organization and preparation.

Hakkinen drove on the street as part of

an anti-drink driving campaign.

Figure 1: Annotation example from Reuters pictures (credits: Vivek

Prakash/Reuters).

To become manageable and to meet scalability requirements, images are usu-

ally complemented by extra formal representations called metadata which serves

as an informative index or even as a substitute for the data itself. Metadata

may contain various types of information: date, location, symbolic description,

physical properties... It can be expressed as a free text, or in a more constrained

format.

Figure 1 gives an example of a textual metadata coming with a journalistic

picture from Reuters Press Agency. This metadata contains various types of

information expected to be useful to a journalist: the sports event, its date and

location, the people involved, the circumstances, etc. One can already discrim-

inate two categories of information in this short text: one that can be deduced

from the image itself using background interpretation knowledge, and one that

cannot. In this survey, we are interested in the first category, i.e. information

that can be inferred from the sole image, from its content, independently of any

other contextual clues or sources.

Designing algorithmic procedures to annotate images has been the subject
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of much research. The original, and still very active, trend of studies has ad-

dressed the annotation as an arrangement of processing modules such as feature

extraction, region segmentation, saliency detection, pattern recognition, etc. It

is concerned mainly by object or people detection and recognition functions and

assesses the reliability of the processing chains on limited data samples. In the

last decades, the availability of large multimedia databases have brought new is-

sues such as image indexing and retrieval, shifting the performance objectives to

the mastering of large amount of data but sometimes with lower requirements.

More recently, the development and use of data sharing applications has mo-

tivated an increasing interest in semantic representations. Indeed, since effective

communication relies on shared languages and practices, a logical evolution is

to embed representations in a semantic structure in order to make them un-

derstandable by humans or processed by computers. If we go back to Fig. 1,

the attached annotation, although concise, has already a rather complex struc-

ture. It mixes various levels of description according to different points of view

or facets. Moreover, in certain circumstances, the higher precision level might

be superfluous, and it might be sufficient to know that the image represents a

Formula One event, or even more simply, a kind of sport.

Figure 2 is an attempt to capture the trend of research with respect to

semantic image annotations. While there is no unified vocabulary to express

the idea of hierarchical and multi-faceted annotation or description, results in

a Google Scholar search show an increase in articles mentioning taxonomies or

semantic hierarchies in the context of images.

This article intends to present the state of the art of the techniques aiming at

producing rich image content description using shared vocabularies. A specific

effort will be given to show how multiple levels of precision and richer semantics

have been touched upon. Although clearly connected, object recognition and

image retrieval technical aspects are not the subject of this survey. Interested

reader should refer to surveys by Datta et al. [20] and Liu et al. [60].

Automatic annotation is a complex task. As shown in the examples, the

choice of the words being used is highly dependent on the application, user
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Figure 2: Research trends with respect to semantic image annotation, captured

by Google Scholar results. The curves give the number of articles returned by

Google Scholar when searching for the mentioned requests, scaled to fit in a same

figure. The first two (red and violet) correspond to the left axis, and the other

(green and blue) correspond to the right axis. The green curve, corresponding

to image “taxonomies”, has been multiplied by a factor 10, again for readability.
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needs, and user context. These different possible descriptions for an image is the

subject of Section 2. We will study the different annotations that can be applied

to an image, and the role of the user in the selection of keywords. Then we will

explain the technical difficulties, epitomized by the so-called semantic gap, in

Section 3.1. We will also make a short presentation of the different attempts

being made towards bridging this gap through object recognition techniques,

and of the vocabulary structures that could be used with it – i.e. the kinds of

existing semantic hierarchies.

Eventually, we will review significant works in both object/scene recognition

and image retrieval: first, those that do not use semantic structures as an input

in Section 4, and second, those that do in Section 5.

2. The nature and use of semantics in image description

The metadata given in Fig. 1 is probably the highest level of annotation

one can imagine. The image is placed in its initial context. Given only the

description, one can guess quite easily the composition of the picture: a Formula-

1 car in a street, buildings in the background, barriers delineating the circuit,

and people. Some information can be extracted from the data, but there are also

non-visual information contained in the description. For instance, it informs us

that (i) Mika Hakkinen has been F1 world champion twice, (ii) the race he takes

part in is part of an anti-drink driving campaign, (iii) the photo has been taken

on March 30, 2008. This information cannot be inferred from the picture data

alone.

We will follow the analysis of Shatford Layne [81] about metadata typology

which divides it into four categories:

1. Biographical attributes, i.e. concerning the creation of the image (location,

time...),

2. Subject attributes, that describe the content of the image,

3. Exemplified attributes, i.e. the kind of illustration that the image is (pho-

tograph, cartoon, sketch...),
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4. Relationship attributes, which are links to related images (e.g. a painting

could be linked to a corresponding sketch).

The present survey only addresses the problem of content description, i.e. sub-

ject attributes if we take the above terminology.

2.1. Semantic levels

As the example of Fig. 1 demonstrates, metadata as such is made of different

kinds of information. Our focus is on image content, for which the image is the

only source of information. In the theory of Shatford, there are several aspects

of content description:

1. the Of-ness vs. About-ness, i.e. the objective and concrete description vs.

the subjective and abstract one. For instance, if “someone crying” is an

objective description, “pain” is a subjective one.

2. the description can be generic, as in “a bridge”, or specific, as in “Brooklyn

bridge”.

3. it can have four facets: time, localization, event, or object.

Jörgensen [51] extends this idea, and shows that an image can be described

from different facets and that in image search, an image should be reachable

from a number of entry points, rather than a unique one. Formally, we can say

that images and their concepts are not linked together by a single hierarchy, but

multiple. Moreover, following the distinction made by Shatford, she separates

between perceptual attributes, i.e. objective ones, and interpretive attributes

that depend on (necessarily subjective) interpretation. She adds reactive at-

tributes, that describe the personal reactions of a person seeing the image.

Enser and Sandom [26] adapt from Jörgensen [51] using perceptual, generic-

interpretive, specific-interpretive and abstract levels of description.

Jaimes and Chang [48] offer to structure the content of the image using

ten levels between visual image features and abstract interpretation, shown in

Table 1. The first 4 levels refer to the perceptual aspects, or syntax. The last

6 levels correspond to semantics, or visual concepts. The authors point out
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1. Type, Technique

2. Global Distribution

3. Local Structure

4. Global Composition

5. Generic Objects

6. Generic Scene

7. Specific Objects

8. Specific Scene

9. Abstract Objects

10. Abstract Scene

Table 1: The description levels suggested by Jaimes and Chang [48].

that the distinction between the levels need not be strict; it is rather an aid to

understanding the issue. The higher the level, the more knowledge is involved

in the interpretation. The four syntactic levels are fully objective and purely

numerical description of the image. The semantic levels can be compared with

Shatford’s and Jörgensen’s distinctions between generic, specific and abstract

levels, together with a distinction between the description of objects (or local

components, e.g. a F1, skyscrapers, a street...) and the description of the scene

(in Figure 1, e.g., a F1 race). An example is given in Figure 3. To the best of our

knowledge, today’s algorithms do not exceed level 7 in automatic recognition.

Hollink et al. [46] take the same levels as [48] and use Unified Modeling Lan-

guage (UML) in an attempt to transcribe the annotation levels formally. This

way, they can easily describe a scene as a composition of objects, and even an

object can be a description of objects, enabling recursion. Any of these (scene or

object) can be described with three levels of genericness/specificity/abstraction,

and a description may stem from any of the facets: space, time, event or object,

as in Shatford Layne [81].

Hare et al. [44] propose a gradation similar to [48] from the raw image to

high-level semantics: raw image; visual descriptors; objects (i.e. segmentation);
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1. photo

2. (histogram)

4. (segmentation)

5. flower, leaf, water

6. nature

7. water lily and its leaves

8. pond

10. stillness, coldness

Figure 3: Example of annotations at different levels.

object names; semantics (i.e. meaning at the scene level).

Eakins et al. [24] show different aspects of abstraction, which somehow can be

related to the scene’s generic, specific, and abstract levels of Jaimes and Chang

[48]. Contextual abstraction depends on the knowledge of the environment,

which can be quite basic (or generic). Cultural abstraction refers to interpre-

tation using a specific cultural knowledge (e.g. to understand the meaning of

a religious ceremonial). Emotional abstraction refers to interpretation strongly

influenced by the personal background of the viewer (related to Jörgensen’s re-

active attribute). Finally, to understand technical abstraction one needs expert

knowledge of the domain, e.g. to interpret X-rays.

As a further example, the content of the image in Figure 1 can be described

at several levels depending on the viewer’s background knowledge : an outdoor

scene; a car, a street, buildings, people, sky; a town; a car race, a business

district; a Formula One...

Several hierarchical relations can be introduced in these descriptions. We

introduce the following notations to describe them. Let ≺ be the symbol for

an Is-A relationship between two categories. A ≺ B means that A is a B, i.e.

any object in category A is also in category B. Let @ represent the Part-Of

relation: A @ B if A is a part of B, and ∧ be the co-occurrence relation: A∧B
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when A and B are found in a same image. For the example of Figure 1, we then

have:

• McLaren Mercedes Formula One ≺ F1 ≺ sports car ≺ car,

• modern town with skyscrapers ≺ town,

• sport car ∧ spectators @ car race,

• buildings ∧ street @ town.

Describing the content of an image has been the subject of studies from

archivists, among others. Even when annotated by humans, what to annotate,

and how, is not straightforward. We have seen that an image can be described

at several levels of genericness, or semantic precision, and following several de-

scription paths, or facets. It depends on the user’s objective what description

level will prevail. In other words, what is the description level most likely to be

interesting? We will now review several user studies and try to give insight into

this question in the following section.

2.2. The user, his goal, his context

So far we have seen that images can be interpreted at several levels of seman-

tic description (genericness/specificity), and of abstraction (About-ness/Of-ness

or subjective/objective). Which level is meaningful depends on the user’s con-

text.

As Hollink et al. [46] point it out, a first context feature is the application

domain. What is the database to be searched? Does it cover a broad domain?

Does it handle a large vocabulary?

The user level of expertise is also a key factor. Enser and Sandom [26] make

a distinction between generalists and specialists. For Hollink et al. [46], there

are various degrees between the two, and it depends on the domain. Jaimes [47]

underlines the connection between the aim of the user and the form of the query:

a user searching for something specific will choose specific keywords, whereas if

he has only a vague idea, he will prefer browsing (following the organization of
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the database, i.e. choosing categories from a menu, and viewing thumbnails).

This is the conclusion of several studies, such as Markkula and Sormunen [63]

and Frost et al. [36]. Markkula and Sormunen [63] observed that journalists

searching for generic concepts in journal archives had difficulties with keyword

search and preferred browsing. The keyword annotations given by archivists

were better fitted for specific queries. Frost et al. [36] noted that users that

were not well acquainted with the database content also preferred browsing.

The next aspect that depends on the user is the search mode. Indeed, the

way one searches for images is highly dependent on its context. Hollink et al. [46]

lists several modes of image search: browsing, keywords-based, using keywords

with logical operators, free-text, example-based, or sketch-based. Eakins [23]

gives different types of queries, for text only:

1. those using image primitives (such as “find images containing yellow stars

in a circle”),

2. those using logical attributes, requiring a minimum of image interpretation

(as in “find images of a train passing on a bridge”),

3. those using abstract attributes, demanding complex reasoning on the con-

tent of images (e.g., “find images about freedom”).

Most of the available software is searching for content at level 1. Yet studies

show that most of the users queries are at level 2, and a lot of them are at level 3

[5, 23].

Jaimes [47] further describes user behaviors. Given a search method, the

user can adopt different search behaviors, such as: using exploration to make

the query more and more specific; using intuition; being more purposive, having

something specific in mind; etc.

Finally, the user will be guided by its task. Hollink et al. [46] describe it

as a spectrum between a data pole and an object pole, where the data pole is

for informative images and the object pole for the decorative aspects of images.

Eakins et al. [24] describes seven types of tasks. We show them in a different

order compared to their article, putting them in an “informative” order between
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the data pole and the object pole:

Information processing where the data itself is of primary importance (e.g.

X-rays),

Information dissemination where the information has to be transmitted to

someone else (e.g. mug-shots to police),

Illustration where images are accompanied by another media (e.g. text for

news images),

Generation of ideas where images are the starting point of a creative process

(e.g. architecture),

Learning where the image is used to acquire knowledge (as in art or history),

Emotive where the reaction to the image is prevalent (e.g. advertising),

Aesthetic value is found at the object pole, where images are used for deco-

ration.

For all the different uses of images, we can see that only a few of them are

related to low-level image features (even aesthetic value might not always be

fully described by those and is partly subjective). Thus, having the possibility

to infer semantic concepts from the image seems crucial to organize, index and

search image databases. This is where annotation is essential. Moreover, it

stems from these studies that annotation should be multi-faceted (i.e. from

different perspectives/views) and multi-level, so as to address as much user

needs as possible.

3. About semantic analysis

3.1. The semantic gap

In most cases, automatic annotation follows 2 steps: (1) extraction of infor-

mative low-level visual features; (2) interpretation of these features into high-

level concepts. In the literature, the mapping from low-level features to high-

level concepts is called the semantic gap. Generally it is presented by explaining
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that the link between low-level features (i.e. numerical data) and semantic meta-

data, while natural for a human being, is far from being obvious to the machine.

Smeulders et al. [83] give the following definition : The semantic gap is the lack

of coincidence between the information that one can extract from the visual data

and the interpretation that the same data have for a user in a given situation.

Visual recognition in the human brain consists in linking the image printed

on the retina with a representation stored in memory [92]. The first stages of

visual processing have been studied extensively and is now claimed to be well

understood. How recognition occurs is less clear, as well as how objects and

concepts as expressed by language are stored in memory. Therefore, imitation

is unattainable. The human brain is able to recognize almost instantly a huge

number of objects, and putting them into language requires little effort for a

human being. To date, such incredible possibilities could not be reached by

machines.

The notion of semantics has been widely used by researchers in the image

processing community to designate automatic processes manipulating natural

language at some stage, as opposed to meaningless numerical data. Most of them

are not interested in the philosophical debate about the nature of concepts, or

the relation between knowledge and meaning. Neither will we get into such a

debate. Rather we will follow the customary and shallow use of the word, i.e. we

will refer to semantics when words of the natural language are used to describe

an image. Semantic analysis will refer to any kind of transcription of an image

into a linguistic expression.

The problem of semantic analysis has been addressed by several communi-

ties, with different approaches and influences. People from Artificial Intelligence

will rely on the use of knowledge bases, with sophisticated vocabularies struc-

tured by ontologies. In the Computer Vision community, statistical methods

are widely used, using quite simple vocabularies (they can be large, but are

generally not structured). In Indexation or Image Retrieval issues, user input

is taken into account more, and studies mix inspirations from linguistics and

statistical methods. In the next subsection, we explain more about the different
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structures in vocabularies that can be met in image semantic analysis together

with the basic problems tackled by object recognition.

3.2. Object recognition and controlled vocabularies

Apart from the fact that deciding the level of semantic interpretation might

not be obvious, object recognition in itself is a complex problem, for several

reasons:

• the world is complex: it contains a lot of different objects. For instance,

the human can easily recognize thousands of categories of objects, tens of

thousands if counting types of objects [11].

• visually, inter-category variations can be very small (e.g. a bird and a

plane, seen from a distance), whereas intra-category variations may be

high (especially for man-made objects, as for instance different kinds of

chairs, but also for natural objects, as for instance different butterflies).

• the conditions under which images are taken are unpredictable and strongly

affect appearance. Indeed, the same object seen from different points of

view can change a lot. Lighting conditions, background, occlusions all

affect appearance without necessarily influencing image interpretation.

• a single object can often change appearance. For instance, a human face

can change expression, and an animal can change position.

Thus, even without considering complex semantics, machine recognition of sim-

ple objects is difficult. The problem of object recognition could be solved in

special cases, for specific industrial applications for instance. Recognition in

more general cases is still an issue.

Studies in cognitive psychology show that category recognition occurs first

at a fundamental category level called basic level (see Rosch et al. [77], Mur-

phy and Smith [69], Jolicoeur et al. [50] for more precisions). Recognition of

super-categories and sub-categories happens next, using more detailed analy-

sis of visual appearance, especially looking details dependent of the category

recognized first.
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Hence, it is logical to test recognition a this basic level before making more

specific assumptions. In object categorization, an image is associated to a unique

term describing the object contained in the image, using a vocabulary with fixed

size K, V = {w1, . . . , wK}, that is, a list of K categories that can be recognized.

A controlled vocabulary is a vocabulary of reference, with fixed size, that is

used for indexing. It can have a structure, such as a thesaurus, a taxonomy or

an ontology. Gilchrist [40] gives an insight into these three kinds of structured

vocabularies, starting from their definition and explaining their use among sci-

entists of different communities. Garshol [38] gives more detailed definitions

that we reuse in the following.

The term taxonomy originally referred to the tree structure used for the clas-

sification of species in biological science. In computer science, the term is used

for about any kind of hierarchy between objects. Typically, it is used for Is-A hi-

erarchies, i.e. subtype/super-type relationships, also called hyponymy/hypernymy.

For instance, car is an hyponym of vehicle, and vehicle is the hypernym of car.

There are contradictions between authors concerning the difference between

taxonomy and thesaurus, which shows the vague character of the usage of these

terms. As a matter of fact, the two structures come from two separate domains,

namely biology and document indexing, and were used quite independently.

We will define a thesaurus as an extension of a taxonomy. A thesaurus,

apart from describing hyponymy/hypernymy relations, also links together words

that are synonyms, giving explanation about word usage, word equivalence and

preferences. Also, it will give related terms, i.e. words that belong to the same

domain, and often there will be a short definition of the meaning of the term as

used in the vocabulary.

An ontology is a model for the formal description of concepts [38]. It is

defined by a set of types (of concepts), of properties and of relationship types

between concepts (or objects). The formal model should be machine-readable.

The relationship types are more diverse than for a thesaurus and could in theory

be labeled by any type.
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Figure 4: Example of a semantic network with relations between concepts usu-

ally met in object recognition.

We will also use semantic networks as an intermediate between thesauri

and ontologies, describing more relationships than thesauri but less formal than

ontologies. Fig. 4 shows a semantic network representation with several types of

relations that are commonly used in the vision community. Two kinds of nodes

are possible: concept nodes represent categories of objects (such as “car”), and

instance nodes represent instances of objects, i.e. occurrences (such as “Jimmy’s

car”). In Fig. 4, we represent concept nodes differently for categories and parts,

for better clarity. In the following, our interest lies in concepts and not in

instances, i.e. relations of type Is-A-Kind-Of are not part of our study.

We will use the term “semantic hierarchy” with the more general meaning of

“semantic structure”, assuming there are hierarchical relations between concepts

(but not restricted to trees).

In the context of semantic analysis, so far, object recognition has been fo-

cused on using simple flat controlled vocabularies, i.e. unstructured, and often

of small size, as we will see later. Different problems were addressed:

• Object detection consists in deciding whether a particular object category

is present or not in an image,
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• Localization, aims at giving the position and scale of a particular object,

and is often associated with detection,

• Categorization consists in assigning one global label to the image, chosen

in a fixed-size list of labels,

• Identification is used either for the categorization of objects in sub-categories,

either for the recognition of a particular instance of an object (e.g., “Jane’s

car”),

• Annotation assigns a number of labels to the image, selected from a fixed

vocabulary,

• Correspondence (also called annotation), associates terms to image regions

(similar to categorization of regions).

All these problems are related: for instance, correspondence is used for cate-

gorization (especially for scenes), and categorization for annotation. Typically,

identification is done after categorization. Solving these problems relies heavily

on the use of image processing techniques and machine learning.

The problem of semantic analysis, and of the bridging of the semantic gap,

has been extensively studied in the past decades. Methods have been designed

based on various image databases, using a few object classes for scene or object

recognition, and up to hundreds of words for annotation and image retrieval,

and, more recently, object categorization. Understanding image content has

been the subject of research in two branches of computer vision: in object

recognition, the problem is tackled straightforwardly, whereas in image retrieval,

semantics became prominent more recently. Reviews of the state of the art in

object recognition can be found in Mundy [68], for a historical perspective, Pinz

[73] for a lengthy review of techniques used in object categorization, and Bosch

et al. [13] more specifically for scene recognition. Several reference papers at

the end of the last decade review works and techniques in content-based image

retrieval (Rui et al. [79], Smeulders et al. [83]). Eakins [23] speaks in favor

of more artificial intelligence in the domain. Recent reviews are given by Liu
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et al. [60], which is of particular interest since it advocates the introduction

of semantic aspects in image retrieval, and Datta et al. [20], a very extensive

review presenting the different issues and trends in this area. Understanding

the image content, or bridging the semantic gap, is now a problem commonly

raised in the image retrieval community.

In the following, we distinguish between two kinds of approaches used for

image semantic analysis: (a) classical approaches search for a mapping between

image numerical data and a flat vocabulary; (b) approaches based on seman-

tic knowledge representations, i.e. using a structured vocabulary, where the

structure is known beforehand.

In the next section, we will focus on methods used for semantic analysis

relying on flat vocabularies (Section 4). We will see that hierarchies are then

naturally introduced, and we will study methods relying on structured vocabu-

laries (Section 5).

4. Semantic image analysis using unstructured vocabularies

Among the classical approaches, several types of methods are being used:

1. Direct methods, using a plain representation of data and plain statistical

methods,

2. Linguistic methods, based on the use of an intermediate visual vocabulary

between raw numerical data and high-level semantics,

3. Compositional methods, where parts of the image are identified (typically

using segmentation) before the whole image or its parts are annotated,

4. Structural methods, where a geometry of parts is used,

5. Hierarchical compositional methods, where a hierarchy of parts is con-

structed for recognition,

6. Communicating methods, when information is shared between categories,

7. Hierarchical methods that search for hierarchical relationships between

categories,
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8. Multilabel methods, assigning several global labels simultaneously to an

image.

Methods of type 1 and 2 generally don’t introduce rich semantics. In the fol-

lowing sections, we will focus on the other types of methods, trying to underline

how multi-level or multi-faceted annotations are introduced.

4.1. Compositional methods

Compositional methods introduce richer semantics by tagging parts rather

than the whole image. ? ] begin by segmenting the image. They use a hierar-

chical generative model to map labels to regions, and assign a global label to the

image. Duygulu et al. [22] extend this model to a “translation model”, mapping

regions to words, and grouping words corresponding to similar regions. ? ] start

from the translation model and suppress the bijection constraint, thus proposing

a cross-media relevance model. Fan et al. [31] also use a similar method based

on segmentation to detect salient objects before annotating images.

Vogel and Schiele [94] suggest quite a different method: the image is divided

in small squares representing a “local concept”. Histograms of occurrences of

local concepts are used to describe the image globally and to classify it into

a scene category. They show that using occurrences of semantic concepts is

much more efficient than using occurrence of visual words. They also use this

representation to measure the typicality of scenes, which is interesting regarding

the theories of Rosch et al. [77], which state that some object instances are more

typical of their categories than others.

4.2. Structural methods

Several works underline the importance of using geometrical constraints be-

tween parts [34, 52, 55]. While not tagging these directly, they often notice

that the visual “words” they get correspond to semantic concepts (e.g. when

describing cars they get wheels, etc.).

Some works do use relations between tagged regions. In scene recognition,

Aksoy et al. [2] try to reduce the semantic gap by taking into account the spatial
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relations between image regions (rather than object parts), using a visual gram-

mar. In a first step, they use classifiers to assign labels to regions. Then, the

grammar is used to classify the image in a scene category. Datta et al. [18] also

use spatial links between regions to annotate images. Gupta and Davis [43] solve

the correspondence problem by exploiting object labels together with preposi-

tions (e.g. “the car is on the road”) and comparative adjectives (smaller,...) to

resolve ambiguities. Parikh and Chen [71] present hSOs, or Hierarchical Seman-

tics of Objects. Working on scene images, they locate salient objects and learn

the contextual links between them. For instance, they learn that a computer

monitor is often found in the same region as the keyboard, and that finding a

telephone next to them would not be very surprising.

4.3. Hierarchical compositional methods

Mojsilovic et al. [67] propose to narrow the semantic gap by using semantic

indicators as an intermediate between low-level features and image categories.

These indicators (skin, sky, water...) were determined by experiments with

human subjects. First they extract low-level features from the image, both local

and global, quantize and name them, and use these to discover the semantic

indicators. For instance, the visual features are used to find a blue area on

top of the image, interpreted as sky. Semantic indicators are then used for

categorization. Sudderth et al. [86] hierarchically learn parts, objects and scenes.

Their image representation is similar to Fergus et al. [34], but with the ability to

share parts between objects, and objects between scenes. Li et al. [58] suggest

a global method to segment the image, annotate regions and the whole image

and categorize the scene, based on the use of a hierarchical generative model.

Epshtein and Ullman [27] build a hierarchy of visual features. Starting with

an informative fragment, they search recursively for smaller informative frag-

ments in it. In [28], they extend this method to find so-called semantic fragments

automatically. Fidler and Leonardis [35] also build a hierarchy of parts using

unsupervised statistics. Each layer is built by composition of features of the

previous layers. Lower layers are built from simple features, and are category-
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independent. Higher levels describe more complex features, specific to each

category, and sometimes correspond to semantic features (e.g. wheels appear to

be among the features for cars). Another method to recognize simultaneously

several objects in an image is proposed by Ahuja and Todorovic [1]. They build

a hierarchy of object parts based on their co-occurrence in a same object. For

instance, “roof” and “chimney” often appear together and can be grouped into

a parent node named “roof with chimney”. “Windows-panels” can appear both

on “windows” and on “doors” and thus has these two categories as parents.

4.4. Communicating methods

A continual problem in learning for recognition is the number of categories

that can be learnt by a system. Generalization to new models is not straightfor-

ward. And the more categories, the more complex the model, the more memory

is needed, the more time for learning. Communicating approaches are meant to

follow one or both of these two aims: facilitate integration of new categories in

the system, and reduce the complexity of the classifier.

Perronnin [72] learns a vocabulary composed of two parts: the first is uni-

versal, shared by all categories, the other is category-specific. Fei-Fei et al. [33]

propose a model aimed at learning new categories from a few examples only.

They use a Bayesian approach, where a model a posteriori is learnt for each

category based on the update of a model a priori of the world, using a few

observations of the new category. Wang et al. [95] model latent themes as an

intermediate layer between the visual vocabulary and categories. These themes

group words together and are shared among categories. Todorovic and Ahuja

[88] learn to find occurrences of objects and object parts shared by several cat-

egories. This was also the case with the article by the same authors cited as a

hierarchical compositional methods [1]. They outperform SPM on Caltech-256.

Amit et al. [3] introduce a method for multiclass classification that allows

sharing both category visual features and classifier parameters. To do so, they

reformulate the SVM convex optimization problem using the trace-norm instead

of the Frobenius norm used in the original multiclass formulation of SVMs by
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Crammer and Singer [17]. In this model, information sharing is implicit.

Torralba et al. [90] use a multi-task approach to multiclass classification,

using boosting with binary classifiers. They note that this approach consid-

erably reduces the number of features necessary and allows fast classification.

In classical methods, the number of features used is linear with the number of

categories, whereas in theirs it is logarithmic.

More recently, Thomas et al. [87] propose cognitive feedback. They exploit

what they have learnt in recognizing objects in a number of images to find new

low-level metadata on objects in unknown categories. For instance, they can

recognize object parts.

4.5. Hierarchical methods

Hierarchical methods are used in a number of domains as an efficient tool to

simplify complex problems. “Divide and Conquer” is a famous principle, and

it would also be interesting for object recognition. However, it is not clear how

to group categories. When building hierarchies automatically, people generally

use low-level visual data rather than conceptual organization of the vocabulary.

We call these visual hierarchies.

Vasconcelos [93] propose a method for image indexing base on mixture mod-

els built in a hierarchy, allowing better performance and faster classification.

Fan and Geman [32] build a hierarchy of classifiers where the terminal node

give the categorization, with the possibility of having several node correspond-

ing to the same category. Wang et al. [95] use the way latent themes are shared

among categories to build a hierarchy with the initial words as the leaf nodes.

The taxonomy built is thus a by-product of the classification algorithm and

seems not to be exploited.

Many methods were proposed recently to build visual hierarchies, i.e. hi-

erarchies where the words of the vocabulary are leaf nodes and that describe

visual similarities between categories. Some use it to improve classification per-

formance, other to accelerate it. It shows that building hierarchies between

concepts is a subject of growing interest. Bart et al. [10] propose a Bayesian
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method to find a taxonomy such that an image is generated from a path in the

tree. Similar images have a lot of common nodes on their associated paths and

therefore a short distance to each other. The method presented is unsupervised

and the leaves correspond to visually similar images independent of the cate-

gories. Yet they also propose a supervised version in which the leaves would

correspond to the categories. With a bag-of-features representation, the super-

vised hierarchy performed better (68%) than an LDA model (64%) on an image

database of 13 scene categories. The LDA model (Latent Dirichlet Allocation)

is a generative model that assumes that visual words are generated from a finite

set of latent themes. Sivic et al. [82] suggest an improvement to this model by

further supposing that the visual words that are generated have a tree struc-

ture. This model, called Hierarchical-LDA, was originally developed for text

analysis. They use it together with segmentation in an unsupervised framework

and show that categories correspond to leaf nodes. Griffin and Perona [42] build

a hierarchy for faster classification. Instead of using a multiclass classifier over

all the categories, they go top-down in the hierarchy. To build it, they first

classify images to estimate a confusion matrix. They group together confusing

categories in a bottom-up manner. They also build a top-down hierarchy for

comparison, by successively dividing categories. Both hierarchies show similar

results for speed and accuracy. Marsza lek and Schmid [65], compared with the

previous methods, remove the separability constraint at each level. When a

category cannot be assigned to a node without ambiguity, it is assigned to both,

and decision is put forth on the next level. Their hierarchies have a structure

more complex than trees.

Another approach is to use human feedback to automatically build more

intuitive hierarchies. Such structures are no longer visual hierarchies. Rege et al.

[76] use humans in the loop through relevance feedback and build a semantic

hierarchy based on user experience. Categories are not explicit but stem from

the information extracted through the feedback. By combining feedback from

all the users, they are able to estimate the hierarchical organization of images,

allowing more intuitive search and browsing.
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4.6. Multilabel methods

Most of the approaches studied in the previous sections are tackling the

problem of categorization. The term multilabel is often used for the correspon-

dence problem. Here we will focus on approaches that allow several labels to

describe the same image globally, or the same object.

This problem of assigning simultaneously a number of labels to an image has

been studied formally by Boutell et al. [15]. The main issue is, if a training image

is labeled with two labels, it can be used for training none or both categories, or

for training a new category grouping the two. The authors study the possible

scenarios and show that the most interesting is to use such an image as a positive

example for the two categories corresponding to the labels. Another is proposed

by Carneiro et al. [16] based on Multiple Instance Learning. In this model, a

label is assigned to a group of examples when at least one of them is a positive.

They use this scheme to estimate the probability of all labels to be associated

with the image.

4.7. Conclusion

The methods seen so far address the problem of object recognition using only

a basic vocabulary. Yet it is clear that using hierarchical representations attracts

attention, as shown by recent interest both for so-called feature hierarchies and

visual hierarchies. The use of context calls for compositional relations between

objects of a scene, and part-based approaches make it clear that “conceptual”

object parts are useful for recognition. Indeed, several authors are able to name

the parts found automatically [1, 28, 35].

Finding hierarchical links between the categories is a fast expanding research

subject. Structure seems to be a good solution for increasing the speed, the

accuracy, and reducing the complexity of the systems. In the next section, we

will review some of the methods that have been using the vocabulary structure

as a supplementary input.
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5. Semantic image analysis using structured vocabularies

The methods relying on semantic structures generally use the following two

types of relations:

1. Is-A-Part-Of relations are found in compositional methods, such as part-

based models, especially for detection and identification.

2. Is-A relations, or inheritance relations can be used for sharing descriptors,

or for better classification.

However, the barrier is not always clear: for instance, using a common parent

category might be useful for determining common parts.

We suggest a finer organization of methods, based on how semantic relations

are introduced in the system. Possible groups of methods are:

1. Linguistic methods where the semantic structure is used at the level of the

vocabulary, independently from the image, e.g. to expand the vocabulary,

2. Compositional methods that use meronyms (i.e. object components),

3. Communicating methods use semantic relations to share information be-

tween concepts, be it for feature extraction or for classification,

4. Hierarchical methods use Is-A relations to improve categorization and/or

to allow classification at different semantic levels.

In the literature, the expression “semantic hierarchy” is equally used for

both composition and inheritance relations. This is correct, but is ambiguous

about the true difference of nature that exists between the two.

Most of the systems built with an input structured vocabulary use Word-

Net. WordNet is a very rich lexical database in English. For each word,

some information is given such as a definition, polysemy, synonyms, hyper-

nyms/hyponyms (inheritance relations) and meronyms/holonyms (composition

relations).

5.1. Linguistic methods

Approaches in this section exploit a knowledge representation for a richer

annotation of images at the level of the vocabulary only. They are generally used

24



in a content-based image retrieval context. Aslandogan et al. [6] use WordNet

hierarchy both for query expansion and database vocabulary expansion. Instead

of simply matching keywords, they are able to look for similar words (according

to WordNet structure). Using Is-A and Member-Of (the people equivalent

of Part-Of, e.g. a “musician” is part of a “musical group”), they limit the

expansion to words within a given distance to the initial keyword. Yang et al.

[97] also perform a vocabulary expansion using WordNet and then reduce the

number of words keeping only the most significant statistically. Barnard et al. [8]

exploit WordNet for disambiguation: if an annotation word is polysemic, they

select the most relevant meaning by comparing with neighbors in WordNet

(using hypernyms, holonyms, meronyms, etc.) and in the image. Liu et al. [59]

also use WordNet for vocabulary expansion, especially to access more specific

words.

Wang et al. [96] extract keywords from text associated with the images, build

a thesaurus automatically using WordNet and image features, and associate

words to image regions. Datta et al. [19] use the hierarchy (WordNet) to

compute a relevance measure of each term selected to annotate an image. They

also use a semantic distance on the hierarchy at query time. Jin et al. [49]

similarly use semantic relations and correlation measures to remove irrelevant

keywords. Lam and Singh [53] use WordNet to define a similarity measure

combined with a visual similarity. Li et al. [58] also use WordNet to remove

incoherences between labels and to group synonyms.

Ontologies are used by Soo et al. [84] to standardize annotations and facili-

tate matching between a query and images in the database. Hollink et al. [45]

propose a method to combine annotations formatted with different ontologies

in a common structure. Yang et al. [98] use semantic feedback : user feedback

is processed at the semantic level, based on WordNet, rather than on visual

similarities.

Popescu et al. [75] search for similar images both conceptually and visu-

ally. Conceptual similarity is computed using text associated with images and

a WordNet-based distance. They show that it is more efficient to search for
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visually similar images among images associated with more specific nodes (hy-

ponyms) than among those associated with words at the generic level.

5.2. Compositional methods

The methods presented here use semantic hierarchies based on meronymy/holonymy

relations essentially. Though not always explicitly presented as such by the au-

thors, they fall into this category as “semantic parts”(meronyms) are recognized

in order to recognize an object (the holonym). Two main methods are used to

exploit these relations: those based on artificial intelligence, using logical infer-

ence, and those based on statistics.

An early work in this category is that of Rosenthal and Bajcsy [78]. Using

a knowledge base, and links between objects as knowledge rules, they use in-

ferences from parts to recognize an object. Part-based models using semantic

parts often focus their interest on a single class of objects, such as people in

Mohan et al. [66]. In this article, the authors first identify legs, arms and a

head, together with their spatial relations, and use it to find people. An similar

approach applied to face detection is presented by Arandjelovic and Zisserman

[4], who begin by localizing the eyes, the mouth and other manually selected

interest points.

In the more general case of scene recognition, Srikanth et al. [85] extend the

translational model of Duygulu et al. [22]. They use WordNet to build the

vocabulary and for classification.

5.3. Communicating methods

As one can get the intuition, if categorization is made among labels that have

a common super-category, (a) potentially, there are more common parts between

these neighboring categories than with more distant ones; (b) it might be pos-

sible to know what are the details (or parts) to look at to differentiate between

classes. For instance, when categorizing vehicles, it might be possible to look at

wheels and rear mirrors to distinguish between cars and motorcycles. Studies in
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cognitive psychology confirm this intuition that a more detailed analysis is nec-

essary to recognize sub-categories (e.g. Jolicoeur et al. [50]. Experiments also

show that different mechanisms are used for each basic-level categories(Gerlach

[39]). Levi et al. [56] remark that humans are able to learn to recognize new

categories from a small number of examples. They assume that features use-

ful for recognition of a sub-category are likely to be relevant for a new sibling

sub-category. They build an algorithm accordingly that is able to integrate the

most relevant features depending on the category.

Bar-Hillel and Weinshall [7] develop this idea even more explicitly. They

recognize basic-level categories by using a part-based generative model. To

distinguish between sub-categories, they then use discriminative classifiers on

the “specific” parts.

5.4. Hierarchical methods

Articles presented here are exploiting Is-A relations (i.e. hypernymy/hyponymy)

to help the learning of categories.

Maillot and Thonnat [61] combine domain representation with machine learn-

ing techniques to categorize specific-domain objects. Objects are classified top-

down, going down the hierarchy while a category has sub-categories in which

it could be classified. Feature extraction can be adapted depending on the

candidate category.

Torralba et al. [89] use millions of tiny images with nearest neighbours.

As images are labelled with WordNet nouns, they can categorize images at

different levels using a hierarchical vote, where a label node also votes for its

parents.

Zweig and Weinshall [99] present a detailed study of classification perfor-

mances for the binary case (i.e. class of interest vs. background). Categories at

the leaf level are tested against the background. They test training a leaf-level

category by using other categories in the positive training set, such as siblings, or

super-categories (parents, grand-parents). They show that using more generic

categories can help recognition.
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Marsza lek and Schmid [64] exploit WordNet for categorization of objects.

They extract the relevant sub-graph of WordNet and simplify it according

to the categories of interest. They propose to classify images top-down, start-

ing from the root node and selecting the best hyponym at each stage, down

to a leaf node. This hierarchical algorithm shows performance similar to the

classical one-vs-rest “flat” classifier and a visual hierarchy, but allows better

performance at generic levels. They also suggest using meronyms, which allows

a small increase in performance compared to the large increase in the number

of classifiers. However, the introduction of meronyms allows the recognition of

new objects not explicitly present in the database.

Fan et al. [29], Gao and Fan [37] and Fan et al. [30, 31] suggest using a

conceptual ontology that they build using both conceptual similarity (based

on WordNet) and visual similarity. They propose a hierarchical boosting

algorithm based on this ontology (i.e. hierarchy) allowing image annotation at

different levels of genericness. The classification task is made top-down and

features are added to avoid error propagation.

Tousch et al. [91] use a hand-made hierarchy describing the “car” domain to

classify images according to a trade-off between semantic precision and accuracy.

The hierarchy is not limited to a tree. Basically, they classify images for all

possible labels and compute the probability that each consistent combination of

labels is associated with the image. They also use meronyms as they describe

cars using specific parts detectors.

Binder et al. [12] show that using a taxonomy structure, one can outperform

multi-class classification approaches, with respect to a taxonomy loss. They

incorporate the structure in the learning process by using a modified version of

SVMs.

5.5. Conclusion

Hierarchies have not been used extensively so far, except in image retrieval

where WordNet has been used to improve textual queries and annotation. A

major hindrance has certainly been the difficulty to find appropriate ontologies,
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though WordNet seems to be a good starting point for a lot of applications.

Hierarchies, and especially their meronymy relations, are often used for specific

applications (e.g. [66, 4, 7, 61, 91]).

6. Evaluation

The methods presented in this review were tested on several databases. Per-

formance is evaluated using accuracy rate for classification and/or precision and

recall values for image retrieval. Categories (or words) are evaluated indepen-

dently, i.e. no structure is used in the process. For a given category C, let Nt

be the number of test images labeled as C. Let N+ be the number of images

classified in C, and N+
t the number of images correctly classified in C. Precision

and recall values for class C are given by:

P =
N+

t

N+
; R =

N+
t

Nt
. (1)

In classification, accuracy A is often used and corresponds to the mean of

the confusion matrix diagonal.

Performance evaluation is shown in Table 2 for a number of reviewed articles.

The first report that can be done is that there is a big difference between catego-

rization and image retrieval (or annotation). Clearly, results depend heavily on

the number of categories or terms used. The techniques used cannot be the only

reason for this difference, since they follow a common scheme (i) extract image

features and (ii) learn correspondence with keywords. The first conclusion is

therefore that it is difficult to keep a high level of performance while increasing

the size of the domain (i.e. the number of terms). However, this first impression

is not the only explanation. Some databases are “easier” than others. Indeed,

the example of [41] speaks for itself: results drop when getting from Caltech-

101 to Caltech-256. The number of categories is not the sole explanation: tests

by the same authors using 100 categories from Caltech-256 also show poor re-

sults comparing to Caltech-101 (about 40-45% accuracy on 100 categories from

Caltech-256, vs. 67,6% for Caltech-101).
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7. Discussion

Progress has been made undoubtedly in the last decade towards better image

understanding. More and more efficient image descriptions have been developed,

together with classification algorithms. And yet practical performances are still

far from being satisfying. Public reactions to systems such as ALIPR1 [57] show

that common people are far from adopting it 2.

In the late 90’s, it has been explained that there was a gap between the user

needs and the purely visual-based image retrieval systems (Santini and Jain

[80], Smeulders et al. [83]). Concept-Based Image Retrieval (Rui et al. [79],

Enser [25]) advocated for incorporating semantic features. The issue has been

largely worked on since, yet our review shows that efficiency is still restricted

to small vocabularies. The new issue is scalability: the human visual system is

able to readily recognize thousands of categories, but computers are far from

this performance. Indeed, the semantic gap has been addressed, but not solved.

Our study shows that using hierarchies such as WordNet helped to increase

the size of the annotation vocabulary. Up to now, only a few attempts have been

made to use it in the recognition process itself, and most of the studies use it

as annotations’ post-processing to enhance the richness of the vocabulary, for

instance.

A move towards this kind of systems seems to have started, though. Hints

of it are seen in three new databases recently proposed. Databases are a cru-

cial issue in image recognition (Ponce et al. [74]), and until a couple of years

ago, no database would use annotations related to a semantic hierarchy. As

a rule, people would use simple vocabularies and project them into a hierar-

chy such as WordNet. In 2007, Barnard et al. [9] released annotations for

the Corel database, where annotations of image segments would correspond to

WordNet nodes, together with specific evaluation methods. Griffin et al. [41]

1http://www.alipr.com/
2Comments to an article: ALIPR Helps People Decide: Hot Or Not?

http://gizmodo.com/213698/alipr-helps-people-decide-hot-or-not – accessed June 2009
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released Caltech-256 and proposed an associated hierarchy. In 2009, Deng et al.

[21] proposed to populate the WordNet hierarchy with images and created

ImageNet. This interesting database combines a rich vocabulary (more than

a thousand WordNet concepts) with a fairly high number of images per con-

cept. Algorithms for multi-level semantic analysis are thus expected to flourish

in the years to come.

Performance evaluation issues, however, seems to have been disregarded.

Classical methods count errors between categories whatever their semantic re-

lations. A confusion between a dog and a horse has the same importance as

between a dog and a car. It would be interesting to use more elaborated seman-

tically meaningful error measures. One possibility is to define an error along a

genericness/specificity axis: generally, errors at specific levels are less problem-

atic than at generic levels. This issue is addressed with the evaluation method

described in Tousch et al. [91].

Multi-faceted analysis seems not to have the same interest. In ImageNet,

for instance, images are univocally annotated. Following WordNet, they make

no distinction between siblings nodes – whereas it could be interesting to do so.

As an example, let us take the “car” node of WordNet whose description

is in Table ??. Labels “Compact” and “Ambulance” are compatible. These

correspond to two conceptual aspects of a car. The first describe the size of the

car, the second describes its function. We suggest the use of a richer hierarchy

that would make explicit this kind of relations. Labels corresponding to a same

aspect would then be incompatible.

8. Conclusion

This review has presented some key aspects of the tremendous research work

that has been carried out towards bridging the semantic gap. A number of

observations were made that can be summarized as follows:

• the use of semantic hierarchies is of growing interest, whether as an in-

put or as an automatic construction; they appear to be helpful when the
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number of categories grow;

• semantic hierarchies allow better performance than no structure when

working on vocabularies only, independently of the images;

• recent studies prove an interest in the use of semantic hierarchies for se-

mantic image analysis.

Future avenues of research should develop the following topics:

• Full exploitation of semantic hierarchies. People have often been

using only some of the hierarchical relations, i.e. compositions (Part-

Of) or inheritance (Is-A), rarely both (with the exception of [64]). Efforts

towards a “Total understanding” as in [58] should also incorporate “total”

hierarchies.

• Multi-level and multi-faceted image interpretation. Hierarchies

can be used to create richer forms of interpretation output. Words describ-

ing different aspects of the image should be used and weighted according

to their relevance/importance in the image, and/or their reliability. This

is a first step towards annotations that can adapt to context.

• Evaluation protocols adapted to semantic hierarchy handling. A

few image databases with a semantic flavoured ground truth are available.

Specific metrics addressing various aspects of the semantic annotation

process still need to be settled.
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