Best Arm Identification in Multi-Armed Bandits

Jean-Yves Audibert
Imagine, Université Paris Est
\&
Willow, CNRS/ENS/INRIA, Paris, France audibert@imagine.enpc.fr

Sébastien Bubeck, Rémi Munos
SequeL Project, INRIA Lille
40 avenue Halley,
59650 Villeneuve d'Ascq, France
\{sebastien.bubeck, remi.munos\} @inria.fr

Abstract

This is the supplemental material of the COLT' 10 paper untitled "Best Arm Identification in MultiArmed Bandits".

A Lower bound for UCB-E

Theorem 1 If ν_{2}, \ldots, ν_{K} are Dirac distributions concentrated at $\frac{1}{2}$ and if ν_{1} is the Bernoulli distribution of parameter $3 / 4$, the UCB-E algorithm satisfies $4 \mathbb{E} r_{n}=e_{n} \geq 4^{-(4 a+1)}$.

Proof: Consider the event \mathcal{E} on which the reward obtained from the first $m=\lceil 4 a\rceil$ draws of arm 1 are equal to zero. On this event of probability 4^{-m}, UCB-E will not draw arm 1 more than m times. Indeed, if it is drawn m times, it will not be drawn another time since $B_{1, m} \leq \frac{1}{2}<B_{2, s}$ for any s. On the event \mathcal{E}, we have $J_{n} \neq 1$.

B Application of Hoeffding's maximal inequality in the proof of Theorem 4

Let $i \in\{2, \ldots, L\}$ and $j \in\{1, \ldots, L\}$. First note that, by definition of ν^{\prime} and since $i \neq 1$,

$$
\mathbb{E}_{\nu^{\prime}} \widehat{\mathrm{KL}}_{i, t}\left(\nu_{i}, \nu_{j}\right)=t \mathrm{KL}\left(\nu_{i}, \nu_{j}\right)
$$

Since $\nu_{i}=\operatorname{Ber}\left(\mu_{i}\right)$ and $\nu_{j}=\operatorname{Ber}\left(\mu_{j}\right)$, with $\mu_{i}, \mu_{j} \in[p, 1-p]$, we have

$$
\left|\log \left(\frac{d \nu_{i}\left(X_{i, t}\right)}{d \nu_{j}\left(X_{i, t}\right)}\right)\right| \leq \log \left(p^{-1}\right)
$$

From Hoeffding's maximal inequality, see e.g. (Cesa-Bianchi and Lugosi, 2006, Section A.1.3), we have to bound almost surely the quantity, with $\mathbb{P}_{\nu^{\prime}}$-probability at least $1-\frac{1}{2 L^{2}}$, we have for all $t \in\{1, \ldots, n\}$,

$$
\widehat{\mathrm{KL}}_{i, t}\left(\nu_{i}, \nu_{j}\right)-t \mathrm{KL}\left(\nu_{i}, \nu_{j}\right) \leq 2 \log \left(p^{-1}\right) \sqrt{\frac{\log \left(L^{2}\right) n}{2}}
$$

Similarly, with $\mathbb{P}_{\nu^{\prime}}$-probability at least $1-\frac{1}{2 L^{2}}$, we have for all $t \in\{1, \ldots, n\}$,

$$
\widehat{\mathrm{KL}}_{1, t}\left(\nu_{L}, \nu_{j}\right)-t \mathrm{KL}\left(\nu_{L}, \nu_{j}\right) \leq 2 \log \left(p^{-1}\right) \sqrt{\frac{\log \left(L^{2}\right) n}{2}}
$$

A simple union bound argument then gives $\mathbb{P}_{\nu^{\prime}}\left(C_{n}\right) \geq 1 / 2$.

References

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

