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Abstract. Numerous empirical results have shown that combining regression
procedures can be a very efficient method. This work provides PAC bounds

for the L2 generalization error of such methods. The interest of these bounds

are twofold.
First, it gives for any aggregating procedure a bound for the expected risk

depending on the empirical risk and the empirical complexity measured by

the Kullback-Leibler divergence between the aggregating distribution ρ̂ and a
prior distribution π and by the empirical mean of the variance of the regression

functions under the probability ρ̂.
Secondly, by structural risk minimization, we derive an aggregating pro-

cedure which takes advantage of the unknown properties of the best mixture

f̃ : when the best convex combination f̃ of d regression functions belongs to

the d initial functions (i.e. when combining does not make the bias decrease),

the convergence rate is of order (log d)/N . In the worst case, our combining

procedure achieves a convergence rate of order
p

(log d)/N which is known to

be optimal in a uniform sense when d >
√

N (see [10, 15]).
As in AdaBoost, our aggregating distribution tends to favor functions which

disagree with the mixture on mispredicted points. Our algorithm is tested

on artificial classification data (which have been also used for testing other
boosting methods, such as AdaBoost).
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1. Introduction

Boosting algorithms (AdaBoost introduced by Freund and Schapire in [5], Bag-
ging and Arcing introduced by Breiman in [2], [3]) have been successful in practical
classification applications. With support vector machines, boosting is known to be
one of the best off-the-shelf classification procedure. As a consequence, numerous
researchers have studied the reasons of their efficiency and have looked for means
to extend their application domain to regression problems.

Friedman, Hastie and Tibshirani have proved ([6]) that AdaBoost is a stage-
wise estimation procedure for fitting an additive logistic regression model. From
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this idea, Friedman derive a “gradient boosting machine” to estimate a function
for some specified loss criteria.

Rätsch et al. ([11]) have shown that boosting is similar to an iterative strat-
egy which maximizes the minimum margin of the aggregated classifier using an
exponential barrier. They also use their view to obtain a boosting technique for
regression.

In [15], Yang has studied minimax properties of aggregating regression proce-
dures. In particular, he has proved that when the number d of aggregated proce-
dures is less than

√
N (where N is the size of the training set), the order of the

convergence rate of the best mixture (in the minimax sense) is the same as the
one of the best linear combination (i.e. d/N). When d is greater than

√
N , the

convergence rate of the best convex combination attains
√

(log d)/N (see also [10]).
In this paper, we will obtain new bounds for any aggregating procedure (Section

4) and derive from these bounds a procedure which achieves the optimal minimax
convergence rate. Before proving these bounds, we will review Catoni results ([4])
on randomization procedures (Section 3). The estimators obtained by minimization
of the bound are tested on classification using common artificial data: Twonorm,
Threenorm and Ringnorm (Section 5).

2. Framework

We assume that we observe an i.i.d. sample ZN
1 , (Xi, Yi)N

i=1 of random vari-
ables distributed according to a product probability measure P⊗N , where P is a
probability distribution on (Z,BZ) , (X ⊗ Y,BX ⊗ BY), (X ,BX ) is a measurable
space, Y = R and BY is the Borel sigma algebra. Let P(dY |X) denote a regular
version of the conditional probabilities (which we will use in the following without
further mention).

We assume that we have no prior information about the distribution P of (X,Y ),
and that we have to guess it entirely from the training sample. We have to work
with a prescribed set of regression functions since it is well known that there is
generally no estimator f̂ : ZN → F(X ,Y) such that

lim
N→+∞

sup
P∈M1

+(Z)

{
EP⊗(N+1)L

[
YN+1, f̂(ZN

1 )(XN+1)
]
− inf

f∈F(X ,Y)
EPL[Y, f(X)]

}
= 0,

where F(X ,Y) denotes the set of all the measurable functions from X to Y and L
is a loss function. However, replacing F(X ,Y) by the set of mixtures R̃ of a set
of functions R in the previous equality makes the problem feasible (provided the
model R is not too big) with a speed of convergence depending on the capacity (or
complexity) of R. So we are interested in a particular non-parametric regression
problem. For convenience of notation, we will index the functions in the model by
the parameter θ:

R , {fθ ∈ F(X ,Y); θ ∈ Θ}.
Note that the set R (or equivalently the parameter set Θ) is not necessarily finite.
Let π(dθ) denote a prior distribution on the measurable space (Θ, T ), where T
is a σ-field on the parameter space Θ. In practice, the probability distribution π
will be chosen according to our preferences (and to our prior knowledge had we
some). For instance, if the model R is the set of decision trees of depth lower than
a certain limit and if we do not have any prior knowledge, we would like to favour
small trees with respect to big ones since they are simpler and therefore more easily
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interpretable. To favour these trees, it suffices to give them a bigger π-probability.
On the contrary, if a subset S of R has a π-probability equal to one, then the
functions in the π-negligible set R \ S are eliminated from the model.

We assume that the map (θ, x) 7→ fθ(x) is (BX ⊗ T )-measurable. The set of
mixtures of the set R is written as

R̃ , {Eρ(dθ)fθ; ρ ∈M1
+(Θ)}.

The best possible guess is defined as the one minimizing the expected risk

R(f̂) , EPL(Y, f̂(X)),

where L is the square loss : L(Y, Y ′) = (Y − Y ′)2. The mean square loss has
the distinguished property of being minimized by the conditional expectation of Y
given X. More precisely, it decomposes into

R(f̂) = EP
{
[Y − EP(Y/X)]2

}
+ EP

{
[EP(Y/X)− f̂(X)]2

}
.

Therefore, minimizing the mean square loss is equivalent to minimizing the qua-
dratic distance to the conditional expectation.

Since the expected risk is not observable, we will have to use the empirical risk

r(f̂) ,
1
N

N∑
i=1

L(Yi, f̂(Xi)) = EP̄L(Y, f̂(X)),

where P̄ denotes the empirical distribution

P̄ ,
1
N

N∑
i=1

δ(Xi,Yi).

Let Θ1, ...,ΘM be subsets of Θ such that their union is Θ. Consider a regression
procedure which estimate the best θ among a subset of Θ. Using this procedure,
we get θ̂1 ∈ Θ1, ..., θ̂M ∈ ΘM .

• Deterministic model selection consists in choosing one of the θ̂i to estimate
EP(Y/X).
• In stochastic model selection (or randomized estimation), the choice of θ̂i is

randomized. This two-steps procedure (estimating the best θ in each sub-
model Θi and choosing randomly the sub-model) can be seen as a one-step
procedure if we allow f̂ to be drawn from R according to some posterior
distribution ρ(dθ) on the parameter set (Θ, T ) (see [9, 4]).
• In model averaging (or aggregated estimation), the idea is to use a weight-

ing average of the fθ̂i
, in other words to combine the different estimators.

This could also be done in a one-step procedure searching for the posterior
distribution ρ on (Θ, T ) such that f̂ = Eρ(dθ)fθ is close to EP(Y/X).

In this paper, we give results concerning these last two estimation problems. Our
assumptions are the two following ones. First the conditional expectation EP(Y/X)
and the regression function in the models are relatively bounded in L∞-norm, i.e.
for any f , g in R∪ {E(Y/X = ·)}, for any x ∈ X ,

(2.1) |f(x)− g(x)| ≤ B.
Secondly, we assume that the noise has a uniform exponential moment conditionally
to the explanatory variable, i.e. there exists α > 0, M > 0 such that for any x ∈ X ,

(2.2) EP(dY ) exp(α|Y − f∗(X)|/X = x) ≤M,
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where f∗ , EP(Y/X = ·) is the regression function associated with the distribu-
tion P. Note that this second assumption is sufficiently weak to deal with the case
in which the output is equal to a function of the input plus a gaussian noise.

Let f̃ denote the best mixture (for the square loss) of the regression functions in
the model R:

(2.3) f̃ , argminf∈R̃R(f).

Finally, introduce a mixture distribution ρ̃ ∈ M1
+(Θ) defined as Eρ̃(dθ)fθ = f̃ (the

probability distribution ρ̃ is not necessarily unique).

3. Randomization

3.1. PAC-Bayesian expected risk bound. The following theorems bound the
expected risk of a randomized procedure in terms of the empirical risk and a term
of empirical complexity relying on the Kullback-Leibler divergence between the
randomizing distribution ρ and the prior distribution π. Introduce the functions
G(λ) , 8M

(αB−2λ)2e2 + e2λ−1−2λ
λ2 and H(λ) , 1

1−λG(λ) .

Theorem 3.1. For any ε > 0 and 0 < λ < αB
2 such that λG(λ) < 1, with P⊗N -

probability at least 1 − ε, for any randomizing procedure ρ̂ : ZN →M1
+(Θ), we

have

(3.1) Eρ̂(dθ)R(fθ)−R(f̃) ≤ H(λ)
(
Eρ̂(dθ)r(fθ)− r(f̃)+

B2

λN

[
K(ρ̂, π)+ log(ε−1)

])
.

Proof. See Section 7.1. �

To use this bound, one has to choose arbitrarily the parameter λ. To avoid this
choice, one can use a union bound.

Theorem 3.2. Introduce countable families (λi)i∈I and (ηi)i∈I such that
0 < λi <

αB
2 , λiG(λi) < 1, ηi > 0 and

∑
i∈I ηi = 1. For any ε > 0, with

P⊗N -probability at least 1 − ε, for any randomizing procedure ρ̂ : ZN →M1
+(Θ),

for any i ∈ I, we have
(3.2)

Eρ̂(dθ)R(fθ)−R(f̃) ≤ H(λi)
(
Eρ̂(dθ)r(fθ)− r(f̃) +

B2

Nλi

{
K(ρ̂, π) + log[(ηiε)−1]

})
.

Proof. Introduce the event

Ai ,

{
Eρ̂(dθ)R(fθ)−R(f̃)

H(λi)
> Eρ̂(dθ)r(fθ)− r(f̃) +

B2

Nλi

{
K(ρ̂, π) + log[(ηiε)−1]

}}
.

From Theorem 3.1, for any i ∈ I, we have P⊗N (Ai) < ηiε. Hence we have

P⊗N
(
∪

i∈I
Ai

)
≤
∑
i∈I

P⊗N (Ai) <
∑
i∈I

ηiε = ε.

�

The problem is then to choose appropriately the parameter families (λi)i∈I and
(ηi)i∈I .
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3.2. Optimal randomizing procedure. In this section we use Theorem 3.2 to
define a randomizing procedure. The bounds in the previous theorems cannot be
computed from the data only. However they can be upper bounded by replacing
the empirical risk of the unknown best mixture r(f̃) by the infimum over the set
R̃ of the empirical risk infR̃ r.

Introduce
Q(ρ, λ, η) ,

Eρ̂(dθ)r(fθ)−infR̃ r

1−λG(λ) + B2

N
K(ρ̂,π)+log[(ηε)−1]

λ[1−λG(λ)]

Q
(
ρ, (λi)i∈I , (ηi)i∈I

)
, inf

i∈I
Q(ρ, λi, ηi)

Q(ρ) , inf
(λi)i∈I∈Pλ

(ηi)i∈I∈Pη

Q
(
ρ, (λi)i∈I , (ηi)i∈I

) ,

where Pλ and Pη are respectively the set of parameter families (λi)i∈I and (ηi)i∈I

such that 0 < λi <
αB
2 , λiG(λi) < 1, ηi > 0 and

∑
i∈I ηi = 1. Then the quantities

Q(ρ, λ, 1) and Q(ρ, λi, ηi) are respectively slightly weakened version of the RHS of
Inequalities (3.1) and (3.2).

The quantity Q(ρ) can also be written as

Q(ρ) = inf
0<λ< αB

2 such that λG(λ)<1
Q(ρ, λ, 1).

Let us define the optimal posterior distribution ρ̂opt as

ρ̂opt = argmin
ρ∈M1

+(Θ)

Q(ρ).

For any 0 < ε < 1, one may prove the existence of the “argmin” and that ρ̂opt is a
Gibbs distribution which can be written as

ρ̂opt =
e−

Nλopt
B2 r(f)

Eπ(dθ)e
−Nλopt

B2 r(fθ)
· π,

for an appropriate parameter 0 < λopt <
αB
2 satisfying λoptG(λopt) < 1. Then the

inverse temperature parameter of the Gibbs distribution is β , Nλopt
B2 .

We would like to choose the parameter families such that the infimum
infρQ

(
ρ, (λi)i∈I , (ηi)i∈I

)
is not “too far” from the optimal quantity Q(ρ̂opt). The

bound in Theorem 3.2 is appropriate when its order is 1√
N

. Therefore relevant
values of λ are greater than 1√

N
. Let us define 0 < Λ < αB

2 such that ΛG(Λ) = 1.

Consider the family (λi)i=1,...,p, where λi , Λ
2i and p is such that Λ

2p+1 <
1√
N
≤ Λ

2p .
When the parameter λopt belongs to [ 1√

N
; Λ[ (which is the case we are interested

in), for any ρ ∈M1
+(Θ), we have

inf
i=1,...,p

Q(ρ, λi, 1) ≤ 2Q(ρ, λopt, 1).

So we just lose in the worst case a factor 2. It remains to choose the parameters ηi

such that for any ρ ∈ M1
+(Θ), the quantity Q(ρ, λi, ηi) is not “too far” from the

quantity Q(ρ, λi, 1). By taking ηi = 1
p , i = 1, . . . , p, we lose an additive log logN

factor in front of the Kullback-Leibler divergence K(ρ, π) which, in general, would
be for the optimal distribution at least of the same order as the Kullback-Leibler
divergence (in practice, log logN never exceeds 3).
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Since the minimum over M1
+(Θ) of the quantity Q(ρ, λ, 1) (achieved for the

probability distribution ρ ∝ e−
Nλ
B2 r(f) · π) is

B2

Nλ[1− λG(λ)]
log
[(
εEπ(dθ)e

−Nλ
B2 [r(fθ)−infR̃ r]

)−1
]
,

let us introduce for any i = 1, . . . , p,

Qi ,
1

λi[1− λiG(λi)]
log

(
p

εEπ(dθ)e
−Nλi

B2 [r(fθ)−infR̃ r]

)
,

where λi = Λ
2i . Finally, we obtain the following randomizing procedure

1. Compute

iopt , argmin
i=1,...,p

Qi.

2. Randomize using the probability distribution

e
− NΛ

B22iopt
r(f)

Eπ(dθ)e
− NΛ

B22iopt
r(fθ)

· π.

Remark 3.1. Note that since our optimal randomizing procedure comes from a de-
viation inequality, the inverse temperature parameter β depends on the probability
ε. Indeed, to get a higher confidence level, we need to have a bigger λ and there-
fore to take a bigger β (i.e. to be more selective). However in practice ε has little
influence on the temperature.

Remark 3.2. Our optimal randomizing distribution is a Gibbs distribution. We
find it in a minimax context. One may notice that the randomizing distribution
minimizing the Bayesian risk in a gaussian noise context is also a Gibbs distribution.
More precisely, consider that the output is given by

Y = fθ(X) + η,

where the random variable η is a centered gaussian with variance σ2 independent
of the input X. The Bayesian risk is

RBay(f̂) , Eπ(dθ/ZN
1 )EPθ(dZN+1)

[(
YN+1 − f̂(XN+1)

)2]
= σ2 + Eπ(dθ/ZN

1 )EP(dXN+1)

[(
fθ(XN+1)− f̂(XN+1)

)2]
= σ2 + EP(dXN+1)Eπ(dθ/ZN

1 )

[(
fθ(XN+1)− f̂(XN+1)

)2]
.

Hence the optimal estimator is f̂ = Eπ(dθ/ZN
1 )fθ. It is associated with the posterior

distribution

ρ̂(dθ) = π(dθ/ZN
1 ) =

e−
N

2σ2 r(fθ)

Eπe
− N

2σ2 r(f)
· π(dθ),

which is a Gibbs distribution with inverse temperature parameter N
2σ2 .
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4. Aggregated estimators

4.1. PAC-Bayesian expected risk bound. In the least square regression frame-
work, there exists a simple relation between the risk of an aggregated estimator and
the one of the associated randomized estimator which is

(4.1) R(Eρ(dθ)fθ) = Eρ(dθ)R(fθ)− EPVarρ(dθ)fθ(X)

This equality shows that aggregated regression procedures are more efficient than
randomized ones and that the difference is measured by EPVarρ(dθ)fθ(X). The first
term of the RHS has already been bounded (see Theorem 3.1). So, to bound the
expected risk of the aggregated estimator, it remains to bound the deviations of the
variance term and this is done with similar techniques to those used for randomized
estimators.

We obtain the following theorems which bound the expected risk of any aggre-
gated estimator in terms of

• the empirical risk
• the empirical complexity measured by the Kullback-Leibler divergence be-

tween the aggregating distribution ρ̂ and the prior distribution π and by
the empirical mean of the variance of the regression functions under the
posterior distribution.

We still denote G(λ) , 8M
(αB−2λ)2e2 + e2λ−1−2λ

λ2 and H(λ) , 1
1−λG(λ) , and we

define g(β) , eβ−1−β
β2 and h(β) , 1

1+βg(β) .

Theorem 4.1. For any ε > 0, β > 0 and 0 < λ < αB
2 such that λG(λ) < 1, with

P⊗N -probability at least 1− 2ε, for any aggregating procedure ρ̂ : ZN →M1
+(Θ),

(4.2)

R(Eρ̂(dθ)fθ)−R(f̃)
≤ H(λ)

(
Eρ̂(dθ)r(fθ)− r(f̃) + B2

Nλ

[
K(ρ̂, π) + log(ε−1)

])
+h(β)

(
− V̄ + B2

2Nβ

[
2K(ρ̂, π) + log(ε−1)

])
= H(λ)

[
r(Eρ̂(dθ)fθ)− r(f̃)

]
+
[
H(λ)− h(β)

]
V̄

+B2H(λ)
Nλ

[
K(ρ̂, π) + log(ε−1)

]
+ B2h(β)

2Nβ

[
2K(ρ̂, π) + log(ε−1)

]
where V̄ , EP̄Varρ̂(dθ)fθ.

Proof. See Section 7.2. �

Using a union bound, we get

Theorem 4.2. Introduce countable families (λi)i∈I , (ηi)i∈I , (βj)j∈J and (ζj)j∈J

such that 0 < λi <
αB
2 , λiG(λi) < 1, ηi > 0,

∑
i∈I ηi = 1, βj > 0, ζj > 0

and
∑

j∈J ζj = 1. For any ε > 0, with P⊗N -probability at least 1 − 2ε, for any
aggregating procedure ρ̂ : ZN →M1

+(Θ), for any i ∈ I and for any j ∈ J , we have

(4.3)

R(Eρ̂(dθ)fθ)−R(f̃) ≤ H(λi)
[
r(Eρ̂(dθ)fθ)− r(f̃)

]
+
[
H(λi)− h(βj)

]
V̄

+B2H(λi)
Nλi

{
K(ρ̂, π) + log[(ηiε)−1]

}
+B2h(βj)

2Nβj

{
2K(ρ̂, π) + log[(ζjε)−1]

}
.
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Proof. In the proof of Theorem 4.1 (see Section 7.2), we have obtained that with
P⊗N -probability at least 1− ε, for any ρ ∈M1

+(Θ),

−EPVarρ(dθ)fθ ≤ h(β)
(
− EP̄Varρ(dθ)fθ +

B2

2Nβ
[
2K(ρ, π) + log(ε−1)

])
Instead of using a union bound directly on inequality (4.2), we use it on this in-
equation. We get that with P⊗N -probability at least 1− ε, for any ρ ∈M1

+(Θ) and
for any j ∈ J ,

−EPVarρ(dθ)fθ ≤ h(βj)
(
− EP̄Varρ(dθ)fθ +

B2

2Nβj

{
2K(ρ, π) + log[(ζjε)−1]

})
where (βj)j∈J and (ζj)j∈J are parameter families such that βj > 0, ζj > 0 and∑

j∈J ζj = 1. It remains to add this inequation to inequality (3.2) to get the
result. �

Now let us introduce
(4.4)

B(ρ, λ, η, β, ζ) , H(λ)
(
Eρ(dθ)r(fθ)− r(f̃) + B2

Nλ

{
K(ρ, π) + log[(ηε)−1]

})
+h(β)

(
− V̄ + B2

2Nβ

{
2K(ρ, π) + log[(ζε)−1]

})
B
(
ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)
, κB2 ∧ inf

i∈I
j∈J

B(ρ, λi, ηi, βj , ζj)
,

where κ , 1 + 4M
e2(αB)2 .

By bounding the expected risk using Assumptions (2.1) and (2.2), and from the
previous theorem, we obtain

Corollary 4.3. For any ε > 0, with P⊗N -probability at least 1 − 2ε, for any
aggregating procedure ρ̂ : ZN →M1

+(Θ), we have

R(Eρ̂(dθ)fθ)−R(f̃) ≤ B
(
ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)
Proof. From Theorem 4.1, with P⊗N -probability at least 1−2ε, for any aggregating
procedure ρ̂ : ZN →M1

+(Θ), we have

(4.5) R(Eρ̂(dθ)fθ)−R(f̃) ≤ inf
i∈I
j∈J

B(ρ, λi, ηi, βj , ζj)

Since the noise has a conditional uniform exponential moment
(
Assumption (2.2)

)
,

the expected risk is bounded. Specifically, we can write

(4.6)

R(Eρf) = EP
(
Y − E(Y/X)

)2 + EP
(
E(Y/X)− Eρf

)2
≤ EP

(
eα|Y−E(Y/X)| sup

u∈R+

{u2e−αu}
)

+B2

≤
(

2
αe

)2
M +B2

≤ κB2,

where κ , 4M
e2(αB)2 +1. Since the quadratic risk R(f̃) is positive, for any probability

distribution ρ, we have

(4.7) Eρ(dθ)R(θ)−R(f̃) ≤ κB2.

The result follows from Equalities (4.5) and (4.7). �

This corollary is the keystone of this work since
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• by appropriately choosing the parameter families, one can deduce a parame-
ter-free theorem which has the optimal minimax convergence rate except
for a logarithmic factor (see Section 4.2.1),
• there exists an efficient procedure calculating one of the probability distri-

butions minimizing the bound B
(
ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)
, when

the sets I and J are finite (see Section 4.2.2).

4.2. Optimal aggregating procedure.

4.2.1. Comparison with minimax bounds. In this section, we derive from Corollary
4.3 an aggregating procedure which is optimal in a minimax sense according to
lower bounds established by Juditsky and Nemirovski ([7]) and by Yang ([15]). We
still denote ρ̃ a posterior distribution such that R(Eρ̃(dθ)fθ) = minR̃R.

Lemma 4.4. For a well chosen finite parameter families independent from ε, for
any 0 < ε ≤ 1

2 , we have

B
(
ρ̃, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)
≤ γ(ε),

where 
γ(ε) , 2

√
C1V̄ (ρ̃) + 6

√
C2V̄ (ρ̃) + 2C1 + 2C2

V̄ (ρ̃) , EP̄Varρ̃(dθ)fθ

C1 , C1(ε) , B2

N
K(ρ̃,π)+log(L1ε−1)

κ1

C2 , C2(ε) , B2

8N
2K(ρ̃,π)+log(L2ε−1)

κ2

,

and κ1 and κ2, by definition, respectively satisfy 2κ1G(κ1) = 1 and κ2g(κ2) = 1
and finally  L1 ,

log
(

4κ1N
log 2

)
2 log 2 ∨ 2

L2 ,
log
(

8κ2N
log 2

)
2 log 2 ∨ 2

The proof and the parameter families are given in Section 7.3. From this lemma
and from Corollary 4.3, by using the same parameter families, we get

Theorem 4.5. Any aggregating procedure ρ̂ minimizing

B
(
ρ, (λi)i=0,...,p, (ηi)i=0,...,p, (βj)j=0,...,q, (ζj)j=0,...,q

)
wrt the probability distribution ρ satisfies for any 1

2 ≥ ε > 0, with P⊗N -probability
at least 1− 2ε,

R(Eρ̂(dθ)fθ)−R(f̃) ≤ γ′(ε),
where {

γ′(ε) = 2
√
C1[2V (ρ̃) + 4C2] + 6

√
C2[2V (ρ̃) + 4C2] + 2C1 + 2C2

V (ρ̃) , EPVarρ̃(dθ)fθ.

Proof. see Section 7.4. �

For a given confidence level ε > 0, this bound has the order of
√
C̃V (ρ̃)∨C̃, where

C̃ , K(ρ̃,π)+log log N
N . When the best mixture f̃ belongs to the initial model R, the

variance term vanishes and the order of the bounds is given by C̃. A particular
case of interest is when the parameter set Θ is finite: Θ = {1, . . . , d}. Taking
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arbitrarily π = 1
d

∑d
i=1 δi (uniform measure on Θ), one can check easily that for

any ρ ∈M1
+(Θ), we have

K(ρ, π) = log d−Hs(ρ) ≤ log d,

where Hs(ρ) denotes the Shannon entropy of ρ
(
Hs(ρ) , −

∑d
i=1 ρi log ρi

)
. In this

case, when the best convex combination f̃ belongs to the model R (V (ρ̃) = 0),
the convergence rate of our estimator will be log d

N (we neglect log logN terms),
whereas when f̃ is not too close to the regression functions in the model R

(
i.e.

when V (ρ̃) ≥ K(ρ̃,π)+log log N
N

)
, the convergence rate will be

√
log d
N V (ρ̃). In the

worst case, the quantity V (ρ̃) has the same order as B2, and we find a convergence

rate
√

log d
N known to be optimal in the uniform sense as soon as d >

√
N according

to the following theorem

Theorem 4.6 (Yang,2001). Let d = Nτ for some τ > 0. There exists a model

R =
{
fi ∈ F(X ,Y) : i = 1, . . . , d

}
such that for any aggregating procedure ρ̂, one can find a function f̃ ∈ R̃ ={∑d

i=1 ρ̃ifi : ρ̃ ∈M1
+{1, . . . , d}

}
satisfying

EP⊗NR(Eρ̂(dθ)fθ)−R(f̃) ≥ C

{
d
N when τ ≤ 1

2√
log d
N when τ > 1

2 ,

where the constant C does not depend on N .

Remark 4.1. This theorem which strenghtens the one of Nemirovski ([10]) has been
further improved by Tsybakov ([13]).

Remark 4.2. In [15], Yang also proposed an adaptive estimator. The advantage
of the procedure designed here is to be feasible, to avoid splitting the data in
many parts and to hold when the regression function wrt the unknown probability
distribution is not in the model R̃. Besides, our results also hold when the set of
aggregated functions is infinite and under weaker assumptions (particularly on the
noise).

Remark 4.3. Note that the unobservable term r(f̃) in the bound B does not modify
the probability distribution ρ̂λ,β minimizing B(ρ, λ, η, β, ζ)1. However the choice of
λ among (λi)i=0,...,p depends on r(f̃). To circumvent this difficulty, one can, for

instance, weaken the bound B by replacing r(Eρ̂(dθ)fθ)−r(f̃)

1−λG(λ) with

r(Eρ̂(dθ)fθ)− r(f̃) + λG(λ)
1−λG(λ)

[
r(Eρ̂(dθ)fθ)− r(f̂ERM)

]
,

where the function f̂ERM minimizes the empirical risk among the functions in R̃.
For this algorithm, the assertion of Theorem 4.5 becomes: for any 1

2 ≥ ε > 0,

(4.8) P⊗N
(
R(Eρ̂(dθ)fθ)−R(f̃) ≤ γ′(ε) + r(f̃)− r(f̂ERM)

)
≥ 1− 2ε,

1The distribution ρ̂λ,β minimizes H(λ)Eρ(dθ)r(fθ) − h(β)V̄ + B2

N

n
H(λ)

λ
+

h(β)
β

o
K(ρ, π) so

that it does not depend on η, ζ and ε.
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since sup
λ∈(λi)i=0,...,p

{ λG(λ)
1−λG(λ)

}
= 1. By using Theorem 4.1

(
for a posterior distrib-

ution ρ̂ERM satisfying Eρ̂ERM(dθ)fθ = f̂ERM and for λ and β of order
√

log d
N

)
, we

get that the added term r(f̃)− r(f̂ERM) is at most of order
√

log d
N (we still neglect

log logN term).
Another solution to determine the right parameters is to cut the training sample

into two parts, use the first part of the training sample to compute the distributions
ρ̂λ,β and use the second part of the training sample to select the best distribution
among the O

[
(logN)2

]
distributions (each distribution corresponds to a point in

the (λ, β)-grid). From Catoni’s theorem ([4]) concerning progressive mixtures (see
also [1]) in least square regression, this last step is almost free (we just have to
pay a negligible log log N

N additive term), so the convergence rate of the resulting

procedure is effectively of order
√
C̃V (ρ̃)∨ C̃. From Theorem 3.1, this last step can

also be done by simply taking the distribution ρ̂λ,β having the smallest empirical
risk on the second sample2.

Remark 4.4. Had we not been interested in having tight explicit constants, we could
have written Theorem 4.1 in the following way (taking arbitrarily β = λ): there
exists C1, C2 > 0 depending only on the constants B, α and M such that for any
ε > 0 and 0 < λ′ < C1, with P⊗N -probability at least 1 − 2ε, for any aggregating
procedure ρ̂ : ZN →M1

+(Θ),

R(Eρ̂(dθ)fθ)−R(f̃) ≤ (1 +λ′)
[
r(Eρ̂(dθ)fθ)− r(f̃)

]
+ 2λ′V̄ +

C2

N

K(ρ̂, π) + log(ε−1)
λ′

,

where we still have V̄ = EP̄Varρ̂(dθ)fθ. This inequation would have also led to the
optimal convergence rate after optimization of the parameter λ′.

Theorem 4.6 also shows that a direct application of our aggregating procedure
is not optimal when d is smaller than

√
N , since then the convergence rate towards

functions for which V (ρ̃) = EPVarρ̃(dθ)fθ(x) has the same order as B2 is√
log(dN)
N

� d

N
.

However, in this case (d ≤
√
N), one can consider a grid R′ on the simplex R̃:

R′ ,
{ d∑

i=1

ai⌊√
dN

⌋fi : ai ∈ N such that
d∑

i=1

ai =
⌊√

dN
⌋}
,

where bxc denotes the integer satisfying x − 1 < bxc ≤ x. We have R̃′ = R̃.
Then applying our aggregating procedure to the new initial model R′ for a uniform
prior distribution π′ on R′, we obtain the desired convergence rate except for the
logarithmic factor.

Proof. The best convex combination f̃ =
∑d

i=1 ρ̃ifi belongs to

S ∩
{ d∑

i=1

⌊
b
√
dN cρ̃i

⌋⌊√
dN

⌋ fi +
1⌊√
dN

⌋Cd

}
,

2See the appendix for details
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where S is the simplex {
∑d

i=1 ρifi : ρi ≥ 0,
∑d

i=1 ρi = 1} and Cd is the d-
dimensional cube {

∑d
i=1 aifi : 0 ≤ ai ≤ 1}. This set is the convex combination

of its vertices, so the function f̃ can be written as a convex combination of the
functions in

R′′ ,
{ d∑

i=1

⌊
b
√
dN cρ̃i

⌋
+ εi⌊√

dN
⌋ fi : εi ∈ {0, 1}

}
∩R′.

For any f, g ∈ R′′, we have ‖f − g‖∞ ≤ d
2

B⌊√
dN
⌋ , hence3 V (ρ̃) ≤ d2

16
⌊√

dN
⌋2B2.

The number of functions in R′ is upper bounded by
(⌊√

dN
⌋
+ 1
)d. Since we have

K(ρ̃, π′) ≤ log Card R′ (because the distribution π′ is uniform over the set R′), we

get C̃ ≤ d log(N
3
4 +1)

N B2. As a result, we have
√
C̃V (ρ̃) ∨ C̃ = O

(
d
N logN

)
, which is

the desired convergence rate up to the logarithmic factor. �

In fact, when d ≤
√
N , the optimal convergence rate can also be obtained by

randomizing functions from the grid R′ ⊂ R̃. To combine d regression functions is
then equivalent (in terms of convergence rate) to randomizing with an appropriate
Gibbs distribution on the grid R′.

Remark 4.5. Note that to obtain an algorithm with optimal convergence rate in the
uniform sense, we need not have used sophisticated tools. We just need deviation
inequalities, a simple union bound and to discretize the simplex R̃. Indeed, any
function f of R̃ satisfies a deviation inequality similar to the one of Lemma 7.2: for
any 0 ≤ λ ≤ αB

2 satisfying 8Mλ ≤ (αB − 2λ)2e2, the deviations of

Z = −[Y − f(X)]2 + [Y − f̃(X)]2

are given by

(4.9) logEP eλ
Z−EPZ

B2 ≤ λ2 R̄(f)
B2

G(λ),

where G(λ) , 8M
(αB−2λ)2e2 + e2λ−1−2λ

λ2 . The quantities R̄(f) and r̄(f) are still defined
as {

R̄(f) = R(f) − R(f̃) = EP
[(
Y − f(X)

)2]− EP[(Y − f̃(X)
)2]

r̄(f) = r(f) − r(f̃) = EP̄
[(
Y − f(X)

)2]− EP̄[(Y − f̃(X)
)2]

Hence, for any 0 ≤ λ ≤ αB
2 satisfying λG(λ) ≤ 1, we have successively

EP⊗N e
λN
B2 {EP̄Z−EPZ[1−λG(λ)]} ≤ 1.

For any ε > 0,

P⊗N

{
λN

B2
{EP̄Z − EPZ[1− λG(λ)]} − log(ε−1) ≥ 0

}
≤ ε.

With P⊗N -probability at least 1 − ε, R̄(f) ≤ r̄(f)
1−λG(λ) + B2

N
log(ε−1)

λ[1−λG(λ)] . By using a
union bound, for any discretized simplex Rdisc with P⊗N -probability at least 1− ε,

3we use that for any random variable X such that a ≤ X ≤ b a.s., the variance of X is bounded
by (b− a)2/4.
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for any f ∈ Rdisc, we get

R̄(f) ≤ r̄(f)
1− λG(λ)

+
B2

N

log(ε−1Card Rdisc)
λ[1− λG(λ)]

.

For some m ∈ N which will be chosen later, let us take

Rdisc =
{ d∑

i=1

ai

m
fi : ai ∈ N such that

d∑
i=1

ai = m

}
.

Then we have

Card Rdisc =
(
m+ d

d

)
≤
{

2×md when d ≤ m
2× dm when d ≥ m,

and for any g ∈ R̃ there exists f ∈ Rdisc such that ‖f − g‖∞ ≤ B
m . This last

inequality implies that there exists f ∈ Rdisc such that

r̄(f) =
1
N

N∑
i=1

[2Yi − f(Xi)− f̃(Xi)][f(Xi)− f̃(Xi)] ≤ Σ
B

m
,

where Σ ,
PN

i=1 |2Yi−f(Xi)−f̃(Xi)|
N ≤ 2

PN
i=1 |Yi−f∗(Xi)|

N + 2B. The algorithm which
minimizes the empirical risk on the net Rdisc satisfies with P⊗N -probability at least
1− ε, for any f ∈ Rdisc,

R̄(f̂) ≤ r̄(f̃disc)
1− λG(λ)

+
B2

N

log(ε−1Card Rdisc)
λ[1− λG(λ)]

,

where f̃disc , argmin
f∈Rdisc

R(f), hence, by taking λ = κ1 defined as 2κ1G(κ1) = 1,

R(f̂)−R(f̃) ≤ 2Σ
B

m
+

{
2B2

Nκ1

[
d log(m) + log(2ε−1)

]
when d ≤ m

2B2

Nκ1

[
m log(d) + log(2ε−1)

]
when d ≥ m

First, assume that the output data Y are bounded. Then we have Σ ≤ κ for
some constant κ. By taking m = N

d when d ≤
√
N and m =

√
N/ log d when

d >
√
N , we obtain that with P⊗N -probability at least 1− ε,

(4.10) R(f̂)−R(f̃) ≤

{
CstB2

[
d
N log(N

d ) + log(2ε−1)
N

]
when d ≤

√
N

CstB2
[√

log d
N + log(2ε−1)

N

]
when d ≥

√
N

In general, the output data Y are not bounded. However the quantity Σ behaves
more or less like 2EP|Y − f∗(X)| + 2B. From Assumption (2.2), this expectation
is uniformly bounded wrt the distribution P. Using once more deviation equalities,
one can prove that with high probability Σ is bounded. So the bound (4.10) still
holds. As a consequence, we have

P⊗NR(f̂)−R(f̃) ≤

{
CstB2 d

N log(N
d ) when d ≤

√
N

CstB2
√

log d
N when d ≥

√
N

We have shown here that estimators having the optimal convergence rate (up
to a logarithmic factor) can be constructed (but generally not easily implemented)
using the ERM on an appropriate net of the model. It is interesting to notice that,
in a different context ([8, 14]), Mammen and Tsybakov similarly obtained optimal
minimax convergence rate. Note that for linear and convex combination, simpler
proofs exist under stronger assumptions (see [13]).
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4.2.2. Aggregating procedure. We consider the aggregating procedure studied in
Theorem 4.5: the algorithm minimizes the quantity B

(
ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J ,

(ζj)j∈J

)
defined in (4.4) for well chosen parameter families.

This section explains how to minimize efficiently wrt the probability distribution
ρ the quantity B(ρ, λ, η, β, ζ) and shows that the resulting aggregated distribution
has the same form as the optimal randomizing distribution (see section 3.2), the
difference being that the quantity that determines the weight given to each function
is not just given by the empirical error but integrates a corrective factor that takes
into account the errors made by the other weighted functions in a similar way as
in Adaboost. Besides we will see that the corrective factor can be obtained by an
algorithm in dual form which involves the choice of a N-dimensional real vector.

For fixed λ and β, we need to minimize a bound of the following type

ψ̄(ρ) , a
(
r(Eρ(dθ)fθ) + bEP̄Varρ(dθ)fθ + cK(ρ, π)

)
,

where a > 0, 0 < b < 1 and c > 04.

Writing the dual problem

For any measurable function such that eh is π-integrable, introduce the proba-
bility distribution

πh ,
eh

Eπ(dθ)eh(θ)
· π.

Since we have{
Eρr(fθ) = r(Eρ(dθ)fθ) + EP̄Varρ(dθ)fθ

K(ρ, π− b
c r(f)) = K(ρ, π) + b

cEρr(fθ) + logEπ(dθ)e
− b

c r(fθ)

we can write

ψ̄(ρ) = a
(
(1− b)r(Eρ(dθ)fθ) + bEρr(fθ) + cK(ρ, π)

)
= a

(
(1− b)r(Eρ(dθ)fθ) + cK(ρ, π− b

c r(f))− c logEπ(dθ)e
− b

c r(fθ)
)

= ac

(
1−b
Nc

∑N
i=1[Yi − Eρ(dθ)fθ(Xi)]2 +K(ρ, π− b

c r(f))
)

−ac logEπ(dθ)e
− b

c r(fθ).

Hence minimizing ψ̄ is equivalent to minimizing

ψ(ρ) ,
1
2
‖Eρ(dθ)h(θ)‖2 +K(ρ, µ),

where µ , π− b
c r(f), ‖ · ‖ the euclidian norm in RN and h : Θ→ RN is defined by

hi(θ) ,

√
2(1− b)
Nc

[Yi − fθ(Xi)].

The minimization of the function ψ over the set of probability distributions has
some distinctive features stressed in the following theorem.

4For our bound, we have a = 1
1−λG(λ)

, b =
βg(β)+λG(λ)

1+βg(β)
and c = B2

Nλ

�
1 +

λ[1−λG(λ)]
β[1+βg(β)]

�
.
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Theorem 4.7. For any µ ∈ M1
+(Θ) and any bounded function h : Θ → RN , the

map ψ has a unique minimum ρ̄ in M1
+(Θ). Besides, the probability distribution ρ̄

is the only distribution satisfying

ρ̄(dθ) = µ−〈Eρ̄h,h〉(dθ) =
e−〈Eρ̄h,h(θ)〉

Eµ(dθ′)e−〈Eρ̄h,h(θ′)〉 · µ(dθ),

and we have

ψ(ρ)− ψ(ρ̄) = K(ρ, ρ̄) +
1
2
‖Eρh− Eρ̄h‖2 for any ρ ∈M1

+(Θ).

Proof. See Section 7.5 �

Introduce d1 , b
cN and d2 , 1−b

cN . From Assumption (2.1), the mappings hi

are bounded and we can apply the previous theorem. So the optimal distribution
has the following form πw , π−d1Nr(f)+〈w,f(X)〉, where w is a N -dimensional vec-
tor to be determined. Note that in support vector machines, we have to solve
a N -dimensional linearly constrained quadratic problem. Here we have a N -
dimensional unconstrained minimization problem. Both methods come down to
an N -dimensional optimization problem because they both write the dual of an
initial learning problem.

For the optimal w, from the previous theorem, the posterior distribution is

πw = π−d1Nr(f)+2d2〈Y−Eπw(dθ)fθ(X),f(X)−Y 〉.

So the optimal distribution πw stresses on functions with low empirical risk and
such that they make the opposite error as the combined estimator (since the bigger
〈Y − Eπwf(X), fθ(X) − Y 〉 is, the more weight πw gives to fθ). This is precisely
the idea that has lead to the first boosting methods, such as AdaBoost.

Solving the dual problem

Note that the unicity of the optimal probability distribution πw according to
Theorem 4.7 does not give the unicity of the vector w. We have πh = πh′ if and
only if h = h′ + Cst π-a.s. Therefore we have πw = πw′ iff 〈w − w′, f(X)〉 = Cst
π-a.s.

Define

ϕ̄(w) , ψ̄(πw) = ac
[
d2‖Eπwf(X)− Y ‖2 − logEπ− b

c
r(f)

e〈w,f(X)−Eπw f(X)〉
]

−ac logEπe
− b

c r(f).

We have
5ϕ̄(w) = acVarπwf(X)

(
2d2[Eπwf(X)− Y ] + w

)
,

where Varπwf(X) is the covariance matrix of f(Xi), i = 1, . . . , N wrt πw. Denote
r the rank of this matrix. Usually, we have r = N . Then there is no vector v such
that 〈v, f(X)〉 = Cst π-a.s. Hence, in that case, there is a unique optimal w.

However, it may happen that r < N (for instance when two input vectors are
identical i.e. Xi = Xj for some i 6= j). Even if it means numbering again, one may
assume that f(Xr+1), . . . , f(XN ) are π-linear combination of f(X1), . . . , f(Xr) to
the extent that there exists αi ∈ Rr, βi ∈ R, i = r + 1, . . . , N such that for any
i ∈ {r + 1, . . . , N}

f(Xi) = 〈αi, f(X)〉r + βi π-a.s.
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where 〈·, ·〉r is the dot product in Rr. From Theorem 4.7, we look for a N -
dimensional vector w such that

(4.11) 〈w, f(X)〉 = 2d2〈Eπw [Y − f(X)], f(X)〉+ Cst π-a.s.

Without constraints on w, there is an infinity of such vectors. Since we have

〈Eπw [Y − f(X)], f(X)〉
=
∑r

j=1Eπw [Yj − f(Xj)]f(Xj)
+
∑N

i=r+1Eπw [Yi − 〈αi, f(X)〉r − βi]
(
〈αi, f(X)〉r + βi

)
=
∑r

j=1

(
Eπw [Yj − f(Xj)] +

∑N
i=r+1 α

i
jEπw [Yi − 〈αi, f(X)〉r − βi]

)
f(Xj)

+
∑N

i=r+1 β
iEπw [Yi − 〈αi, f(X)〉r − βi],

one may set wr+1, . . . , wN to 0 and solve only a r-dimensional minimization problem
for which the unique solution is

(4.12) w = 2d2

(
Y − Eπwf(X) +

N∑
i=r+1

αi[Yi − 〈αi,Eπwf(X)〉r − βi]
)
.

Remark 4.6. In the case when none of the functions of the model discriminates Xi

from Xj for some i > j (i.e. fθ(Xi) = fθ(Xj) for any θ ∈ Θ), we have αi
j = 1 and

αi
k = 0 for k 6= j. Hence, in equality (4.12), there is no additional term in wk for
k 6= j and the additional term in wj is simply Yi − Eπwf(Xj).

Remark 4.7. From Assumption (2.1), for any x ∈ X , the mapping [θ 7→ fθ(x)] is
bounded. So we can write a bracketing of w. For instance, when r = N , we have

wi ∈
[
2d2

(
Yi − sup

θ∈Θ
fθ(Xi)

)
; 2d2

(
Yi − inf

θ∈Θ
fθ(Xi)

)]
.

Remark 4.8. It follows from wr+1 = · · · = wN = 0 that

1
ac

∂ϕ̄
∂wk

(w) =
∑r

j=1 Covπw [f(Xk), f(Xj)]
(
2d2Eπw [Yj − f(Xj)] + wj

)
+
∑N

i=r+1 2d2Covπw [f(Xk), 〈αi, f(X)〉r]Eπw [Yi − 〈αi, f(X)〉r − βi]

=
∑r

j=1 Covπw [f(Xk), f(Xj)]
(
wj + 2d2Eπw [Yj − f(Xj)]

+2d2

∑N
i=r+1 α

i
j Eπw [Yi − 〈αi, f(X)〉r − βi]

)
,

hence

5rϕ̄(w) = acVarπwl f(X)


r

[
w − 2d2

(
Y − Eπwf(X)

+
∑N

i=r+1 α
i[Yi − 〈αi,Eπwf(X)〉r − βi]

)]
,

where 5rϕ̄ is the vector ∂ϕ̄
∂wk

, k = 1, . . . , r and Varπwl f(X)


r
is the covariance

matrix of f(X1), . . . , f(Xr). This is another method of proving that an optimal w
is given by (4.12). It is also the required formula to program a gradient descent
algorithm in order to compute the optimal vector w. However, the variance matrix
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being computationnally too expensive5, we would prefer the following alternative
minimization procedure.

Algorithm:
BEGIN
Start with w0 = 0.
For l = 0 to maximum number of iterations do

• Set

wl+1 = 2d2

(
Y − Eπwl f(X) +

N∑
i=r+1

αi[Yi − 〈αi,Eπwl f(X)〉r − βi]
)
.

• Exit the loop if wl+1 is not “far” from wl.
• While ϕ̄(wl+1) > ϕ̄(wl) do

wl+1 =
1
2
(wl + wl+1).

END
The stopping criteria in the loop comes from

Theorem 4.8. For any w,w′ ∈ RN , we have

ϕ̄(w)− ϕ̄(w′) = ac
(
d2‖Eπwf(X)− Eπw′ f(X)‖2 +K(πw, πw′)
+〈w′ + 2d2(Eπw′ f(X)− Y ),Eπwf(X)− Eπw′ f(X)〉

)
.

In particular, we have

ψ̄(πwl

)− ψ̄(ρ̄)

≤ acB
∥∥∥∥wl − 2d2

(
Y − Eπwl f(X) +

∑N
i=r+1 α

i[Yi − 〈αi,Eπwl f(X)〉r − βi]
)∥∥∥∥.

Proof. See Section 7.6. �

In Section 7.7, we prove that we exit the “While” loop in a finite number of
iterations. Finally, we obtain an algorithm which derives directly from Corollary
4.3. However this procedure tends to regularize too much. The obtained bounds
are upper bounds and even if a lot of care was taken to get sharp bounds, they
still are quantitatively loose for small sample sizes. As a consequence, the regu-
larization parameters coming from these bounds are too conservative. So in our
numerical experiments, these parameters are tuned using validation sets. The pre-
vious minimization procedure will however be used to get the optimal aggregating
distribution associated with a set of these parameters.

4.3. Expected risk bound for any aggregating procedure. From Corollary
4.3, we also derive an empirical bound on the expected risk of any aggregating
procedure. One of the output of the algorithm described in the previous section is
an upper bound of R(Eπwopt f) − R(f̃). It can also be interesting to upper bound
R(Eπwopt f) (since R(f̃) is unknown). The following corollary gives an observable
upper bound of the expected risk of any aggregating procedure.

5In our numerical experiments described in Section 5, the order of the number of operations

required to compute the N2 covariances is N2 × Nd, where d is the dimensionality of the input
vector (see Corollary 5.3 for details). In this framework, the gradient descent algorithm roughly

loses a factor N in computational complexity wrt to the following procedure.
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Corollary 4.9. For any ε > e−κ3N , with
(
P⊗N

)
∗-probability at least 1 − 3ε, for

any aggregating procedure ρ̂ : ZN →M1
+(Θ),

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) +B′ + L2 log(ε−1)
N + 4B2log(ε−1)

κ1N

+2L
√

log(ε−1)
N

√
r(Eρ̂(dθ)fθ) +B′ + L2 log(ε−1)

N

,

where

B′ , inf
i∈I
j∈J

B′(ρ̂, λi, ηi, βj , ζj)

B′(ρ, λ, η, β, ζ) , H(λ)
(
λG(λ)

[
Eρ(dθ)r(fθ)− infR̃ r

]
+B2 K(ρ,π)+log[(ηε)−1]

Nλ

)
+h(β)

(
βg(β)V̄ (ρ) +B2 2K(ρ,π)+log[(ζε)−1]

2Nβ

)
= H(λ)

(
λG(λ)

[
r(Eρ(dθ)fθ)− infR̃ r

]
+B2 K(ρ,π)+log[(ηε)−1]

Nλ

)
+
[
λG(λ)H(λ) + βg(β)h(β)

]
V̄ (ρ)

+B2h(β) 2K(ρ,π)+log[(ζε)−1]
2Nβ

L , 1√
2α

[
log
(
κ4

N
log(ε−1)

)]2
V̄ (ρ) , EP̄Varρ(dθ)fθ

and {
κ3 , M2e2(αB−1)

2[(αBe)2+4M ]

κ4 , MeαB+1

αB

√
κ1
8 , where by definition, κ1 satisfies 2κ1G(κ1) = 1

Proof. See Section 7.8. �

Remark 4.9. Once more, the threshold on ε is negligible, and κ3 can be disregarded.

Remark 4.10. When r(Eρ̂(dθ)fθ) and V̄ (ρ̂) are of order 1
N , the bound on the ex-

pected risk R(Eρ̂(dθ)fθ) is of order (log N)4

N . For bounded noise (i.e. Y − EP(Y/X)
uniformly bounded on X ), the argument in Section 7.8 can be easily adapted to
get rid of the (logN)4 factor (since the deviations of the empirical risk of the best
convex combination can be bounded using the first part of Lemma 7.1). This is the
case in the classification context (see Corollary 4.11).

Remark 4.11. We will see in Section 7.8 that this corollary follows from Corollary
4.3 by controlling the deviations of the empirical risk r(f̃) of the best convex com-
bination. A bound on the expected risk of any randomization procedure can be
similarly deduced from this control.

Remark 4.12. The constants in Corollary 4.9 can be slightly improved by using
remark 7.4. Indeed, when f̃ = EP(Y/X = ·), Lemma 7.5 holds for

L̃ = log

(
Me

√
N

2log(ε−1)α2R(f̃)

)
and κ3 = M2e−2

2(e2(αB)2+4M) (since inequality (7.14) can be improved by eliminating
the eαB factor). Therefore the corollary remains true for{

κ3 = M2e−2

2[(αBe)2+4M ]

κ4 = Me
αB

√
κ1
8

.
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4.4. Application to binary classification. In binary classification, the output
set is Y = {0, 1}, and the model consists in a set of functions on the input space X
taking their values in [0; 1]. In this framework, the constants α and M in Assump-
tion (2.2) are not relevant since the output is bounded. Besides, we have B = 1.
We still denote g(λ) , eλ−1−λ

λ2 , h(β) , 1
1+βg(β) and we define ȟ(λ) , 1

1−4λg(λ) .
Theorem 4.2 can be replaced by

Theorem 4.10. Introduce countable families (λi)i∈I , (ηi)i∈I , (βj)j∈J and (ζj)j∈J

such that λi > 0, 4λig(λi) < 1, ηi > 0,
∑

i∈I ηi = 1, βj > 0, ζj > 0 and
∑

j∈J ζj =
1. For any ε > 0, with P⊗N -probability at least 1−2ε, for any randomizing procedure
ρ̂ : ZN →M1

+(Θ), for any i ∈ I and for any j ∈ J , we have

(4.13)

R(Eρ̂(dθ)fθ)−R(f̃) ≤ ȟ(λi)
[
r(Eρ̂(dθ)fθ)− r(f̃)

]
+
[
ȟ(λi)− h(βj)

]
V̄

+ ȟ(λi)
Nλi

{
K(ρ̂, π) + log[(ηiε)−1]

}
+h(βj)

2Nβj

{
2K(ρ̂, π) + log[(ζjε)−1]

}
.

where V̄ (ρ̂) , EP̄Varρ̂(dθ)fθ.

Proof. The proof is similar to the ones which lead to Theorem 4.2. The only
part to modify is in Section 7.2. Since we have trivially B = 1, the deviations of
Zθ = −

(
Y − fθ(X)

)2 +
(
Y − f̃(X)

)2 = [fθ(X)− f̃(X)][2Y − f̃(X)− fθ(X)] given
by Lemma 7.2 can be obtained by using directly Lemma 7.1 to Zθ (b = 1). We get

logEP eλ(Zθ−EPZθ) ≤ λ2EPZθ
2g(λ) ≤ 4λ2R̄(θ)g(λ),

Consequently, G(λ) can be replaced by 4g(λ). �

From Theorem 4.10, we may derive an empirical bound on the expected risk of
any combining procedure.

Corollary 4.11. For any countable families (λi)i∈I , (ηi)i∈I , (βj)j∈J and (ζj)j∈J

such that λi > 0, 4λig(λi) < 1, ηi > 0,
∑

i∈I ηi = 1, βj > 0, ζj > 0 and
∑

j∈J ζj =
1, for any ε > 0, with P⊗N -probability at least 1−2ε, for any randomizing procedure
ρ̂ : ZN →M1

+(Θ), we have

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) +B′′

+
√

2log(ε−1)
N

(√
r(Eρ̂(dθ)fθ) +B′′ + log(ε−1)

2N +
√

log(ε−1)
2N

)
where

B′′ , inf
i∈I
j∈J

B′′(ρ̂, λi, ηi, βj , ζj)

B′′(ρ, λ, η, β, ζ) , ȟ(λ)
(
4λg(λ)

[
Eρ(dθ)r(fθ)− infR̃ r

]
+ K(ρ,π)+log[(ηε)−1]

Nλ

)
+h(β)

(
βg(β)V̄ (ρ) + 2K(ρ,π)+log[(ζε)−1]

2Nβ

)
= ȟ(λ)

(
4λg(λ)

[
r(Eρ(dθ)fθ)− infR̃ r

]
+ K(ρ,π)+log[(ηε)−1]

Nλ

)
+
[
4λg(λ)ȟ(λ) + βg(β)h(β)

]
V̄ (ρ) + h(β) 2K(ρ,π)+log[(ζε)−1]

2Nβ

Proof. The proof is similar to the one in Section 7.8. To control the deviations of
the empirical risk r(f̃) of the best convex combination, we apply inequality (7.1)
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directly to Z =
(
Y − f̃(X)

)2 ∈ [0; 1]. For any λ > 0 and any µ ∈ R, we have

P⊗N (R(f̃)− r(f̃) > µ) ≤ EP⊗N eNλ(R(f̃)−r(f̃)−µ)

≤ e−Nλµ
(
EP e

λ(EPZ−Z)
)N

≤ eN
(
−λµ+ λ2

2 EPZ
)
,

For µ = log(ε−1)
Nλ + λ

2R(f̃), this last bound is equal to ε. The previous inequality

holds for any λ > 0. To get a small µ, we take λ =
√

2log(ε−1)

NR(f̃)
(when R(f̃) 6= 0;

otherwise the result is trivial). It follows that with P⊗N -probability at least 1− ε,

R(f̃)− r(f̃) ≤

√
2log(ε−1)R(f̃)

N
.

Using Theorem 4.10, with P⊗N -probability at least 1− 3ε, we obtain

R(f̃) ≤ R(Eρ̂(dθ)fθ) ≤

√
2log(ε−1)R(f̃)

N
+ r(Eρ̂(dθ)fθ) +B′′,

where B′′ are the quantities defined in Corollary 4.11. Hence, we have successively(√
R(f̃)−

√
log(ε−1)

2N

)2

≤ r(Eρ̂(dθ)fθ) +B′′ +
log(ε−1)

2N
,

√
R(f̃) ≤

√
r(Eρ̂(dθ)fθ) +B′′ +

log(ε−1)
2N

+

√
log(ε−1)

2N
,

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) +B′′

+
√

2log(ε−1)
N

(√
r(Eρ̂(dθ)fθ) +B′′ + log(ε−1)

2N +
√

log(ε−1)
2N

)
.

�

5. Numerical examples : binary classification

5.1. Setup and notations. The setting is quite simple: the input data are d-
dimensional: X = Rd. In binary classification, the output set is Y = {0, 1}. The
model consists in all decision stumps. By definition, these stumps achieve a binary
partition of X along hyperplanes orthogonal to the axes in the canonical base of
X . In other words, they compare one component of the input data to a threshold.
Hence the model is

(5.1) R =
{
α01xj<τ + α11xj≥τ : j ∈ {1, . . . , d}, τ ∈ R, α0 ∈ [0; 1], α1 ∈ [0; 1]

}
.

Recall that the set of all df (distribution functions) is the set of increasing càdlàg
functions F such that {

lim
x→−∞

F (x) = 0

lim
x→+∞

F (x) = 1

Theorem 5.1. The set R̃ of mixtures of elements of R is an additive model

(5.2)
R̃ =

{
x 7→

∑d
j=1 αjhj(xj) : for any j ∈ {1, . . . , d}, hj ∈ H, αj ≥ 0

and
∑d

j=1 αj = 1
}
,
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where

H ,
{
αF + β(1−G) + γ : α ≥ 0, β ≥ 0, γ ≥ 0, α+ β + γ ≤ 1, F df, G df

}
.

R̃ can also be written
(5.3)

R̃ =

{
x 7→ γ +

∑d
j=1

(
αjFj(xj) + βj [1−Gj(xj)]

)
: for any j ∈ {1, . . . , d},

Fj df, Gj df, αj ≥ 0, βj ≥ 0 and γ +
∑d

j=1(αj + βj) ≤ 1

}
,

Proof. By definition, the set of mixtures of elements in R is the set of functions
which can be written as Eπ(dX)X, where π is a probability measure on R. This
definition requires to have put a sigma algebra on R. In our context, we take the
canonical one. Introduce the set

R′ , {0R} ∪ {1R} ∪
j∈{1,...,d}

τ∈R

{1xj≥τ} ∪
j′∈{1,...,d}

τ ′∈R

{1x′j<τ ′},

where 0R : x 7→ 0 and 1R : x 7→ 1. Let us put on R′ its canonical sigma alge-
bra. Denote Mixt(R′) the set of mixtures of elements in R′. Since R ⊂ Mixt(R′)
and R′ ⊂ R, we have Mixt(R′) = Mixt(R) = R̃. Hence any element of R̃ can
be written Eρ(dX)X, where ρ is a probability distribution on R′. Then define
γ = ρ(1R), for any j ∈ {1, . . . , d}, αj = ρ(j), for any j′ ∈ {1, . . . , d}, βj′ = ρ(j′),
µj(dτ) = ρ(dτ/j) the probability distribution on R and νj′(dτ ′) = ρ(dτ ′/j′) the
probability distribution on R. Denote Fj the df of µj and Gj′ the df of νj′ . Then we
have Eρ(dX)X = ρ(0R)0R+ρ(1R)1R+

∑d
j=1 ρ(j)Eρ(dX/j)X+

∑d
j′=1 ρ(j

′)Eρ(dX/j′)X.

Hence Eρ(dX)X(x) = γ +
∑d

j=1 αjFj(xj) +
∑d

j′=1 βj′ [1−Gj′(xj′)]. From the defi-
nitions, it comes that for any j ∈ {1, . . . , d}, Fj and Gj are df, αj ≥ 0, βj ≥ 0 and
γ +

∑d
j=1(αj + βj) ≤ 1. Therefore, we have

R̃ ⊂
{
x 7→ γ +

∑d
j=1

(
αjFj(xj) + βj [1−Gj(xj)]

)
: for any j ∈ {1, . . . , d},

Fj df, Gj df, αj ≥ 0, βj ≥ 0 and γ +
∑d

j=1(αj + βj) ≤ 1
}
,

Inversely, using the same ideas in the reverse order, one can prove the other inclu-
sion. So equality (5.3) is true. Equality (5.2) directly comes from it. �

Remark 5.1. The model R̃ is additive. As any additive model, it cannot classify well
data coming from certain simple generator. One of the simplest is the 4-checked
draughtboard defined as

L(X) = U [0; 1]× U [0; 1]

L(Y/X = (x1, x2)) =


δ0 when x1 <

1
2 and x2 <

1
2

δ1 when x1 <
1
2 and x2 ≥ 1

2
δ1 when x1 ≥ 1

2 and x2 <
1
2

δ0 when x1 ≥ 1
2 and x2 ≥ 1

2

where δa denotes the Dirac distribution on point a. For this generator, the best
additive model has a misclassification rate of 1

4 whereas the Bayes classifier almost
surely classifies well.
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5.1.1. Data sets generators. The training sample will be drawn from the
“twonorm”, “threenorm” and “ringnorm” generators. These generators introduced
by Breiman in [3] have the following definitions

• Twonorm
Both classes have equal probabilities: P(Y = 0) = P(Y = 1) = 1

2 . The
law of probability of X ∈ Rd conditional to Y = 0 is a multivariate normal
distribution with unit covariance matrix and mean m− , (− 2√

d
, . . . ,− 2√

d
).

The law of probability of X conditional to Y = 1 is a multivariate normal
distribution with unit covariance matrix and mean m+ , ( 2√

d
, . . . , 2√

d
).

• Threenorm
Both classes have equal probabilities. The law of probability of X ∈ Rd

conditional to Y = 0 is a multivariate normal distribution with unit covari-
ance matrix and meanm , (− 2√

d
, 2√

d
,− 2√

d
, 2√

d
, . . . ). Conditional to Y = 1,

X is drawn with equal probability from a multivariate normal distribution
with unit covariance matrix and mean m− and from a multivariate normal
distribution with unit covariance matrix and mean m+.
• Ringnorm

Both classes have equal probabilities. The law of probability of X ∈ Rd

conditional to Y = 0 is a multivariate normal distribution with unit co-
variance matrix and mean m+

2 . The law of probability of X conditional to
Y = 1 is a multivariate centered normal distribution with covariance matrix
four times the identity.

Denote Gµ the multivariate normal density wrt Lebesgue measure with mean µ
and unit covariance matrix :

Gµ(x) =
e−

‖x−µ‖2
2

(2π)
d
2

.

Introduce n1 , (0, 1, 0, 1, . . . ), n2 , (1, 0, 1, 0, . . . ) and Cst , 8d log 2. The main
characteristics of these generators are described in the following tables.

5.1.2. Prior distribution. We are looking for the best classifying function among
the functions of R̃. In the proof of Theorem 5.1, we have noticed that R̃ is the set
of mixtures of elements in

R′ , {0R} ∪ {1R} ∪
{
fj,τ ; j ∈ {1, . . . , d}, τ ∈ R

}
∪
{
gj′,τ ′ ; j′ ∈ {1, . . . , d}, τ ′ ∈ R

}
,

where fj,τ (x) , 1xj≥τ and gj′,τ ′(x) , 1xj′<τ ′ . Instead of putting the prior dis-
tribution π on R, we will define it on R′. For any j ∈ {1, . . . , d}, a probability
distribution on {fj,τ ; τ ∈ R} or equivalently on {gj,τ ; τ ∈ R} can be seen as a prob-
ability distribution on the parameter τ ∈ R. We take arbitrarily the distribution π
such that the law of the function f ∈ R′ conditional to f ∈ {fj,τ ; τ ∈ R} and the
law of the function f ∈ R′ conditional to f ∈ {gj,τ ; τ ∈ R} are defined by the same
law G(dτ) and such that

π(0R) = 1
4

π(1R) = 1
4

π
(
∪

τ∈R
{fj,τ}

)
= 1

4d for any j ∈ {1, . . . , d}
π
(
∪

τ∈R
{gj,τ}

)
= 1

4d for any j ∈ {1, . . . , d}
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Twonorm
L(Y ) 1

2δ0 + 1
2δ1

L(X/Y = 0) N(m−, I)
L(X/Y = 1) N(m+, I)

L(X)
Gm− (x)+Gm+ (x)

2 dx

P(Y = 1/X = x)
Gm+

Gm++Gm−
(x) = 1

1+e−2〈x,m+〉

frontier 〈x,m+〉 = 0

Threenorm Ringnorm
L(Y ) 1

2δ0 + 1
2δ1

1
2δ0 + 1

2δ1
L(X/Y = 0) N(m, I) N(m+

2 , I)

L(X/Y = 1)
Gm− (x)+Gm+ (x)

2 dx N(0, 4I)

L(X)
Gm− (x)+Gm+ (x)+2Gm(x)

4 dx
Gm+/2(x)+ 1

2d G0(
x
2 )

2 dx

P(Y = 1/X = x)
Gm−+Gm+

Gm−+Gm++2Gm
(x) G0(

x
2 )

G0(
x
2 )+2dGm+/2(x)

frontier e
− 4√

d
〈n1,x〉 + e

4√
d
〈n2,x〉 = 2 ‖2x−m+‖2 − ‖x‖2 = Cst

In our numerical examples, G will be a centered normal distribution with unit
variance N(0, 1):

G(dτ) =
e−

τ2
2

√
2π

.

5.2. Computation of the bound and of the classifier. LetB(λi, βj , ρ) be equal
to the RHS of inequality (4.13) in which we replace the unobservable quantity r(f̃)
with inf

R̃
r and we take ηi = η = 1

|I| and ζj = ζ = 1
|J| . Let d′1 be some real and

define ρ̂d′1
, π−d′1Nr(f)+〈w,f(X)〉. Set

a , 1
1−4λg(λ)

b , 1− 1−4λg(λ)
1+βg(β)

c , 1
λN + 1−4λg(λ)

βN [1+βg(β)]

d1 , b
cN

d2 , 1−b
cN

d3 , 1
N

(
log[(ηε)−1]

λ[1−4λg(λ)] + log[(ζε)−1]
2β[1+βg(β)]

)
− inf{r(f);f∈R̃}

1−4λg(λ)

.

We have B(λ, β, ρ̂) = a
[
bEρ̂(dθ)r(fθ) + (1− b)r(Eρ̂(dθ)fθ) + cK(ρ̂, π)

]
+ d3, hence

(5.4)
B(λ, β, ρ̂d′1

) = ac
(
d2

∑N
i=1[Yi − Eρ̂d′1

f(Xi)]2 + d1Eρ̂d′1

∑N
i=1[Yi − f(Xi)]2

+K(ρ̂d′1
, π)
)

+ d3

= ac
(
d2

∑N
i=1[Yi − Eρ̂d′1

f(Xi)]2

+(d1 − d′1)
∑N

i=1

(
Yi − 2YiEρ̂d′1

f(Xi) + Eρ̂d′1
f(Xi)

)∑N
i=1 wiEρ̂d′1

f(Xi)− log πe−d′1Nr(f)+〈w,f(X)〉
)

+ d3

We just need to compute Eπe
−d′1Nr(f)+〈w,f〉) and then use that for any i ∈

{1, . . . , N}, Eρ̂d′1
f(Xi) = ∂

∂wi
logEπe

−d′1Nr(f)+〈w,f(X)〉 to calculate this bound.
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For any input data x ∈ X , the predicted output is

Eρ̂d′1
f(x) =

∂

∂u
logEπe

−d′1Nr(f)+〈w,f(X)〉+uf(x)


u=0

.

The following theorem gives a simple expression of Eπe
−d′1Nr(f)+〈w,f(X)〉+uf(x).

We need first to introduce for any j ∈ {1, . . . , d} the bijection σj onto {1, . . . , N}
such that

Xσj(1),j < · · · < Xσj(N),j ,

where Xi,j denotes the j-th component of the i-th input vector of the training
data. (We assume that the j-th component of the N input vectors are different.)
By convention, put Xσj(0),j , −∞ and Xσj(N+1),j , +∞. Define

φ(x1, x2) ,
∫ x2

x1

G(τ)dτ

and for any j ∈ {1, . . . , d} and l ∈ {0, . . . , N},
φj,l , φ

(
Xσj(l),j , Xσj(l+1),j

)
Introduce for any j ∈ {1, . . . , d} and x ∈ X , the integer lj(x) ∈ {0, . . . , N} satisfying

Xσj [lj(x)],j ≤ x < Xσj [lj(x)+1],j .

Theorem 5.2. We have
Eπe

−d′1Nr(f)+〈w,f(X)〉+uf(x)

= 1
4e
−d′1
PN

i=1 Y 2
i + 1

4e
−d′1
PN

i=1(1−Yi)
2+
PN

i=1 wi+u + 1
4d

∑d
j=1

{
∑lj(x)−1

l=0 φj,l

[
e
−d′1
Pl

i=1 Y 2
σj(i)−d′1

PN
i=l+1(1−Yσj(i))

2+
PN

i=l+1 wσj(i)+u

+e−d′1
Pl

i=1(1−Yσj(i))
2−d′1

PN
i=l+1 Y 2

σj(i)+
Pl

i=1 wσj(i)

]
+φ(Xσj [lj(x)],j , x)

[
e
−d′1
Pl

i=1 Y 2
σj(i)−d′1

PN
i=l+1(1−Yσj(i))

2+
PN

i=l+1 wσj(i)+u

+e−d′1
Pl

i=1(1−Yσj(i))
2−d′1

PN
i=l+1 Y 2

σj(i)+
Pl

i=1 wσj(i)

]
+φ(x,Xσj [lj(x)+1],j)

[
e
−d′1
Pl

i=1 Y 2
σj(i)−d′1

PN
i=l+1(1−Yσj(i))

2+
PN

i=l+1 wσj(i)

+e−d′1
Pl

i=1(1−Yσj(i))
2−d′1

PN
i=l+1 Y 2

σj(i)+
Pl

i=1 wσj(i)+u
]

+
∑N

l=lj(x)+1 φj,l

[
e
−d′1
Pl

i=1 Y 2
σj(i)−d′1

PN
i=l+1(1−Yσj(i))

2+
PN

i=l+1 wσj(i)

+e−d′1
Pl

i=1(1−Yσj(i))
2−d′1

PN
i=l+1 Y 2

σj(i)+
Pl

i=1 wσj(i)+u
]}

As a consequence,

Eπe
−d′1Nr(f)+〈w,f(X)〉

= 1
4e
−d′1
PN

i=1 Y 2
i + 1

4e
−d′1
PN

i=1(1−Yi)
2+
PN

i=1 wi

+ 1
4d

∑d
j=1

∑N
l=0 φj,l

{
e
−d′1
Pl

i=1 Y 2
σj(i)−d′1

PN
i=l+1(1−Yσj(i))

2+
PN

i=l+1 wσj(i)

+e−d′1
Pl

i=1(1−Yσj(i))
2−d′1

PN
i=l+1 Y 2

σj(i)+
Pl

i=1 wσj(i)

}
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Proof. If l is the number of Xi,j , i = 1, . . . , N lower than τ , we have

d′1Nr(fj,τ ) + 〈w, fj,τ 〉 = d′1

l∑
k=1

Y 2
σj(k) +

N∑
k=l+1

(1− Yσj(k))2 +
N∑

k=l+1

wσj(k)

and

d′1Nr(gj,τ ) + 〈w, gj,τ 〉 = d′1

l∑
k=1

(1− Yσj(k))2 +
N∑

k=l+1

Y 2
σj(k) +

l∑
k=1

wσj(k).

The calculus is then straightforward. �

Let N0 (resp. N1) be the number of class 0 data (resp. class 1 data) in the
training sample. We have trivially N0 + N1 = N . Introduce cw0 , e−d′1N1 , cw1 ,
e−d′1N0+

PN
i=1 wi , for any j ∈ {1, . . . , d} and l ∈ {0, . . . , N},
aw

j,l , φj,le
−d′1
Pl

i=1 Yσj(i)−d′1
PN

i=l+1(1−Yσj(i))+
PN

i=l+1 wσj(i)

= φj,le
−d′1(N0−l+2

Pl
i=1 Yσj(i))+

PN
i=l+1 wσj(i)

bwj,l , φj,le
−d′1
Pl

i=1(1−Yσj(i))−d′1
PN

i=l+1 Yσj(i)+
Pl

i=1 wσj(i)

= φj,le
−d′1(N1+l−2

Pl
i=1 Yσj(i))+

Pl
i=1 wσj(i)

for any x ∈ X ,

cwj,l(x) ,


aw

j,l when l < lj(x)
φ(Xσj(l),j ,xj)a

w
j,l+φ(xj ,Xσj(l+1),j)b

w
j,l

φj,l
when l = lj(x)

bwj,l when l > lj(x)

and for any x, y ∈ X ,

cwj,l(x, y) ,


aw

j,l when l < lj(x) ∧ lj(y)
φ(Xσj(l),j ,xj∧yj)

φj,l
aw

j,l when l = lj(x) ∧ lj(y)
φ(xj∨yj ,Xσj(l+1),j)

φj,l
bwj,l when l = lj(x) ∨ lj(y)

bwj,l when l > lj(x) ∨ lj(y)

,

with the following convention when lj(x) ∨ lj(y) = lj(x) ∧ lj(y):

cwj,lj(x)∨lj(y)(x, y) ,
φ(Xσj(l),j , xj ∧ yj)

φj,l
aw

j,l +
φ(xj ∨ yj , Xσj(l+1),j)

φj,l
bwj,l.

Then

Corollary 5.3. For any constant d′1, we have

Eπe
−d′1Nr(f)+〈w,f(X)〉 = 1

4d

(
dcw0 + dcw1 +

∑d
j=1

∑N
l=0

(
aw

j,l + bwj,l
))
.

Let ρ̂d′1
, π−d′1Nr(f)+〈w,f(X)〉. We have

Eρ̂d′1
f(x) =

dcw
1 +
Pd

j=1
PN

l=0 cw
j,l(x)

dcw
0 +dcw

1 +
Pd

j=1
PN

l=0

(
aw

j,l+bw
j,l

)
Eρ̂d′1

[f(x)f(y)] =
dcw

1 +
Pd

j=1
PN

l=0 cw
j,l(x,y)

dcw
0 +dcw

1 +
Pd

j=1
PN

l=0

(
aw

j,l+bw
j,l

)
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Proof. It comes from Theorem 5.2 and from
Eρ̂d′1

f(x) = ∂
∂u logEπe

−d′1Nr(f)+〈w,f(X)〉+uf(x)


u=0

Covρ̂d′1

(
f(x), f(y)

)
= ∂2

∂u∂v logEπe
−d′1Nr(f)+〈w,f(X)〉+uf(x)+vf(y)


u=0,v=0

�

Remark 5.2. To compute Eρ̂d′1
f(Xi), we may note that lj(Xi) = σ−1

j (i). Besides,
there is a simple link between aw

j,l and bwj,l since for any j ∈ {1, . . . , d} and l ∈
{0, . . . , N}, we have

aw
j,lb

w
j,l = φ2

j,lc
w
0 c

w
1 .

Computation of the constant d3

We have

d3 ,
1
N

( log[(ηε)−1]
λ[1− 4λg(λ)]

+
log[(ζε)−1]

2β[1 + βg(β)]

)
− inf{r(f); f ∈ R̃}

1− 4λg(λ)
.

To compute the constant d3, we need to calculate inf{r(f); f ∈ R̃}. From Theorem
5.1, determining inf{r(f); f ∈ R̃} is equivalent to solving the following convex
quadratic (QP) problem

min
ui,j ,vi,j

N∑
i=1

(
d∑

j=1

(
ui,j + vi,j

)
− Yi

)2

under the linear constraints
0 ≤ uσj(1),j ≤ · · · ≤ uσj(N),j for any j ∈ {1, . . . , d}
vσj(1),j ≥ · · · ≥ vσj(N),j ≥ 0 for any j ∈ {1, . . . , d}∑d

j=1

(
uσj(N),j + vσj(1),j

)
≤ 1

The dimension of the QP-problem is dN and the number of linear constraints is
2dN + 1. This is numerically untractable (since dN � 1000). Therefore, we can
either weaken our bound by neglecting the term − inf{r(f);f∈R̃}

1−4λg(λ) or approximate this

term by − inf{r(Eρ(dθ)fθ)+δK(ρ,π);ρ∈M1
+(Θ)}

1−4λg(λ) for sufficiently small δ (since this last
optimization problem has been proven to be tractable).

5.3. Experiments.

5.3.1. Our algorithm: KL-Boost. In KL-Boost algorithm, we cross-validate on the
Kullback-Leibler regularization parameter and neglect the variance term. For any
couple (λ,β), the vector wopt in the procedure derived from Corollary 4.3 is solution
of the minimization problem

min
w∈RN

1
2
r(Eπw(dθ)fθ) + α′EP̄Varπw(dθ)fθ + αK(πw, π),

for α = 2c and α′ = 2b. The variance term in this minimization problem is useful
only when the best regression function f̃ in the model R̃ is in (or very close to) the
initial model R. Generally, this is not the case in applications. So let us forget the
variance term (α′ = 0). Finally, we look for the adequate parameter α by using
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cross-validation. After having chosen the parameter, the algorithm is calibrated on
all the training set for this regularization parameter.

According to Theorem 4.10, the quantity B(λ, β, ρ̂0) (see (5.4)) gives a risk guar-
antee. From Section 4.2.2, the final aggregating distribution is ρ̂ = π〈w,f〉, where
the vector w satisfies wi = 1

αN [Yi − Eπ〈w,f〉f(Xi)] for any i ∈ {1, . . . , N}.
In our experiments, we have taken
• maximum number of iterations used to optimize the bound m = 300,
• absolute error accepted when minimizing the bound err = 0.0001,
• number of blocks used in the cross-validation = 2,
• set of values of the regularization parameter α:

{0.0002, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.2}.
Note that this set is inspired from the bound and takes into account the fact
that the bound is conservative (i.e. tends to regularize too much). Strictly
speaking, it should depend on N .

In our simulations, the value 0.0002 of the parameter α leads to a procedure close
to the empirical risk minimizer on the set of mixtures R̃ and thus is used to ap-
proximate d3.

5.3.2. AdaBoost using domain-partitioning functions ([5, 12, 6]). The first boosting
methods train functions on weighted versions of the training sample, giving higher
weights to cases that are currently misclassified. In AdaBoost (Freund and Schapire
[5]), the functions trained are classifiers, that is to say functions taking their values
in {0, 1} in the two-class classification setting. We describe the original algorithm in
figure 2 where Ewm denotes the empirical expectation wrt the weights wm

1 , . . . , w
m
N .

Figure 1. “Discrete” AdaBoost using domain-partitioning func-
tions (Freund and Schapire [5])

Start with weights w0
i = 1

N for any i ∈ {1, . . . , N}.
For m = 1 to M do

Choose a partition of X = tL
l=1Xm

l .
On each Xm

l , fm ∈ {0, 1} is constant and such that it minimizes
the weighted training error

em , Pwm−1(Y 6= fm(X)).

Set wm
i = wm−1

i e
cm1Yi 6=fm(Xi)

Cst for any i ∈ {1, . . . , N}, where
• Cst is the normalizing constant,
• cm , log

(
1−em

em

)
.

Output the classifier 1Ecf(x)≥ 1
2
, where Ec is the expectation wrt the weights
c1, . . . , cM .

The weights cm are positive since by construction of the classifier fm, we have
em ≤ 1

2 . The choice of the partition can be done in several different ways. In
standard boosting methods, one can choose the split which causes the greatest
drop in the value of a criterion to be specified. This greedy procedure is sometimes
replaced by randomizing methods. For instance, one can draw a set of splits and
choose the split among this set which minimizes the criterion. Another way of
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randomizing is to draw a subset of the training sample and then take the split
which minimizes the criterion on this subset.

Introduce Fm ,
∑m

j=1 cjfj . Define Ȳ , −1 + 2Y ∈ {−1, 1}, f̄ , −1 + 2f and
F̄m , −1 + 2Fm. Then we have: F̄m =

∑m
j=1 cj f̄j . Introduce fm,l ∈ {0, 1} such

that

fm(x) =
L∑

l=1

fm,l1x∈Xm
l
,

where {Xm
l }1,...,L is the chosen partition during the m-th step of the procedure

(described in figure 2).

Lemma 5.4. Once the partition has been chosen, the positive real cm and the family
fm,l ∈ {0, 1}, l = 1, . . . , L are chosen in order to minimize EP̄(e−

1
2 Ȳ F̄m(X)).

The link between AdaBoost and this criterion has been introduced by Friedman,
Hastie and Tibshirani [6].

Proof. By induction on m, one may easily prove that for any m ∈ {0, . . . ,M},

Pwm =
e−

1
2 Ȳ F̄m(X)

EP̄(e−
1
2 Ȳ F̄m(X))

· P̄.

Then we have
EP̄(e−

1
2 Ȳ F̄m(X))

EP̄(e−
1
2 Ȳ F̄m−1(X))

= Ewm−1(e−
1
2 Ȳ cmf̄m(X))

=
∑L

l=1 P̄(X ∈ Xm
l )Ewm−1(e−

1
2 Ȳ cmf̄m,l/X ∈ Xm

l )
=

∑L
l=1

(
Pwm−1(Y = 1;X ∈ Xm

l ) e−
1
2 cmf̄m,l

+Pwm−1(Y = 0;X ∈ Xm
l ) e

1
2 cmf̄m,l

)
For any l ∈ {1, . . . , L} and for fixed cm ≥ 0, the l-th term of this last sum is
minimized for f̄m,l equal to the most wm−1-popular class on Xm

l , hence

fm,l = argmax
u∈{0,1}

Pwm−1(Y = u/X ∈ Xm
l ) = argmin

u∈{0,1}
Ewm−11{Y 6=u;X∈Xm

l }.

Since we have

Ewm−1(e−
1
2 Ȳ cmf̄m(X)) = e

1
2 cmPwm−1 [Y 6= fm(X)] + e−

1
2 cmPwm−1 [Y = fm(X)],

the optimal cm is

cm = log
(

1− em

em

)
,

where em = Pwm−1(Y 6= fm(X)). �

As Friedman, Hastie and Tibshirani pointed out, this algorithm produces adap-
tive Newton updates for minimizing [F̄ 7→ EP̄e

−Ȳ F̄ (X)], which are stage-wise con-
tributions to an additive logistic model.

In [12], Schapire and Singer suggests to use real-valued functions rather than
classifiers (which, by definition, take their values in {−1, 1}). This leads to the
algorithm described in figure 3 which outperforms the “discrete” AdaBoost when
L is small (especially when we use stumps: L = 2).

In this procedure, at the m-th step, the family f̄m,l, l = 1, . . . , L is chosen such
that it minimizes

EP̄ e
−Ȳ F̄m(X) = EP̄ e

−Ȳ F̄m−1(X)Ewm−1 e−Ȳ f̄m(X).
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Figure 2. “Real” AdaBoost using domain-partitioning functions
(Schapire and Singer[12])

Start with weights w0
i = 1

N for any i ∈ {1, . . . , N}.
For m = 1 to M do

Choose a partition of X = tL
l=1Xm

l .
For any l ∈ {1, . . . , L}, on each Xm

l , f̄m ∈ R is constant and
equal to

f̄m,l ,
1
2

log
(
Pwm−1(Y = 1;X ∈ Xm

l )
Pwm−1(Y = 0;X ∈ Xm

l )

)
.

Set wm
i = wm−1

i e−Ȳif̄m(Xi)

Cst for any i ∈ {1, . . . , N}, where Cst is the
normalizing constant.

Output the classifier 1FM (x)≥ 1
2

= 1+sign[F̄M (x)]
2 .

Besides, we have

Ewm−1 e−Ȳ f̄m(X)

=
∑L

l=1Pwm−1(Y = 0;X ∈ Xm
l )ef̄m,l + Pwm−1(Y = 1;X ∈ Xm

l )e−f̄m,l

= 2
∑L

l=1

√
Pwm−1(Y = 0;X ∈ Xm

l ) Pwm−1(Y = 1;X ∈ Xm
l ).

Therefore, as Schapire and Singer stresses, a natural criterion to partition the input
space X is to minimize this last sum. This is more coherent to use it instead of
the Gini index or an entropy function since it aims, as the rest of the procedure, to
minimize the functional [F̄ 7→ EP̄e

−Ȳ F̄ (X)].
It may happen that one of the predictions f̄m,l is very large or even infinite,

which leads to numerical problems. To limit the magnitude of the predictions,
Schapire and Singer define

f̄m,l ,
1
2

log
(
Pwm−1(Y = 1;X ∈ Xm

l ) + β

Pwm−1(Y = 0;X ∈ Xm
l ) + β

)
,

where β is a small positive real arbitrarily defined as β = 1
4N .

In our numerical examples, we are interested in decision stumps x 7→ α01xj<τ

+ α11xj≥τ which partition X into X<
j,τ , {xj < τ} and X≥j,τ , {xj ≥ τ}. For any

j ∈ {1, . . . , d} and τ ∈ R, introduce

Ww(j, τ) ,
√
Pw(Y = 0;x ∈ X<

j,τ )Pw(Y = 1;x ∈ X<
j,τ )

+
√
Pw(Y = 0;x ∈ X≥j,τ )Pw(Y = 1;x ∈ X≥j,τ ) .

The AdaBoost used in our numerical examples is described in figure 4. After
having tested different values for the number of stumps aggregated, we have taken
M = 100.

Remark 5.3. The set of (j, τ) minimizing Wwm−1(j, τ) has the following form

∪d
j=1

(
{j} × ∪kj

k=1]aj ; bj ]
)
,

where aj and bj belong to {−∞, X1,j , . . . , XN,j ,+∞} and k1, . . . , kd are positive
integers. We take arbitrarily the smallest j to make the split (i.e. the smallest
integer j such that kj > 0). Then τ is chosen in ]Xσj(l),j ;Xσj(l+1),j ], where l
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Figure 3. “Real” AdaBoost using stumps (Schapire and Singer[12])

Start with weights w0
i = 1

N for any i ∈ {1, . . . , N}.
For m = 1 to M do

Determine j ∈ {1, . . . , d} and τ ∈ R minimizing Wwm−1(j, τ).
Choose f̄m = f̄m,<1x∈X<

j,τ
+ f̄m,≥1x∈X≥j,τ

, where
f̄m,< , 1

2 log
(
Pwm−1 (Y =1;X∈X<

j,τ )+β

Pwm−1 (Y =0;X∈X<
j,τ )+β

)
f̄m,≥ , 1

2 log
(
Pwm−1 (Y =1;X∈X≥j,τ )+β

Pwm−1 (Y =0;X∈X≥j,τ )+β

)
and β = 1

4N .

Set wm
i = wm−1

i e−Ȳif̄m(Xi)

Cst for any i ∈ {1, . . . , N}, where Cst is
the normalizing constant.

Output the classifier 1FM (x)≥ 1
2

= 1+sign[F̄M (x)]
2 .

is the smallest integer such that (j,Xσj(l+1),j) minimizes Wwm−1(j, τ). We take
arbitrarily

τ =
Xσj(l),j +Xσj(l+1),j

2
∈ R̄.

We use the convention X<
j,−∞ , ∅, X≥j,−∞ , R, X<

j,+∞ , R and X≥j,+∞ , ∅. Hence
τ = +∞ and τ = −∞ give the same partition and consequently, the same function
fm.

Remark 5.4. Since E e−Ȳ F̄ (X) is minimized for F̄ (x) = 1
2 log

(
P(Y =1/X=x)
P(Y =0/X=x)

)
and

since the AdaBoost procedure aims to minimize the functional
[
F̄ 7→ EP̄e

−Ȳ F̄ (X)
]
,

the quantity 1
1+e−2F̄M (x) is an estimate of the regression function E(Y/X = x) =

P(Y = 1/X = x).

Remark 5.5. The “real” AdaBoost algorithm using stumps as a weak learner leads
to a classifier which belongs to

sign(R̃) , {g : X → {−1; 1} : there exists f ∈ R̃ such that g = signf}.
So it is not associated with a larger model than the one used in KL-Boost. “Dis-
crete” AdaBoost using stumps has trivially this property (final classifier belongs to
sign(R̃)) since the estimates fm aggregated belongs to R′. To prove the property
for the “real” Adaboost algorithm, we just need to notice that

1FM (x)≥ 1
2

= 1Eµf ′m(x)≥ 1
2
,

where f ′m , 1+f̄ ′m
2 , f̄ ′m , f̄m

max
{
|fm,k|;k∈{<,≥},m∈{1,...,M}

} and µ is the uniform

distribution on {1, . . . ,M}, and to check that f ′m belongs to R (see equality (5.1)
for the definition of R).

However, in KL-Boost, the additive model is put on the conditional expectation
rather than the logit transformation

1
2

log
(
P(Y = 1/X)
P(Y = 0/X)

)
=

1
2

log
(

E(Y/X)
1− E(Y/X)

)
.
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Therefore, as algorithms estimating the conditional expectation E(Y/X), AdaBoost
and KL-Boost are associated with very different models.

5.4. Numerical results and comments. In our experiments, we compare KL-
Boost with Adaboost. It appears that KL-Boost is more efficient than AdaBoost
on noisy data, and the results are more balanced in low noise frameworks. For the
lines of the tables in which the training sample is of size 100 or 500 and in which the
dimension is 3, we generated 100 training sets. For the other lines, 25 training sets
have been simulated. The errors which appear in the tables are averaged errors
over the 100 or 25 simulations. Below, in brackets, we put twice the associated
standard deviations over the square root of the number of simulations to give the
usual approximations of the confidence intervals. In the numerical simulations, the
input dimension was either 3 or 6 or 20. In the tables, the parameter 3, 6 (resp.
10, 20) in the “dimension” column means that the input is 6-dimensional (resp.
10-dimensional) but the output only depends on 3 (resp. 10) components of the
input (the other 3 (resp. 10) components of the input being generated by a centered
normal distribution with unit variance independently of the output).

For ringnorm generators without noise, AdaBoost is definitely more efficient
than KL-Boost. We have to bear in mind that even if the underlying classification
model is the same for all the algorithms (that is to say the set sign(−1+2R̃) where
R̃ is described in Theorem 5.1 and when the classes are {−1;+1}), the regression
models are different in Adaboost and KL-Boost procedures. Let us denote R̃ada the
regression function model associated with Adaboost. On the one hand, Adaboost
will tend to classify as Cada , sign(−1 + 2f̃ada), where

f̃ada , argmin
f∈R̃ada

R(f)

and R(f) still denotes the quadratic risk. On the other hand, KL-Boost algorithm
will tend to classify as CKL , sign(−1 + 2f̃), where

f̃ , argmin
f∈R̃

R(f).

Usually, the function f̃ is different from f̃ada. Therefore the classifiers Cada and CKL

are in general different and the type of the classification task (which is determined
by the unknown probability distribution P) will decide which of these two classifiers
outperforms the other. The performance of the algorithms will utterly come from
the performance of these classifiers.

Using big training sets, one gets an idea of the efficiency of these classifiers.
Numerical results (for training sets of size N = 2000) tend to say that the classifier
Cada is “closer” to the Bayes rule than CKL for non-noisy ringnorm generators. The
opposite occurs for non-noisy twonorm generators. In the other cases, the situation
is balanced but globally in favor of CKL.

To cross-validate a parameter of the algorithm using the classification error plays
a key role for the twonorm generators since in this context, KL-Boost works better
than AdaBoost whereas its least square generalization errors is worse than Ad-
aBoost ones and increases when the training set size N increases.

In KL-Booost, the theoretical bound given by Theorem 4.10 is still far away from
the real value. When the number of training points is lower than 500, it often gets
irrelevant values, i.e. values bigger than 1/4. This is not surprising since we use
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the minimax approach, which condiders the worst possible probability distribution
and consequently leads to very conservative bounds.

To add noise, we just flip the output with probability 20%. Then the frontier
between the classes is not altered but the regression function f is transformed into
0.2 + 0.6f which implies that it is always between 0.2 and 0.8. In this case, results
are much more in favor of KL-Boost. Here the loss of performance of AdaBoost
does not seem to come from overfitting since the empirical risks are no longer close
to 0. It is due to the model itself, which is not enough complex to take into account
a regression function which is bounded away from 0 and 1.

For the 6-dimensional twonorm generator with 3 superfluous components in the
input, KL-Boost gives better results than AdaBoost for small training sets, whereas
for large training sets, both methods lead to similar results. This is also true for
the 6-dimensional noisy threenorm and ringnorm generators. The reverse has not
occured in our simulations. So KL-Boost seems to be well-adapted to small training
set situations.

It seems that KL-Boost is in general more trustworthy than Adaboost since

• Adaboost clearly overfits (note that it does not prevent the algorithm from
classifying well; it will not overfit when the model is too simple to explain
the learning sample; in other cases, it is bound to overfit since it is based
on the empirical risk minimization principle)
• KL-Boost behaves well on small training sets and on noisy data.
• Adaboost minimizes a criterion (the exponential risk) using a model which

is not at all suited to do it6.

6. Conclusion

To get an upper bound on the misclassification rate of any aggregating procedure,
we introduce the Kullback-Leibler distance between the aggregating distribution
and an arbitrary chosen prior distribution. Then we obtain bounds of optimal order
in the minimax sense. We use these bounds to derive the KL-Boost procedure that
competes with Adaboost in practice (in particular in noisy classification tasks) and
which does not suffer from wild overfitting as AdaBoost. KL-Boost is an aggregating
procedure regularized by the Kullback-Leibler distance between the aggregating
distribution and a prior distribution. A full description of the algorithm has been
given when stumps are aggregated.

Future work may concentrate on

• describing the general algorithm when the functions aggregated are not
stumps : due to the simplicity of stumps, it has been possible to compute
explicitly terms which are not computable in general.
• tightening the bounds: even if these theoretical bounds are much tighter

than most of the existing bounds, there is still a gap between theoretical
bounds of the misclassification error and the actual misclassification error.
Part of this gap clearly comes from the minimax approach. The target
would be to reduce the other part.
• reducing the computational cost of the algorithm.

6Numerical results show that this criterion is minimized much more efficiently by KL-Boost!
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7. Proofs

7.1. Proof of Theorem 3.1. The proof relies on deviation inequalities and on
Legendre formula.

7.1.1. First step : deviation inequalities. Let R̄(θ) denote the expected risk of fθ

relatively to the reference one: R̄(θ) , R(fθ) − R(f̃). Similarly, we define r̄(θ) ,

r(fθ)− r(f̃). Putting Zθ(X,Y ) , −
(
Y − fθ(X)

)2 +
(
Y − f̃(X)

)2, we have R̄(θ) =
−EPZθ. We will need a deviation lemma for Zθ. Let us start with general deviation
lemmas for random variables:

Lemma 7.1. Let Z be a random variable.

• If Z ≤ b a.s., then for any η ≥ 0,

(7.1) logEeη(Z−EZ) ≤ η2EZ2g(ηb),

where g : u 7→ eu−1−u
u2 is a positive convex increasing function such that

g(0) = 1
2 by continuity.

• If Eeα|Z−EZ| ≤M for some α > 0 and M > 0, then for any 0 ≤ η < α,

(7.2) logEeη(Z−EZ) ≤ η2g1(η),

where g1(η) , 2M
(α−η)2e2 .

Proof. • We have

eηZ = 1 + ηZ + η2Z2g(ηZ).

Using that log(1 + x) ≤ x and that g(ηZ) ≤ g(ηb), we obtain

logEeηZ ≤ ηEZ + η2g(ηb)EZ2,

which leads to inequality (7.1).
• From the bound on the exponential moment of Z̄, we can easily deduce

bounds for the moments of Z̄. By straightforward computation, one can
show that the maximum of [u 7→ ue−βu] on R+ is 1

βe , hence, for any q > 0:

E|Z̄|q ≤
(

sup
u∈R+

ue−
α
q u
)q

Eeα|Z̄|

≤
(

q
αe

)q

Eeα|Z̄|

≤
(

q
αe

)q

M.

According to the Taylor series expansion, for any η ≥ 0, for any x ∈ R,
there exists γ ∈]0; η[ such that eηx−1−ηx = η2x2

2 eγx, hence for any x ∈ R,

eηx − 1− ηx ≤ η2x2

2
eη|x|.
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Then for any η ∈ [0;α[, we have

logEeηZ̄ ≤ E(eηZ̄ − 1− ηZ̄)
≤ E

(
η2Z̄2

2 eη|Z̄|
)

≤ η2

2 E
(
Z̄2eη|Z̄|

)
≤ η2

2

(
E|Z̄|

2α
α−η

)α−η
α
(
Eeα|Z̄|

) η
α

(by Hőlder’s inequality)

≤ η2

2

(
2

(α−η)e

)2

M

≤ η2g1(η).

�

The deviations of Zθ = −
(
Y − fθ(X)

)2 +
(
Y − f̃(X)

)2 are given by:

Lemma 7.2. For any 0 < λ < αB
2 satisfying

(7.3) 8Mλ ≤ (αB − 2λ)2e2,

we have

(7.4) logEP eλ
Zθ−EPZθ

B2 ≤ λ2EP(f̃ − fθ)2

B2
G(λ),

where

G(λ) ,
8M

(αB − 2λ)2e2
+
e2λ − 1− 2λ

λ2
.

Remark 7.1. The condition λ < αB
2 is unavoidable since we have not put strong

assumptions on the noise (i.e. Y −E(Y/X)) distribution. The result will be applied
for small values of λ. So the conditions on λ are not harmful and can be disregarded,
and we will have

G(λ) ≈ G(0) =
8M

(αBe)2
+ 2.

Note that G is adimensional since it is expressed in terms of M and αB.

Remark 7.2. The first term in the deviation function G comes from the noise
whereas the second one takes into account the deviations of fθ with respect to
the reference regression function f̃ . When the noise is gaussian, specifically when
Y − f∗(X) is a centered gaussian random variable with variance σ2, the deviation
function is

G(λ) =
σ2

2B2
+
e2λ − 1− 2λ

λ2
.

Remark 7.3. The inequality is tight to the extent that for fθ sufficiently close to f̃ ,
the bound is close to 0.

Proof. We can write

Zθ = −(f̃ − fθ)2 − 2
(
Y − f∗

)
(f̃ − fθ)− 2

(
f∗ − f̃

)
(f̃ − fθ),

where f refers to f(X) in order to simplify notations and f∗ , EP(Y/X = ·) is the
regression function associated with the distribution P. Hence, using the deviation
inequality (7.2) and introducing

κ(λ) ,
4λ
B2

g1

(2λ
B

)
=

8Mλ

(αB − 2λ)2e2
≤ 1
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for any λ satisfying (7.3),

EP(dY/X)e
λ

Zθ−EPZθ
B2

= e
λ

B2

(
R̄(θ)−(f̃−fθ)2−2(f∗−f̃)(f̃−fθ)

)
EP(dY/X)e

− 2λ
B2 (f̃−fθ)[Y−f∗]

≤ e
λ

B2

(
R̄(θ)−(f̃−fθ)2−2(f∗−f̃)(f̃−fθ)

)
e

[
2λ
B2 (f̃−fθ)

]2
g1(

2λ
B )

= e
λ

B2

(
EP(f̃−fθ)2+2EP

{
(f∗−f̃)(f̃−fθ)

}
−
[
1− 4λ

B2 g1(
2λ
B )
]
(f̃−fθ)2−2(f∗−f̃)(f̃−fθ)

)
= e

λ
B2

[
EP(f̃−fθ)2+2EP

{
(f∗−f̃)(f̃−fθ)

}
−(f̃−fθ)

(
[1−κ(λ)](f̃−fθ)+2(f∗−f̃)

)]
= e

λ
B2 κ(λ)EP(f̃−fθ)2+ λ

B2 (Z̄θ−EPZ̄θ),

where Z̄θ , −(f̃ − fθ)
{
2f∗− [1+κ(λ)]f̃ − [1−κ(λ)]fθ

}
≤ 2B2. From the deviation

inequality (7.1), we get

logEP e
λ

B2 (Zθ−EPZθ) ≤ λκ(λ)
B2 EP(f̃ − fθ)2 +

(
λ

B2

)2
EPZ̄

2
θg(2λ)

≤ λκ(λ)
B2 EP(f̃ − fθ)2 + λ2

B4EP(f̃ − fθ)24B2g(2λ)
≤ λ2 EP(f̃−fθ)2

B2

[κ(λ)
λ + 4g(2λ)

]
.

�

7.1.2. Second step : Legendre formula. Let us remind the definition of the Kullback-
Leibler divergence between two probability distributions on a measurable set (A,A):

K(ν, µ) ,

{
Eν log

(
ν
µ

)
if ν � µ,

+∞ otherwise.

The Legendre transform of the convex function ν 7→ K(ν, µ) is given by the following
formula: for any measurable function h : A 7→ R,

(7.5) sup
ν∈M1

+(A)

{
Eν(da)h(a)−K(ν, µ)

}
= logEµ(da)e

h(a),

where, by convention:{
Eν(da)h(a) , sup

H∈R
Eν(da)[H ∧ h(a)]

Eν(da)h(a)−K(ν, µ) = −∞ if K(ν, µ) = +∞

Moreover, when eh is µ-integrable, the probability distribution

ν(da) ,
eh(a)

Eµ(da′)eh(a′)
· µ(da)

achieves the supremum.
For any ε > 0 and λ > 0 such that λG(λ) < 1, the event{

there exists ρ ∈M1
+(Θ) such that

Eρ(dθ)R(fθ)−R(f̃) > Eρ(dθ)r(fθ)−r(f̃)

1−λG(λ) + B2

N
K(ρ,π)+log(ε−1)

λ[1−λG(λ)]

}
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is successively equal to{
sup

ρ∈M1
+(Θ)

{
EρR̄− Eρr̄

1−λG(λ) −
B2

N
K(ρ,π)+log(ε−1)

λ[1−λG(λ)]

}
> 0

}
,{

sup
ρ∈M1

+(Θ)

{
Eρ

(
[1− λG(λ)]R̄− r̄

)
− B2

Nλ

[
K(ρ, π) + log(ε−1)

]}
> 0

}
,{

sup
ρ∈M1

+(Θ)

{
Eρ

[
Nλ
B2

(
[1− λG(λ)]R̄− r̄

)
− log(ε−1)

]
−K(ρ, π)

]}
> 0

}
,{

logEπe
Nλ
B2

(
[1−λG(λ)]R̄−r̄

)
−log(ε−1) > 0

}
,{

Eπe
Nλ
B2

(
[1−λG(λ)]R̄−r̄

)
−log(ε−1) > 1

}
.

Therefore its P⊗N -probability is strictly lower than

EP⊗NEπe
Nλ
B2

(
[1−λG(λ)]R̄−r̄

)
−log(ε−1)

= EπEP⊗N e
Nλ
B2

(
[1−λG(λ)]R̄−r̄

)
−log(ε−1) (by Fubini’s theorem)

= εEπEP⊗N e
Nλ
B2 [EP̄Zθ−EPZθ−λG(λ)R̄]

(
since Zθ , (Y − f̃)2 − (Y − fθ)2

)
≤ εEπ

[
e−

Nλ2G(λ)R̄

B2
(
EP e

λ
B2 (Zθ−EPZθ)

)N] (since the training sample is i.i.d)

≤ εEπ

[
e

Nλ2G(λ)[EP(f̃−fθ)2−R̄]
B2

]
(from Lemma 7.2)

≤ ε,

where at the last step we use that we have EP(f̃ − fθ)2 ≤ R̄(θ) since the function
f̃ is the best convex combination.

Remark 7.4. Theorems 3.1 and 3.2 remain true for any reference estimator f̃ satis-
fying EP

{[
f∗(X)− f̃(X)

][
f̃(X)− fθ(X)

]}
≥ 0. Naturally, this property holds for

the best mixture. When the reference estimator is the regression function associated
with the distribution P: f̃ = f∗, we have Z̄θ = −[1 − κ(λ)][f∗ − fθ]2 ∈ [−B2; 0].
Consequently, in this case, Theorems 3.1 and 3.2 hold with a smaller deviation
function : G(λ) = 8M

(αB−2λ)2e2 + 1
2 .

7.2. Proof of Theorem 4.1. The decomposition

(7.6) R(Eρ(dθ)fθ) = Eρ(dθ)R(fθ)− EPVarρ(dθ)fθ(X)

shows that aggregating regression procedures is more efficient than randomizing
and that the difference is measured by EPVarρ(dθ)fθ(X). We will use this
decomposition to bound the expected risk of the aggregated regression procedure
by successively bounded the two terms on the right-hand side. The first term has
already been bounded (see Theorem 3.1). It remains to bound the variance term.
Once more, we use deviation inequalities and Legendre formula.

7.2.1. First step : deviation inequalities. Let us introduce Zθ,θ′ , (fθ − f ′θ)
2 ∈

[0;B2]. We have

Varρ(dθ)fθ(X) =
1
2
Eρ⊗ρ(dθ,dθ′)Zθ,θ′ .

The deviations of Zθ,θ′ are given by
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Lemma 7.3. For any λ ≥ 0,

logEP eλ
Z

θ,θ′−EPZ
θ,θ′

B2 ≤ λ2EPZθ,θ′

B2
g(λ),

where g(λ) , eλ−1−λ
λ2 .

Remark 7.5. Recall that g is a positive convex increasing function such that g(0) =
1
2 by continuity.

Proof. For any λ ≥ 0,

logEP eλ
Z

θ,θ′−EPZ
θ,θ′

B2 ≤ EP
[
eλ

Z
θ,θ′−EPZ

θ,θ′
B2 − 1− λZθ,θ′−EPZθ,θ′

B2

]
= EP

[(
λ

Zθ,θ′−EPZθ,θ′

B2

)2

g
(
λ

Zθ,θ′−EPZθ,θ′

B2

)]
≤ λ2

B4EP[Zθ,θ′
2g(λ)]

≤ λ2

B2 g(λ)EPZθ,θ′ ,

since Zθ,θ′
2 ≤ B2Zθ,θ′ . �

7.2.2. Second step : Legendre formula. Introduce V = EPVarρ̂(dθ)fθ and V̄ =
EP̄Varρ̂(dθ)fθ. For any ε > 0 and β > 0, the event{

there exists ρ ∈M1
+(Θ) such that

−V > − V̄
1+βg(β) + B2

2N
2K(ρ,π)+log(ε−1)

β[1+βg(β)]

}
is equal to{

sup
ρ∈M1

+(Θ)

{
− Eρ⊗ρ(dθ,dθ′)EPZθ,θ′ +

Eρ⊗ρ(dθ,dθ′)EP̄Zθ,θ′

1+βg(β)

−B2

N
2K(ρ,π)+log(ε−1)

β[1+βg(β)]

}
> 0

}
,

which is included in the event{
sup

µ∈M1
+(Θ×Θ)

{
Eµ(dθ,dθ′)

[
EP̄Zθ,θ′ − [1 + βg(β)]EPZθ,θ′

]
−B2

N
K(µ,π⊗π)+log(ε−1)

β

}
> 0

}
.

This last event can be written successively as{
sup

µ∈M1
+(Θ×Θ)

{
Eµ(dθ,dθ′)

[
Nβ
B2

(
EP̄Zθ,θ′ − [1 + βg(β)]EPZθ,θ′

)
− log(ε−1)

]
−K(µ, π ⊗ π)

}
> 0

}
,{

logEπ⊗π(dθ,dθ′)e
Nβ

B2

(
EP̄Zθ,θ′−[1+βg(β)]EPZθ,θ′

)
−log(ε−1) > 0

}
,{

Eπ⊗π(dθ,dθ′)e
Nβ

B2

(
EP̄Zθ,θ′−[1+βg(β)]EPZθ,θ′

)
−log(ε−1) > 1

}
.
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Therefore its P⊗N -probability is strictly lower than

EP⊗NEπ⊗π(dθ,dθ′)e
Nβ

B2

(
EP̄Zθ,θ′−[1+βg(β)]EPZθ,θ′

)
−log(ε−1)

= εEπ⊗π(dθ,dθ′)EP⊗N e
Nβ

B2

(
EP̄Zθ,θ′−EPZθ,θ′−βg(β)EPZθ,θ′

)
(by Fubini’s theorem)

≤ εEπ

[
e−

Nβ2g(β)EPZ
θ,θ′

B2
(
EP e

β

B2 (Zθ,θ′−EPZθ,θ′ )
)N] (i.i.d. training sample)

≤ ε (from Lemma 7.3)

7.3. Proof of Lemma 4.4. We will take the following parameter families

• (λi)i=0,...,p, where λi , λmax
2i , p is such that λmax

2p < λmin ≤ λmax
2p−1 and λmin

and λmax will be determined later,
• (ηi)i=0,...,p, where ηi , η , 1

p+1 ,
• (βj)j=0,...,q, where βj , βmax

2j , q is such that βmax
2q < βmin ≤ βmax

2q−1 and βmin

and βmax will be determined later,
• (ζj)j=0,...,q, where ζj , ζ , 1

q+1 .

The exponential form of the parameters λi and βj allows us to have a grid on
which for any probability distribution ρ, the minimum of B(ρ, λ, η, β, ζ) has the
same order as

inf
λ∈[λmin;λmax]
β∈[βmin;βmax]

B(ρ, λ, η, β, ζ).

We will choose the parameters λmin and λmax (resp. βmin and βmax) such that the
constant η (resp. ζ) is large (in order that the bound is not significantly affected
by the union bound term log[(ηε)−1] (resp. log[(ζε)−1])). We will see a posteriori
that B(ρ̃, λ, η, β, ζ) will just differ from B(ρ̃, λ, 1, β, 1) by a log logN factor.

We have

(7.7)
B(ρ̃, λ, η, β, ζ) =

(
1

1−λG(λ) −
1

1+βg(β)

)
V̄ (ρ̃)

+B2

N
K(ρ̃,π)+log[(ηε)−1]

λ[1−λG(λ)] + B2

2N
2K(ρ̃,π)+log[(ζε)−1]

β[1+βg(β)] .

In general, the quantity V̄ (ρ̃) = EP̄Varρ̃(dθ)fθ is of order 1 (i.e. B2). Consequently,
to make the second term small, we need to take both parameters λ and β small.
However, these parameters must not be too small since the two last terms are
respectively proportional to 1

λ and 1
β . In the particular case when V̄ (ρ̃) is close to

0, we need not taking λ and β small. So we take arbitrarily{
λmax = κ1

βmax = κ2
,

where κ1 and κ2 are respectively defined as 2κ1G(κ1) = 1 and κ2g(κ2) = 1.
We will consider separately the terms of (7.7) depending on λ and on β. We

start with the β terms. Since g is an increasing function such that g(0) = 1
2 and

since for any 0 < x ≤ 1, 1− x < 1
1+x ≤ 1− x

2 , we have for any 0 < β ≤ βmax,
(7.8)
− V̄ (ρ̃)

1+βg(β) + B2

2N
2K(ρ̃,π)+log[(ζε)−1]

β[1+βg(β)]

≤ −[1− βg(βmax)]V̄ (ρ̃) +
(

1− β
4

)
B2

2N
2K(ρ̃,π)+log[(ζε)−1]

β

= −V̄ (ρ̃)− B2

8N

(
2K(ρ̃, π) + log[(ζε)−1]

)
+ β

βmax
V̄ (ρ̃) + B2

2N
2K(ρ̃,π)+log[(ζε)−1]

β
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The last RHS is minimum when

β = βopt ,

√
B2βmax

2N
2K(ρ̃, π) + log[(ζε)−1]

V̄ (ρ̃)
≥
√

2βmax log 2
N

,

since ε ≤ 1
2 and V̄ (ρ̃) ≤ B2

4 according to Assumption (2.1). Therefore, let us take

βmin ,

√
2βmax log 2

N
∧ βmax.

Let us define the event

E1 ,

{
B2

2N
2K(ρ̃, π) + log[(ζε)−1]

V̄ (ρ̃)
≤ βmax

}
.

General case: E1 occurs
Then we have βopt ≤ βmax So there exists an integer 0 ≤ j ≤ q such that

βj ≤ βopt < 2βj . For this integer j, using inequality (7.8), we get

− V̄ (ρ̃)
1+βjg(βj)

+ B2

2N
2K(ρ̃,π)+log[(ζε)−1]

βj [1+βjg(βj)]

≤ −V̄ (ρ̃)− B2

2N
2K(ρ̃,π)+log[(ζε)−1]

4 + βopt
βmax

V̄ (ρ̃) + B2

N
2K(ρ̃,π)+log[(ζε)−1]

βopt

= −V̄ (ρ̃)− B2

8N

(
2K(ρ̃, π) + log[(ζε)−1]

)
+ 3
√

B2

2N
2K(ρ̃,π)+log[(ζε)−1]

βmax
V̄ (ρ̃)

Particular case: (E1)c occurs
Then, for j = 0, we have

− V̄ (ρ̃)
1+βjg(βj)

+ B2

2N
2K(ρ̃,π)+log[(ζε)−1]

βj [1+βjg(βj)]

= − V̄ (ρ̃)
2 + B2

4N
2K(ρ̃,π)+log[(ζε)−1]

βmax
.

Besides, we have √
B2

2N
2K(ρ̃,π)+log[(ζε)−1]

βmax
V̄ (ρ̃) ≥ V̄ (ρ̃).

So, in both cases, there exists an integer 0 ≤ j ≤ q such that

(7.9)
− V̄ (ρ̃)

1+βjg(βj)
+ B2

2N
2K(ρ̃,π)+log[(ζε)−1]

βj [1+βjg(βj)]

≤ −V̄ (ρ̃) + B2

4N
2K(ρ̃,π)+log[(ζε)−1]

βmax
+ 3
√

B2

2N
2K(ρ̃,π)+log[(ζε)−1]

βmax
V̄ (ρ̃).

Now let us deal with the λ terms of (7.7). Since G is an increasing function and
the inequation 1

1−x ≤ 1+2x holds for any 0 < x ≤ 1
2 , we have for any 0 < λ ≤ λmax

V̄ (ρ̃)
1−λG(λ) + B2

N
K(ρ̃,π)+log[(ηε)−1]

λ[1−λG(λ)]

≤ [1 + 2λG(λmax)]
(
V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηε)−1]

λ

)
= V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
+ λ V̄ (ρ̃)

λmax
+ B2

N
K(ρ̃,π)+log[(ηε)−1]

λ

The last RHS is minimum when

λ = λopt ,

√
B2λmax

N

K(ρ̃, π) + log[(ηε)−1]
V̄ (ρ̃)

> 2

√
λmax log 2

N
.

Therefore, let us take λmin , 2
√

λmax log 2
N ∧ λmax. Introduce the event

E2 =
{
B2

N

K(ρ̃, π) + log[(ηε)−1]
V̄ (ρ̃)

≤ λmax

}
.
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By convention, the event Ec
2 contains the case when V̄ (ρ̃) = 0 (λopt = +∞).

General case: E2 occurs
Then we have λopt ≤ λmax So there exists an integer 0 ≤ i ≤ p such that

λi ≤ λopt < 2λi. For this integer i, we have

V̄ (ρ̃)
1−λiG(λi)

+ B2

N
K(ρ̃,π)+log[(ηε)−1]

λi[1−λiG(λi)]

≤ V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
+ λopt

V̄ (ρ̃)
λmax

+ 2B2

N
K(ρ̃,π)+log[(ηε)−1]

λopt

= V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
+ 3
√

B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
V̄ (ρ̃)

≤ V̄ (ρ̃) + 2B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
+ 2
√

B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
V̄ (ρ̃).

Particular case: (E2)c occurs
For i = 0, we have

V̄ (ρ̃)
1−λiG(λi)

+ B2

N
K(ρ̃,π)+log[(ηε)−1]

λi[1−λiG(λi)]

= 2V̄ (ρ̃) + 2B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax

and √
B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
V̄ (ρ̃) ≥ V̄ (ρ̃).

Therefore, in both subcases, there exists an integer 0 ≤ i ≤ p such that

(7.10)
V̄ (ρ̃)

1−λiG(λi)
+ B2

N
K(ρ̃,π)+log[(ηε)−1]

λi[1−λiG(λi)]

≤ V̄ (ρ̃) + 2B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
+ 2
√

B2

N
K(ρ̃,π)+log[(ηε)−1]

λmax
V̄ (ρ̃).

To prove the first inequation of Corollary 4.3, it remains to lower bound η = 1
p+1

and ζ = 1
q+1 . By definition, we have

p =
⌊

log λmax
λmin

log 2 + 1
⌋

q =
⌊

log βmax
βmin

log 2 + 1
⌋ ,

hence 
(η)−1 =

⌊
log 4λmax

λmin
log 2

⌋
≤ L1

(ζ)−1 =
⌊

log 4βmax
βmin

log 2

⌋
≤ L2

.

where bxc denotes the integer part of x.

7.4. Proof of Theorem 4.5. The result mainly comes from Lemma 4.4 and Corol-
lary 4.3 since an aggregating procedure minimizing

B
(
ρ, (λi)i=0,...,p, (ηi)i=0,...,p, (βj)j=0,...,q, (ζj)j=0,...,q

)
wrt the probability distribution ρ is such that

(7.11) B
(
ρ̂, (λi), (ηi), (βj), (ζj)

)
≤ B

(
ρ̃, (λi), (ηi), (βj), (ζj)

)
.

So, for any 0 < ε ≤ 1/2, with P⊗N -probability at least 1− 2ε, we have

R(Eρ̂(dθ)fθ)−R(f̃) ≤ γ(ε).
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Now, recall that to prove this inequality, we put ourselves on a subset of the event:
for any distribution ρ ∈ M1

+(Θ), for any β in the grid introduced in Section 7.3,
we have

−V ≤ − V̄
1+βg(β) + B2

2N
2K(ρ,π)+log(L2ε−1)

β[1+βg(β)] .

Taking β = βmax, we obtain V̄ ≤ 2V + B2

2N
2K(ρ,π)+log(L2ε−1)

βmax
, which leads to the

desired inequality.

7.5. Proof of Theorem 4.7. We will first notice that the infimum of ψ(ρ) ,
1
2‖Eρ(dθ)h(θ)‖2 + K(ρ, µ) can be searched in the set of probabilities which are
equivalent to µ. It is clear that we do not change the infimum by considering
only distributions absolutely continuous w.r.t. µ. Inversely, consider ρ such that
supp(ρ) is strictly included supp(µ). Let A , supp(µ)−supp(ρ). We have ρ(A) = 0
and µ(A) > 0. Our aim is then to build ρ′ ∈ M1

+(Θ) such that ψ(ρ′) ≤ ψ(ρ) and
supp(ρ′) = supp(µ). Define ρA(dθ) , µ(·/A) = 1θ∈A

µ(A) ·µ(dθ) and ρ′ , λρA +(1−λ)ρ
for some λ ∈]0; 1[ to be determined. We have

ψ(ρ′)− ψ(ρ)
= 1

2‖λEρA
h+ (1− λ)Eρh‖2 + λEρA

log λ
µ(A) + (1− λ)Eρ log (1−λ)ρ

µ

− 1
2‖Eρh‖2 − Eρ log ρ

µ

= 1
2‖Eρh‖2(λ2 − 2λ) + λ2

2 ‖EρA
h‖2 + λ(1− λ)〈EρA

h,Eρh〉
+λ log[µ(A)−1] + λ log λ+ (1− λ) log(1− λ)
∼

λ→0
λ log λ.

Therefore, for sufficiently small λ, we have ψ(ρ′) < ψ(ρ).
We will now prove that for any ρ ∈M1

+(Θ) equivalent to µ, there exists z ∈ RN

such that Eµ〈z,h〉h = Eρh. With this end in view, we introduce

χρ(v) = logEµe
〈v,h−Eρh〉,

for any v ∈ RN . Let us show that χρ admits a minimum. Without loss of generality,
one may assume that the hi, i = 1, . . . , N are linearly independent wrt to µ,
or equivalently wrt to ρ (since µ and ρ are equivalent)7. So, for any z ∈ RN ,
ρ(〈z, h〉 − Eρ〈z, h〉 > 0) > 0, hence µ(〈z, h〉 − Eρ〈z, h〉 > 0) > 0. Introduce, for
β > 0, the mappings ηβ from S(0, 1) , {u ∈ RN : ‖u‖ = 1} to R defined as

ηβ(u) = µ(〈u, h− Eρh〉 > β).

We first claim that there exists β such that the mapping is lower bounded by β.
Otherwise one can build a sequence un ∈ S(0, 1) such that η 1

n
(un) ≥ 1

n . Since the
sphere S(0, 1) is compact, there exists a converging subsequence uα(n). Denote u
its limit. By Fatou’s theorem, we have

µ(〈u, h− Eρh〉 > 0) ≤ Eµ

(
lim inf
n→+∞

1〈un,h−Eρh〉> 1
n

)
≤ lim inf

n→+∞
µ
(
〈un, h− Eρh〉 > 1

n

)
= 0,

which is absurd. For this real β, we have

χρ(z) = logEµe
‖z‖〈 z

‖z‖ ,h−Eρh〉 ≥ β‖z‖+ log β →
‖z‖→+∞

+∞.

7For h = Cst µ−a.s., the result is trivial
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Now, by Lebesgue’s theorem, the mapping χρ is continuous. Consequently, it ad-
mits a minimum which we will denote z. By differentiation under the expectation,
we have Eµ〈z,h〉h− Eρh = 5χρ(z) = 0. Hence,

ψ(ρ)− ψ(µ〈z,h〉) = K(ρ, µ)−K(µ〈z,h〉, µ)
= K(ρ, µ)− 〈z,Eµ〈z,h〉h〉+ logEµe

〈z,h〉

= K(ρ, µ〈z,h〉) ≥ 0.

So the infimum of ψ could be searched among {µ〈z,h〉 : z ∈ RN}.
Now, let (z′n)n∈N be a sequence of RN such that

(7.12) ψ(µ〈z′n,h〉) →
n→+∞

inf
M1

+(Θ)
ψ.

Let p{x1,...,xm}⊥ denote the orthogonal projection into the orthogonal of the system
{x1, . . . , xm} (by convention, p∅⊥ , IdRN ). By compacity of the sphere S(0, 1),
there exists a subsequence (zn)n∈N such that there exists L ∈ {1, . . . , N} and an
orthonormal system VL , {v1, . . . , vL} satisfying

p{v1,...,vl−1}⊥(zn)
‖p{v1,...,vl−1}⊥(zn)‖

−→
n→+∞

vl

for any l ∈ {1, . . . , L} and zn ∈ Span(v1, . . . , vL). Let (λn,l)l=1,...,L denote the
components of zn in the system VL: zn =

∑L
l=1 λn,lvl. By definition of the system

VL, we have λn,1 � λn,2 � · · · � λn,L, where an � bn means that bn = o(an).
Even if it means to consider a subsequence of (zn)n∈N, one can assume that for
any l ∈ {1, . . . , L}, λn,l −→

n→+∞
λl ∈ R+ ∪ {+∞}. Let λ0 , +∞ and L′ , max

{
l ∈

{0, . . . , L} : λl = +∞
}
. Introduce the following family of subsets of Θ:{

Ã0 , Θ
Ãl ,

{
θ ∈ Ãl−1 : 〈vl, h(θ)〉 = ess supµ(·/Ãl−1)

〈vl, h〉
} ,

where µ(·/Ãl−1) ,
1Ãl−1

µ(Ãl−1)
· µ makes sense since one can prove (by induction and

using that lim sup
n→+∞

K(µ〈zn,h〉, µ) < +∞) that µ(Ãl−1) > 0. Then, one can prove that

µ〈λL′+1vL′+1,h〉(·/ÃL′) minimizes ψ (where λL′+1vL′+1 , 0 when L′ = L). Now, we
have necessarily L′ = 0. Indeed, if L′ > 0, from the linear independency of the
functions hi, i = 1, . . . , N , we have µ(ÃL′) < 1, hence, the optimal distribution is
not equivalent to µ. This is in contradiction with what we proved at the beginning
of this section.

So the function ϕ : z 7→ ψ(µ〈z,h〉) admits a minimum denoted z̄ = λ1v1. Let

ρ̄ , µ〈z̄,h〉.

By differentiation under the expectation, 5ϕ(z) = Varµ〈z,h〉h(Eµ〈z,h〉h+ z), where
Varµ〈z,h〉h denotes the covariance matrix of the hi, i = 1, . . . , N wrt µ〈z,h〉. Since
the functions hi, i = 1, . . . , N are linearly independent wrt to µ〈z,h〉, the matrix
Varµ〈z,h〉h is invertible. Therefore, we have z̄ = −Eρ̄h. It remains to prove the
uniqueness. It follows from the following equality which holds for any ρ ∈ M1

+(Θ)
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and comes from ρ̄ = µ−〈Eρ̄h,h〉 :

ψ(ρ)− ψ(ρ̄) = 1
2‖Eρh‖2 +K(ρ, µ)− 1

2‖Eρ̄h‖2 −K(ρ̄, µ)
= 1

2‖Eρh‖2 +K(ρ, ρ̄)− 〈Eρ̄h,Eρh〉 − logEµe
−〈Eρ̄h,h〉

− 1
2‖Eρ̄h‖2 − logEµe

〈Eρ̄h,h−Eρ̄h〉

= K(ρ, ρ̄) + 1
2‖Eρh− Eρ̄h‖2.

7.6. Proof of Theorem 4.8. For any w,w′ ∈ RN , we have

ϕ̄(w)−ϕ̄(w′)
ac

= d2

(
‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2

)
+ logEπ− b

c
r(f)

e〈w
′,f(X)−E

πw′ f(X)〉 − logEπ− b
c

r(f)
e〈w,f(X)−Eπw f(X)〉

= d2

(
‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2

)
− 〈w′,Eπw′ f(X)− Y 〉

+〈w,Eπwf(X)− Y 〉+ logEπ− b
c

r(f)
e〈w

′,f(X)−Y 〉 − logEπ− b
c

r(f)
e〈w,f(X)−Y 〉

= d2

(
‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2

)
− 〈w′,Eπw′ f(X)− Y 〉

+〈w′,Eπwf(X)− Y 〉+K(πw, πw′)
= d2

(
‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2

−2〈Eπw′ f(X)− Y,Eπwf(X)− Eπw′ f(X)〉
)

+
〈
w′ + 2d2(Eπw′ f(X)− Y ),Eπwf(X)− Eπw′ f(X)

〉
+K(πw, πw′)

= d2‖Eπwf(X)− Eπw′ f(X)‖2 +K(πw, πw′)
+〈w′ + 2d2(Eπw′ f(X)− Y ),Eπwf(X)− Eπw′ f(X)〉.

The second inequality of the theorem is obtained by choosing w = w̄ , −Eρ̄h and
w′ = wl and by using Assumption (2.1).

7.7. Proof of the exit of the “While” loop. The wl+1 tested by the loop are

wl+1 = wl − αzl,

where

zl , wl − 2d2

(
Y − E

πwl f(X) +
N∑

i=r+1

αi[Yi − 〈αi,Eπwl f(X)〉r − βi]
)

and α ∈ { 1
2n : n ∈ N}. We have

5rϕ̄(wl) = acVarπwl f(X)


r
zl

hence

ϕ̄(wl+1)− ϕ̄(wl) = 〈wl+1 − wl,5ϕ̄(wl)〉+ o(‖wl+1 − wl‖)
= −acα(zl)′Varπwl f(X)


r
zl + o(α).

The covariance matrix Varπwl f(X)


r
is definite positive by definition of r. So

there exists α ∈ { 1
2n : n ∈ N} such that ϕ̄(wl − αzl)− ϕ̄(wl) < 0.

7.8. Proof of the Corollary 4.9. To deduce Corollary 4.9 from Corollary 4.3,
we need to control the deviations of the empirical risk r(f̃) of the best convex
combination. We begin with the following deviation inequality.
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Lemma 7.4. Let Z be a positive random variable. If E eα
√

Z ≤M ′ for some α > 0
and M ′ > 0, then, for any η ≥ 0 and A ≥

(
2
α

)2,
logE eη(EZ−Z) ≤ ηM ′Ae−α

√
A +

η2

2
AEZ.

Proof. For any A ≥
(

2
α

)2
,

EZ − Z ≤ E(Z1Z≥A) + E(Z1Z<A)− Z1Z<A

≤ E
(
eα
√

Z sup
u≥A

ue−α
√

u
)

+ E(Z1Z<A)− Z1Z<A

≤M ′Ae−α
√

A + E(Z1Z<A)− Z1Z<A

since the mapping [u 7→ ue−α
√

u] is decreasing on
[(

2
α

)2; +∞[. Applying the pre-
vious deviation inequality to Z1Z<A ∈ [0;A], we obtain

logE eη(EZ−Z) ≤ ηM ′Ae−α
√

A +
η2

2
AEZ.

�

The deviations of the empirical risk of the best mixture f̃ are given by

Lemma 7.5. For any ε ≥ e−κ3N , we have

(7.13) P⊗N

[
R(f̃)− r(f̃) > L̃2

√
2log(ε−1)R(f̃)

α2N

]
≤ ε,

where

L̃ , log

(
MeαB+1

√
N

2log(ε−1)α2R(f̃)

)
and

κ3 ,
M2e2(αB−1)

2[(αBe)2 + 4M ]
.

Proof. For any λ > 0 and any µ ∈ R,

P⊗N (R(f̃)− r(f̃) > µ) ≤ EP⊗N eNλ(R(f̃)−r(f̃)−µ) ≤ e−Nλµ
(
EP e

λ(EZ−Z)
)N
,

where Z ,
(
Y − f̃(X)

)2 ≥ 0. We have
(7.14)
EP e

α
√

Z = EP e
α|Y−f̃(X)| ≤ EP eα(|Y−EP(Y/X)|+|EP(Y/X)−f̃(X)|) ≤MeαB , M ′.

From the previous lemma, we get for any A ≥
(

2
α

)2
,

P⊗N (R(f̃)− r(f̃) > µ) ≤ exp
{
−Nλµ+NλM ′Ae−α

√
A +N λ2

2 AR(f̃)
}
≤ ε,

when µ = log(ε−1)
Nλ +M ′Ae−α

√
A + λ

2AR(f̃). The previous inequality holds for any

λ > 0 and A ≥
(

2
α

)2. To get a small µ, we take λ =
√

2log(ε−1)

ANR(f̃)
(when R(f̃) 6= 0;

otherwise the result is trivial) and A =
(

L̃−1
α

)2. To fulfil the condition A ≥
(

2
α

)2,
we need that ε should be not too small. More precisely, the condition (L̃− 1)2 ≥ 4
is satisfied when

log
(
MeαB+1

√
N

2log(ε−1)α2R(f̃)

)
≥ 3,
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equivalently, M2e2αB N
2log(ε−1)α2R(f̃)

≥ e4 and M2e2αB−4

2α2R(f̃)
N ≥ log(ε−1). Now, from

inequality (4.6), the expected risk of any function in the model R̃ is bounded by
κB2 where κ , 4M

e2(αB)2 + 1. Therefore, for any ε ≥ e−κ3N , we have (L̃− 1)2 ≥ 4 as
required. �

From Corollary 4.3, using that r(f̃) ≥ infR̃ r, we have

R(f̃) ≤ R(Eρ̂(dθ)fθ) ≤ R(f̃)− r(f̃) + r(Eρ̂(dθ)fθ) +B′,

where

B′ , inf
i∈I
j∈J

B′(ρ, λi, ηi, βj , ζj)

B′(ρ, λ, η, β, ζ) , λG(λ)
1−λG(λ)

[
Eρ(dθ)r(fθ)− infR̃ r

]
+ B2

N
K(ρ,π)+log[(ηε)−1]

λ[1−λG(λ)]

+ βg(β)
1+βg(β) V̄ + B2

2N
2K(ρ,π)+log[(ζε)−1]

β[1+βg(β)]

= λG(λ)
1−λG(λ)

[
r(Eρ(dθ)fθ)− infR̃ r

]
+ B2

N
K(ρ,π)+log[(ηε)−1]

λ[1−λG(λ)]

+
(

λG(λ)
1−λG(λ) + βg(β)

1+βg(β)

)
V̄ + B2

2N
2K(ρ,π)+log[(ζε)−1]

β[1+βg(β)]

Then, using Lemma 7.5, we obtain that with probability at least 1− 3ε,

R(f̃) ≤ R(Eρ̂(dθ)fθ) ≤ L̃2

√
2log(ε−1)R(f̃)

α2N
+ r(Eρ̂(dθ)fθ) +B′.

Now, using simple computations, one can show that a positive number x such that
x ≤ 2c

√
x+ a for some a, c > 0 satisfies

√
x ≤ c+

√
a+ c2. Applying this result for

x = R(f̃), a = r(Eρ̂(dθ)fθ) +B′ and c = L̃2

√
log(ε−1)
2α2N , we get

R(Eρ̂(dθ)fθ) ≤ L̃2

√
2log(ε−1)
α2N

(
c+

√
a+ c2

)
+ a.

The remaining unobsersable term in this bound is L̃ which depends on R(f̃). We
will consider two cases:
General case: R(f̃) ≥ 4

κ1

log(ε−1)
N B2 occurs

The constant 4
κ1

in this threshold is arbitrary (it has been chosen since it looks
like the second term in B′). Then we have

L̃ ≤ log
(

MeαB+1

αB

√
κ1
8

N
log(ε−1)

)
,

hence

L̃2

√
2log(ε−1)
α2N

≤ 2L
√

log(ε−1)
N

,

where L , 1√
2α

[
log
(
κ4

N
log(ε−1)

)]2
and κ4 , MeαB+1

αB

√
κ1
8 . This leads to the desired

result.
Particular case: R(f̃) < 4

κ1

log(ε−1)
N B2 occurs

From Corollary 4.3, with probability at least 1− 2ε, we have

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) +B′ +
4
κ1

log(ε−1)
N

B2.

The announced inequality is also true in this case.
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Model selection and Remark 4.3

We recall here the convergence rate of model selection. The target of model
selection is to find a procedure doing as well as the best function among d prediction
functions f1, . . . , fd, up to a remainder term called the convergence rate of model
selection.

In [4], Catoni proves that by using a progressive Gibbs mixture f̂ , for any proba-
bility satisfying the assumptions (2.1) and (2.2), we have

P⊗NR(f̂)− min
i∈{1,...,d}

R(fi) ≤ C log d
N .

Theorem 3.1 provides a different result which is weaker as far as model selection is
concerned. However, it allows to prove that the empirical risk minimizer f̂ERM on
the second sample over the functions (built on the first sample) associated with the
(λ, β)−grid, which will be denoted G, satisfies with P⊗N -probability at least 1− ε,

R(f̂ERM)− min
(λ,β)∈G

R
(
Eρ̂λ,β(dθ)fθ

)
≤ C

{√
C̃(ε)V (ρ̃) ∨ C̃(ε)

}
,

where C̃(ε) , K(ρ̃,π)+log[log(3N)ε−1]
N .

Proof. Let R2 ,
{
Eρ̂λ,β(dθ)fθ : (λ, β) ∈ G

}
, and let N1 and N2 be the respective

sizes of the first and second sample. Let f̌ ∈ argminf∈R2
R(f). The set R2 ⊂ C(R)

is interesting since its cardinal is small: |R2| = |G| ≤ L1L2 (with N ← N1) and
from Theorem 4.5, with P⊗N -probability at least 1− ε,

(.15) R(f̌) ≤ R(f̃) + γ′N←N1
(ε/2),

where we recall that f̃ = argminf∈C(R)R(f).
Introduce f̃2 the best convex combination of functions in R2. Since R2 ⊂ R, we

have R(f̌) ≥ R(f̃2) ≥ R(f̃). Let r2 denote the empirical risk on the second sample.
Define λ0 ∈]0; αB

2 [ as λ0G(λ0) = 1
2 . Taking λ = λ0, Theorem 3.1 applied to a

uniform prior distribution on R2 gives

(.16) R(f̂ERM)−R(f̃2) ≤ 2
[
r2(f̌)− r2(f̃2)

]
+ 2B2

λ0N2

[
log |R2|+ log(ε−1)

]
.

Since Lemma 7.2 still holds when Zθ ← −Zθ, for any π2 ∈ M1
+(R2), with proba-

bility at least 1− ε wrt the second sample distribution, for any ρ2 ∈ M1
+(R2), we

have the same kind of formula as in Theorem 3.1:

Eρ2r2 − r2(f̃2) ≤
[
1 + λG(λ)

][
Eρ2R−R(f̃2)

]
+ B2[K(ρ2,π2)+log(ε−1)]

λN2
.

Taking λ = λ0 and π2 = ρ2 = δf̌ , we obtain

(.17) r2(f̌)− r2(f̃2) ≤ 3
2

[
R(f̌)−R(f̃2)

]
+ B2 log(ε−1)

λ0N2
.

From inequalities (.15), (.16) and (.17), we obtain that with P⊗N -probability at
least 1− ε,

R(f̂ERM) ≤ 3R(f̌)− 2R(f̃2) + 2B2

λ0N2
log(L1L2ε

−2)
≤ R(f̃) + 3γ′N←N1

(ε/2) + 2B2

λ0N2
log(L1L2ε

−2)

≤ R(f̃) + C
{√
C̃(ε)V (ρ̃) ∨ C̃(ε)

}
provided that N1 and N2 has the order of N . �
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Remark .6. Since the procedure is independent from the confidence level, we may

integrate the deviations to obtain P⊗NR(f̂ERM) − R(f̃) ≤ C
{√
C̃(1)V (ρ̃) ∨ C̃(1)

}
for an appropriate different constant C > 0.
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