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1 Introduction

Inputs coming from high-dimensional spaces are common in many real-world problems such as a
robot control with visual inputs. Yet learning in such cases is in general difficult, a fact often referred
to as the “curse of dimensionality”. In particular, in regression or classification, in order to achieve
a certain accuracy algorithms are known to require exponentially many samples in the dimension
of the inputs in the worst-case [1]. The exponential dependence on the input dimension forces us
to develop methods that are efficient in exploiting regularities of the data. Classically, smoothness
is the best known example of such a regularity. In this abstract we outline two methods for two
problems that are efficient in exploiting when the data points lie on a low dimensional submanifold
of the input space.

Specifically, we consider the case when the data points lie on a manifold M of dimension d, which
is embedded in the higher-dimensional input space with dimension D (i.e. d ≤ D). A method is
called manifold-adaptive if its sample complexity can be bounded by a quantity whose exponent
depends only on d and not on D. Thus a manifold-adaptive method may enjoy a considerably better
sample complexity whenever d ¿ D. Although there are many learning methods that are designed
to be manifold adaptive (or manifold friendly), they more often than not lack a rigorous proof of
this property (one exception is the recent work of Scott and Nowak on dyadic decision trees in a
classification context, cf. [2]).

The first method, proposed by us earlier in [3], concerns the problem of estimating the dimension
of a manifold based on points sampled from it. The second method is the classical k-nearest neigh-
bor regressor. We find it intriguing that this method was not specifically designed to be manifold-
adaptivity, yet it is relatively simple to prove that it possesses this property.

2 Manifold-Adaptive Dimension Estimation

Let the observed i.i.d. samples X1, . . . , Xn ∈ RD come from a distribution supported on the
manifold M . Define η(x, r) by the relation P (Xi ∈ B(x, r)) = η(x, r)rd, where B(x, r) ∈ RD is
a ball of radius r around the point x ∈ M in the Euclidean space RD. Consider the local estimates
of the dimension defined

d̂(x) = ln 2
ln(r̂(k)(x)/r̂(dk/2e)(x))

, (1)

where r̂(k)(x) denotes the distance of point x to its kth nearest neighbor in the data X1, . . . , Xn.
Aggregate the local estimates by averaging or voting:

d̂average =
[∑n

i=1
(d̂(Xi)∧D)

n

]
, d̂vote = arg max

d′∈N+

∑n
i=1 I{d̂(Xi)=d′}. (2)
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Here a ∧ b = min(a, b) and [x] denotes the rounded value of x. Having the following regularity
assumptions about the manifold and the sampling distribution, we get Theorem 1.

Assumption 1 (1) For any point x in the support M of the distribution generating the data, the
function η(x, r) = r−dP[X ∈ BRD (x, r)] defined for r > 0 is bounded away from zero and locally
Lipschitz to the extent that for some positive real numbers ηmin, r̃ and L, for any (x, r, r′) ∈ M ×
(0, r̃)×(0, r̃), we have η(x, r) ≥ ηmin and |η(x, r′)−η(x, r)| ≤ L|r′−r|. (2) ∃r̃ > 0 satisfying for
any x ∈ M , M ∩ B(x, r̃) ⊂ {

y ∈ RD : angle(y − x, TxM) < π/12
}

, where TxM is the tangent
space of M at x ∈ M .

Theorem 1 Under Assumption 1, the following bounds hold:

log
(
P

(
d̂vote 6= d

))
≤ − c′n

(knd)2 + O(1); log
(
P

(
d̂average 6= d

))
≤ − c′′n

(Dnd)2 + O(1). (3)

Here c′ and c′′ are positive constants that do not depend on k, n, d and D and where nd is the
minimal number of cones in Rd centered at the origin and having angles π/12 such that Rd is
covered by the union of the cones. nd is upper bounded by cd for some universal constant c < 8.

This theorem shows that the difficulty of dimension estimation depends mainly on d and not D.
(Though the rate for the averaging method depends on D, the dependence is only polynomial.) We
also prove that Assumption 1 can be substantially relaxed [4].

3 Manifold-Adaptive k-NN Regression

The k-NN estimator is probably the simplest nonparametric regression method. Hence, we think
that it is interesting that this simple method can be made manifold adaptive relatively easily. The
main insight of the proof of this fact is that the expected distance of a random point to its nearest
neighbor depends only on the dimension of the manifold and not on the dimension of the input.
More precisely, we have the following, improved version of Lemma 6.4 of [1] (cf. [4]):

Lemma 1 Assume that M is a d-dimensional bounded manifold. Let X, X1, . . . , Xn be i.i.d. sam-
ples from M , X(1)(X) be the nearest neighbor of X among (X1, . . . , Xn). Then, assuming d ≥ 3,
we have

E{‖X(1)(X)−X‖2} ≤ c

n2/d
.

By replacing this lemma wherever Lemma 6.4 is used in Theorem 6.2 of [1], we get the following
manifold-adaptive convergence rate for a k-NN estimator.

Theorem 2 Assume that M is a d-dimensional bounded manifold. Let (X1, Y1), . . . , (Xn, Yn) be
i.i.d. samples such that Xi ∈ M , Yi ∈ R, Var [Y1] < +∞, the regressor m(x) = E[Y |X = x] is
C-Lipschitz, d ≥ 3. Let mn be the kn-NN estimate where kn is an appropriate integer that depends
on the estimated dimension of the manifold. Then E

[‖mn −m‖2] ≤ O(n−2/(d+2)).

We expect that with the techniques developed here results similar to Theorem 2 can be shown to
hold for a larger class of regressor, including regressors that are able to adapt to other regularities of
the data, such as the smoothness of the regressor.
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