
1 Proof of Theorem 1

The first assertion is a direct consequence of Lemma 3.3 and Corollary 4.1 of [2]. The second
assertion is based on an Assouad’s type lower bound ([1, Inequality (8.19)]. Let y2 = 2a − y1 and
m̃ = blog2 |G|c.We use the notation introduced in [1, Section 8.1]. We consider a

(
m̃, 1

n+1 ∧
1
m̃ , 1

)
-

hypercube of probability distributions with h1 ≡ argminy∈Y`y1
(y) and h2 ≡ argminy∈Y`y2

(y). We
obtain

ER(ĝ)−min
g∈G

R(g) ≥
( blog2 |G|c

n+1 ∧ 1
)
dI
(
1− 1

n+1 ∧
1

blog2 |G|c
)n

≥
( blog2 |G|c

n+1 ∧ 1
)
dIe
−1,

where the last inequality comes from [1− 1/(n+ 1)]n ↘ e−1. Now the edge discrepancy dI can be
computed:

dI = ψ1,0,y1,y2
(1/2)

= inf
y∈Y

`(y1,y)+`(y2,y)
2 − 1

2 inf
y∈Y

`(y1, y)− 1
2 inf
y∈Y

`(y2, y)

= inf
y∈Y

`(y1,y)+`(y1,2a−y)
2 − inf

y∈Y
`(y1, y)

= sup
y∈Y

[`(y1, a)− `(y1, y)],

where the last equality uses that the function y 7→ `(y1,y)+`(y1,2a−y)
2 is convex. Finally, from the

“well behaved at center” assumption, the supremum is positive.

2 Proof of Theorem 2

Let g̃ ∈ argminG R and η > 0. Hoeffding’s inequality applied to the random variable W =
`[Y, g̃(X)]− `[Y, g(X)] ∈ [−B;B] for a fixed g ∈ G gives

Eeη[W−EW ] ≤ eη2B2/2

for any η > 0. Since the random variable Z1, . . . , Zn are independent, we obtain

Eeη[nR(g)−nR(g̃)+Σn(g̃)−Σn(g)] ≤ eη
2nB2/2.

Consequently we have

n
{
ER(ĝerm)−R(g̃)

}
≤ E

{
nR(ĝerm)− nR(g̃) + Σn(g̃)− Σn(ĝerm)

}
≤ 1

η logEeη[nR(ĝerm)−nR(g̃)+Σn(g̃)−Σn(ĝerm)]

≤ 1
η logE

∑
g∈G

eη[nR(g)−nR(g̃)+Σn(g̃)−Σn(g)]

≤ 1
η log

(
|G|eη2nB2/2

)
.

The first assertion follows from the (optimal) choice η =
√

(2 log |G|)/(nB2).

The second assertion is based on an Assouad’s type lower bound. It can be proved by using [3,
Theorem 14.5], but this would lead to much worse constants. Here we will rather use [1, In-
equality (8.17)]. Let y2 = 2a − y1 and m̃ = blog2 |G|c. We use the notation introduced in [1,
Section 8.1]. We consider a

(
m̃, 1

m̃ , d̃II
)
-hypercube of probability distributions with h1 ≡ ỹ1 and

h2 ≡ ỹ2 , 2a − ỹ1 and d̃II has to be optimized in [0; 1]. In the proof of Theorem 1, we take
the set G such that ming∈G R(g) = ming R(g), where the second minimum is w.r.t. all possi-
ble prediction functions. Here the trick is to realize that ming∈G R(g) for our learning setting
equals to ming R(g) for the learning task in which the output space is only {ỹ1, ỹ2}. Therefore
we apply ([1, Inequality (8.17)] with the function φ appearing in the edge discrepancy dI defined as
φy1,y2(p) = min

y∈{ỹ1,ỹ2}

{
p`(y1, y) + (1− p)`(y2, y)

}
. We get

ER(ĝ) ≥ min
g∈G

R(g) +mwdI
(
1−
√
nwdII

)
= min

g∈G
R(g) + dI

(
1−

√
n
m̃ d̃II

)
.
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From the symmetry and admissibility assumptions of the loss function, we have `(y2, ỹ2) =

`(y1, ỹ1) > `(y2, ỹ1) = `(y1, ỹ2), hence δ , `(y1, ỹ2)− `(y1, ỹ1) > 0. We obtain

dI = ψ 1+
√
d̃II

2 ,
1−
√
d̃II

2 ,y1,y2

(1/2)

= φy1,y2(1/2)− 1
2φy1,y2

(
1+
√
d̃II

2

)
− 1

2φy1,y2

(
1−
√
d̃II

2

)
= φy1,y2

(1/2)− φy1,y2

(
1+
√
d̃II

2

)
= 1

2`(y1, ỹ1) + 1
2`(y2, ỹ1)−

(
1+
√
d̃II

2 `(y1, ỹ1) + 1−
√
d̃II

2 `(y2, ỹ1)
)

=

√
d̃II
2 δ.

The optimization of the lower bound leads us to choose d̃II = m̃
4n ∧ 1 and we get the desired result.

3 Full proof of the lower bound of Theorem 3

To prove that any progressive indirect mixture rule have no fast exponential deviation inequalities,
we will show that on some event with not too small probability, for most of the i in {0, . . . , n},
π−λΣi concentrates on the wrong function.

The proof is organized as follows. First we define the probability distribution for which we will
prove that the progressive indirect mixture rules cannot have fast deviation convergence rates. Then
we define the event on which the progressive indirect mixture rules do not perform well. We lower
bound the probability of this excursion event. Finally we conclude by lower bounding R(ĝpim) on
the excursion event.

Before starting the proof, note that from the “well behaved at center” and exp-concavity assump-
tions, for any y ∈ Y∩]a; +∞[, on a neighborhood of a, we have: `′′y ≥ λ(`′y)2 and since `′y(a) < 0,
y1 and ỹ1 exist.

3.1 Probability distribution generating the data and first consequences.

Let γ ∈]0; 1] be a parameter to be tuned later. We consider a distribution generating the data such
that the output distribution satisfies for any x ∈ X

P (Y = y1|X = x) = (1 + γ)/2 = 1− P (Y = y2|X = x),

where y2 = 2a− y1. Let ỹ2 = 2a− ỹ1. From the symmetry and admissibility assumptions, we have
`(y2, ỹ2) = `(y1, ỹ1) < `(y1, ỹ2) = `(y2, ỹ1). Introduce

δ , `(y1, ỹ2)− `(y1, ỹ1) > 0. (1)

We have

R(g2)−R(g1) = 1+γ
2 [`(y1, ỹ2)− `(y1, ỹ1)] + 1−γ

2 [`(y2, ỹ2)− `(y2, ỹ1)] = γδ. (2)

Therefore g1 is the best prediction function in {g1, g2} for the distribution we have chosen. Introduce
Wj , 1Yj=y1 − 1Yj=y2 and Si ,

∑i
j=1Wj . For any i ∈ {1, . . . , n}, we have

Σi(g2)− Σi(g1) =
∑i
j=1[`(Yj , ỹ2)− `(Yj , ỹ1)] =

∑i
j=1Wjδ = δ Si

The weight given by the Gibbs distribution π−λΣi to the function g1 is

π−λΣi(g1) = e−λΣi(g1)

e−λΣi(g1)+e−λΣi(g2) = 1
1+eλ[Σi(g1)−Σi(g2)] = 1

1+e−λδSi
. (3)

3.2 An excursion event on which the progressive indirect mixture rules will not perform
well.

Equality (3) leads us to consider the event:

Eτ =
{
∀i ∈ {τ, . . . , n}, Si ≤ −τ

}
,
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with τ the smallest integer larger than (log n)/(λδ) such that n− τ is even. (We could have just as
well chosen n− τ odd; see (9) below.) We have

logn
λδ ≤ τ ≤

logn
λδ + 2. (4)

The event Eτ can be seen as an excursion event of the random walk defined through the random
variablesWj = 1Yj=y1−1Yj=y2 , j ∈ {1, . . . , n}, which are equal to +1 with probability (1+γ)/2
and −1 with probability (1− γ)/2.

From (3), on the event Eτ , for any i ∈ {τ, . . . , n}, we have

π−λΣi(g1) ≤ 1
n+1 . (5)

This means that π−λΣi concentrates on the wrong function, i.e. the function g2 having larger risk
(see (2)).

3.3 Lower bound of the probability of the excursion event.

This requires to look at the probability that a slightly shifted random walk in the integer space has a
very long excursion above a certain threshold. To lower bound this probability, we will first look at
the non-shifted random walk. Then we will see that for small enough shift parameter, probabilities
of shifted random walk events are close to the ones associated to the non-shifted random walk.

Let N be a positive integer. Let σ1, . . . , σN be N independent Rademacher variables: P(σi =

+1) = P(σi = −1) = 1/2. Let si ,
∑i
j=1 σi be the sum of the first i Rademacher variables. We

start with the following lemma for sums of Rademacher variables.

Lemma 1 Let m and t be positive integers. We have

P
(

max
1≤k≤N

sk ≥ t; sN 6= t;
∣∣sN − t∣∣ ≤ m) = 2P

(
t < sN ≤ t+m

)
(6)

Proof 1 (of Lemma 1) The result comes from the well known mirror trick used to compute the law
of
(
sups≤tWs,Wt

)
where W denotes a Brownian motion. Consider a sequence σ1, . . . , σN which

belongs to the event E of the l.h.s. probability. Let J be the first integer j such that sj = t. Since

• the sequences σ1, . . . , σN and σ1, . . . , σJ ,−σJ+1, . . . ,−σN have the same probabilities,

• both sequences belong to E and are different since J < N ,

• exactly one of the sequences satisfy sN > t,

we have

P
(

max
1≤k≤N

sk ≥ t; sN 6= t;
∣∣sN − t∣∣ ≤ m) = 2P

(
sN > t;

∣∣sN − t∣∣ ≤ m),
which is the desired result.

Let σ′1, . . . , σ
′
N be N independent shifted Rademacher variables to the extent that P(σ′i = +1) =

(1 + γ)/2 = 1− P(σ′i = −1). These random variables satisfy the following key lemma

Lemma 2 For any set A ⊂
{

(ε1, . . . , εN ) ∈ {−1, 1}n :
∣∣∑N

i=1 εi
∣∣ ≤ M

}
where M is a positive

integer, we have

P
{

(σ′1, . . . , σ
′
N ) ∈ A

}
≥
(

1−γ
1+γ

)M/2(
1− γ2

)N/2P{(σ1, . . . , σN ) ∈ A
}

(7)

Proof 2 (of Lemma 2) Let s be an integer such thatN−s is even and |s| ≤M Consider a sequence
ε1, . . . , εN such that

∑N
i=1 εi = s. Then the numbers of −1 and +1 in the sequence are respectively

(N − s)/2 and (N + s)/2. Consequently, we have

P[(σ′1,...,σ
′
N )=(ε1,...,εN )]

P[(σ1,...,σN )=(ε1,...,εN )] = (1 + γ)(N−s)/2(1− γ)(N+s)/2,
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hence
P{(σ′1, . . . , σ′N ) = (ε1, . . . , εN )

}
≥ (1− γ2)N/2

(
1−γ
1+γ

)M/2P
{

(σ1, . . . , σN ) = (ε1, . . . , εN )
}
.

By summing over the sequences ε1, . . . , εN in A, we obtain the desired result.

We may now lower bound the probability of the excursion eventEτ . LetM be an integer larger than
τ . We still use Wj , 1Yj=y1

− 1Yj=y2
for j ∈ {1, . . . , n}. By using Lemma 2 with N = n − 2τ ,

we obtain
P(Eτ ) ≥ P

(
W1 = −1, . . . ,W2τ = −1; ∀ 2τ < i ≤ n,

∑i
j=2τ+1Wj ≤ τ

)
=

(
1−γ

2

)2τP(∀ i > 2τ
∑i
j=2τ+1Wj ≤ τ

)
=

(
1−γ

2

)2τP(∀ i ∈ {1, . . . , N} ∑i
j=1 σ

′
j ≤ τ

)
≥

(
1−γ

2

)2τP(∣∣∑N
i=1 σ

′
i

∣∣ < M ;∀ i ∈ {1, . . . , N}
∑i
j=1 σ

′
j ≤ τ

)
≥

(
1−γ

2

)2τ( 1−γ
1+γ

)M/2(
1− γ2

)N
2 P
(
|sN | ≤M ;∀ i ∈ {1, . . . , N} si ≤ τ

)
(8)

By using Lemma 1, since τ ≤M , the r.h.s. probability can be lower bounded:

P
(
|sN | ≤M ; max

1≤i≤N
si ≤ τ

)
= P

{
max

1≤i≤N
si ≤ τ ; sN ≥ −M

}
≥ P

{
max

1≤i≤N
si < τ ; |sN − τ | ≤M + τ ; sN 6= τ

}
= P

{
|sN − τ | ≤M + τ ; sN 6= τ

}
−P
{

max
1≤i≤N

si ≥ τ ; |sN − τ | ≤M + τ ; sN 6= τ
}

= P
{
|sN − τ | ≤M + τ ; sN 6= τ

}
− 2P

{
τ < sN ≤M + 2τ

}
= P

{
−M ≤ sN < τ

}
− P

{
τ < sN ≤M + 2τ

}
= P

{
− τ < sN ≤M

}
− P

{
τ < sN ≤M + 2τ

}
= P

{
− τ < sN ≤ τ

}
− P

{
M < sN ≤M + 2τ

}
Let us consider only the integer M > τ such that n −M is even, or equivalently N −M is even.
Since N − τ = n− 3τ is also even, we have

P
(
|sN | ≤M ; max

1≤i≤N
si ≤ τ

)
≥
∑τ−1
k=0 P(sN = 2− τ + 2k)−

∑τ
k=1 P(sN = M + 2k)

≥ τ [P(sN = τ)− P(sN = M)],

(9)

where the last inequality comes from properties of the binomial coefficients.

Combining (8) and (9), we obtain

P(Eτ ) ≥ τ
(

1−γ
2

)2τ( 1−γ
1+γ

)M/2(
1− γ2

)N
2 [P(sN = τ)− P(sN = M)] (10)

where we recall that τ have the order of log n, N = n − 2τ has the order of n and that γ > 0 and
M ≥ τ have to be appropriately chosen.

To control the probabilities of the r.h.s., we use Stirling’s formula

nne−n
√

2πn e1/(12n+1) < n! < nne−n
√

2πn e1/(12n), (11)

and get for any s ∈ [0;N ] such that N − s even,

P(sN = s) =
(

1
2

)N( N
N+s

2

)
≥

(
1
2

)N (Ne )N
√

2πNe
1

12N+1

(N+s
2e )

N+s
2 (N−s2e )

N−s
2
√
π(N+s)

√
π(N−s)e

1
6(N+s) e

1
6(N−s)

= 1

(1+ s
N )

N+s
2 (1− s

N )
N−s

2

√
2N

π(N2−s2)e
1

12N+1−
1

6(N+s)
− 1

6(N−s)

≥
√

2
πN

(
1− s2

N2

)−N2 ( 1− s
N

1+ s
N

) s
2

e−
1

6(N+s)
− 1

6(N−s)

(12)
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and similarly

P(sN = s) ≤
√

2
πN

(
1− s2

N2

)−N2 ( 1− s
N

1+ s
N

) s
2

e
1

12N+1 (13)

These computations and (10) leads us to take M as the smallest integer larger than
√
n such that

n −M is even. Indeed, from (4), (12) and (13), we obtain limn→+∞
√
n[P(sN = τ) − P(sN =

M)] = c, where c =
√

2/π
(
1− e−1/2

)
> 0. Therefore for n large enough we have

P(Eτ ) ≥ cτ
2
√
n

(
1−γ

2

)2τ( 1−γ
1+γ

)M/2(
1− γ2

)N
2 (14)

The last two terms of the r.h.s. of (14) leads us to take γ of order 1/
√
n up to possibly a logarithmic

term. We obtain the following lower bound on the excursion probability

Lemma 3 If γ =
√
C0(log n)/n with C0 a positive constant, then for any large enough n,

P(Eτ ) ≥ 1
nC0

.

3.4 Behavior of the progressive indirect mixture rule on the excursion event.

From now on, we work on the event Eτ . We have ĝpim = (
∑n
i=0 ĥi)/(n + 1). We still use δ ,

`(y1, ỹ2)−`(y1, ỹ1) = `(y2, ỹ1)−`(y2, ỹ2).On the eventEτ , for any x ∈ X and any i ∈ {τ, . . . , n},
by definition of ĥi, we have

`[y2, ĥi(x)]− `(y2, ỹ2) ≤ − 1
λ logEg∼π−λΣi

e−λ{`[y2,g(x)]−`(y2,ỹ2)}

= − 1
λ log

{
π−λΣi(g1)e−λδ + π−λΣi(g2)

}
= − 1

λ log
{
e−λδ + (1− e−λδ)π−λΣi(g2)

}
≤ − 1

λ log
{

1− (1− e−λδ) 1
n+1

}
In particular, for any n large enough, we have `[y2, ĥi(x)] − `(y2, ỹ2) ≤ Cn−1, with C > 0
independent from γ. From the convexity of the function y 7→ `(y2, y) and by Jensen’s inequality,
we obtain

`[y2, ĝpim(x)]− `(y2, ỹ2) = `[y2,
1

n+1

∑n
i=0 ĥi(x)]− `(y2, ỹ2)

≤ 1
n+1

∑n
i=0 `[y2, ĥi(x)]− `(y2, ỹ2)

≤ τδ
n+1 + Cn−1

< C1
logn
n

(15)

for some constant C1 > 0 independent from γ. Let us now prove that for n large enough, we have

ỹ2 ≤ ĝpim(x) ≤ ỹ2 + C
√

logn
n ≤ ỹ1, (16)

with C > 0 independent from γ.

Proof 3 For any y ∈ Y , let t = 2a − y. We have `(y2, y) − `(y2, ỹ2) = `y1
(t) − `y1

(ỹ1). Since
`′y1

(ỹ1) ≤ 0, `′′y1
(ỹ1) > 0, `′′y1

≥ λ(`′y1
)2 and `′′y1

is continuous on [a; ỹ1], there exists m > 0 such
that `′′y1

> m on [a; ỹ1]. For any ỹ2 < y ≤ a, from Taylor’s expansion, we have

`(y2, y)− `(y2, ỹ2) > (t− ỹ1)`′y1
(ỹ1) + (t−ỹ1)2

2 m

≥ (t−ỹ1)2

2 m

= (y−ỹ2)2

2 m

(17)

Let y0 , ỹ2 +
√

2C1 logn
mn where C1 is the constant appearing in (15). For n large enough, we have

y0 ≤ a and we may apply (17) to y = y0. We get

`(y2, y0)− `(y2, ỹ2) > C1
logn
n . (18)

Since `y1
is convex, `′y1

(ỹ1) ≤ 0 and `′′y1
(ỹ1) > 0, the function `y1

decreases on ]−∞; ỹ1] ∩ Y . By
symmetry, the function y 7→ `(y2, y) is non-decreasing on [ỹ2; +∞[∩ Y . From (15) and (18), we get
ĝpim(x) /∈ [y0; +∞[, which ends the proof of the upper bound of ĝpim(x).
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For the lower bound, for any x ∈ X , by definition of ĥi, we have

`[y1, ĥi(x)]− `(y1, ỹ1) ≤ − 1
λ logEg∼π−λΣi

e−λ{`[y1,g(x)]−`(y1,ỹ1)}

= − 1
λ log

{
π−λΣi(g1) + π−λΣi(g2)e−λδ

}
≤ δ.

By Jensen’s inequality, we obtain

`y1 [ĝpim(x)]− `y1(ỹ1) = `[y1,
1

n+1

∑n
i=0 ĥi(x)]− `(y1, ỹ1)

≤ 1
n+1

∑n
i=0 `[y1, ĥi(x)]− `(y1, ỹ1)

≤ δ
= `y1

(ỹ2)− `y1
(ỹ1).

Since the function `y1
decreases on ]−∞; ỹ2] ∩ Y , we get that ĝpim(x) ≥ ỹ2, which ends the proof

of (16).

From (16), we obtain

R(ĝpim)−R(g1) = 1+γ
2

[
`(y1, ĝpim)− `(y1, ỹ1)

]
+ 1−γ

2

[
`(y2, ĝpim)− `(y2, ỹ1)

]
= 1+γ

2

[
`y1(ĝpim)− `y1(ỹ1)

]
+ 1−γ

2

[
`y1(2a− ĝpim)− `y1(ỹ2)

]
= 1+γ

2

[
δ + `y1

(ĝpim)− `y1
(ỹ2)

]
+ 1−γ

2

[
− δ + `y1(2a− ĝpim)− `y1(ỹ1)

]
≥ γδ − (ĝpim − ỹ2)|`′y1

(ỹ2)|
≥ γδ − C2

√
logn
n ,

(19)

with C2 independent from γ. We may take γ = 2C2

δ

√
(log n)/n and obtain: for n large enough, on

the event Eτ , we have R(ĝpim)−R(g1) ≥ C
√

log n/n. From Lemma 3, this inequality holds with
probability at least 1/nC4 for some C4 > 0. To conclude, for any n large enough, there exists ε > 0
s.t. with probability at least ε,

R(ĝpim)−R(g1) ≥ c
√

log(eε−1)
n .

where c is a positive constant depending only on the loss function, the symmetry parameter a and
the output values y1 and ỹ1.

Remark 1 Had we consider only the progressive mixture rule (instead of any progressive indirect
mixture rule), this last part of the proof would have been much simpler. Indeed, for n large enough,
on the event Eτ , from (5), we have

p , 1
n+1

∑n
i=0 π−λΣi(g1) ≤ τ

n+1 + sup
τ≤i≤n

π−λΣi(g1) ≤ C logn
n

and ĝpm = 1
n+1

∑n
i=0 Eg∼π−λΣi

g = pg1 + (1− p)g2 ≡ ỹ2 + p(ỹ1 − ỹ2). So we have

ỹ2 ≤ ĝpm ≤ ỹ2 + C logn
n ≤ ỹ1,

which is much stronger than (16) (and much simpler to prove).
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