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Abstract

This note contains the proof of the assertion made in page 5 of the NIPS
paper “Progressive mixture rules are deviation suboptimal”. Specifically, it
proves that the empirical star algorithm is deviation optimal for the model
selection type aggregation problem.
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1. CONTEXT

Let (X,B) be a measurable space. Let g1, . . . , gd be uniformly bounded
measurable functions from X to the set of real numbers R equipped with its
Borel algebra A. Let P be an unknown distribution on (X×R,B⊗A) such
that the second marginal admits a finite second moment: E(X,Y )∼PY

2 <∞.
We observe an i.i.d. sample from P , denoted Z1 = (X1, Y1), . . . , Zn =
(Xn, Yn). For any measurable function g : X→ R such thatE(X,Y )∼P g

2(X) <
∞, we define its risk by

R(g) = E(X,Y )∼P [Y − g(X)]2,
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and its empirical risk by

r(g) =
1

n

n∑
i=1

[Yi − g(Xi)]
2.

Introduce
g∗MS ∈ argmin

g∈{g1,...,gd}
R(g).

We want to infer from the sample a function ĝZ1,...,Zn , simply denoted ĝ for
brevity, such that for any ε > 0, with probability at least 1− ε (with respect
to the distribution P⊗n of the sample), we have

R(ĝ)−R(g∗MS) ≤ C log(dε−1)

n
. (1.1)

for some constant C, where e is the exponential number.

2. THE EMPIRICAL STAR ALGORITHM

To achieve (1.1), we propose the following algorithm. Let ĝ(erm) be an
empirical risk minimizer among the reference functions:

ĝ(erm) ∈ argmin
g∈{g1,...,gd}

r(g).

For any measurable functions g′, g′′ from X to R, let [g′, g′′] denote the set
of functions which are convex combination of g′ and g′′: [g′, g′′] =

{
αg′ +

(1 − α)g′′ : α ∈ [0, 1]
}
. The empirical star estimator ĝ(star) minimizes the

empirical risk over a star-shaped set of functions, precisely:

ĝ(star) ∈ argmin
g∈[ĝ(erm),g1]∪···∪[ĝ(erm),gd]

r(g).

3. THE MAIN RESULT

THEOREM 1 Assume that |Y | ≤ 1 almost surely and ‖gj‖∞ ≤ 1 for any
j ∈ {1, . . . , d}. Then the empirical star algorithm satisfies: for any ε > 0,
with probability at least 1− ε, we have

R(ĝ(star))−R(g∗MS) ≤ 200 log[3d(d− 1)ε−1]

n
.

The above inequality naturally implies that Inequality (1.1) holds with C =
600.
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4. AN INTERMEDIATE RESULT ON EMPIRICAL RISK MINIMIZATION ON

A SEGMENT

Let g′ and g′′ be two measurable functions from X to R that are uni-
formly bounded by 1: ‖g′‖∞ ≤ 1 and ‖g′′‖∞ ≤ 1. Let ĝ be the empirical
risk minimizer on [g′, g′′], i.e. ĝ ∈ argmin

g∈[g′,g′′]
r(g). Let ḡ be the risk minimizer

on [g′, g′′], i.e. ḡ ∈ argmin
g∈[g′,g′′]

R(g).

THEOREM 2 Assume that |Y | ≤ 1 almost surely. Then for any ε > 0, with
probability at least 1− ε, we have simultaneously

R(ĝ)−R(ḡ) ≤ 71
log(3ε−1)

n
. (4.1)

and

r(ḡ)− r(ĝ) ≤ 54
log(3ε−1)

n
. (4.2)

It is likely that the result extends to empirical risk minimization on the
convex set of d functions with d > 2, but this is out of the scope of this note.

PROOF. Let t̂ ∈ [−1, 1] be such that ĝ = ḡ + t̂(g′′ − g′). The starting
point are the equalities

R(ĝ)−R(ḡ) = 2t̂E[Y − ḡ(X)][g′(X)− g′′(X)] + t̂2E[g′′(X)− g′(X)]2

(4.3)
and

r(ĝ)−r(ḡ) = 2t̂

∑n
i=1[Yi − ḡ(Xi)][g

′(Xi)− g′′(Xi)]

n
+t̂2

∑n
i=1[g

′′(Xi)− g′(Xi)]
2

n
(4.4)

The following Bernstein’s type lemma will be useful [2, Lemma 5].

LEMMA 3 Let W,W1, . . . ,Wn be i.i.d. random variables with W ≤ b al-
most surely and EW 2 <∞. For any ε > 0, with probability at least 1− ε,
we have∑n

i=1Wi

n
− EW ≤

√
2 log(ε−1)EW 2

n
+ max(b, 0)

log(ε−1)

3n
.

Let L = log(3ε−1)/n and D = E[g′(X) − g′′(X)]2. By using the previ-
ous lemma to the random variables [Yi − ḡ(Xi)][g

′(Xi) − g′′(Xi)], [Yi −
ḡ(Xi)][g

′′(Xi)−g′(Xi)],−[g′(Xi)−g′′(Xi)]
2 and [g′(Xi)−g′′(Xi)]

2, and
using a union bound, for any ε > 0, with probability at least 1− ε, we have
simultaneously∑n

i=1[Yi − ḡ(Xi)][g
′(Xi)− g′′(Xi)]

n
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− E[Y − ḡ(X)][g′(X)− g′′(X)] ≤
√

8DL+
4L

3
, (4.5)

∑n
i=1[Yi − ḡ(Xi)][g

′′(Xi)− g′(Xi)]

n

− E[Y − ḡ(X)][g′′(X)− g′(X)] ≤
√

8DL+
4L

3
, (4.6)

−
∑n

i=1[g
′′(Xi)− g′(Xi)]

2

n
+ E[g′′(X)− g′(X)]2 ≤

√
8DL. (4.7)

In the following, we prove that in the event (of probability at least 1− ε) for
which these three inequalities hold, Inequalities (4.1) and (4.2) hold. First
note that they trivially hold for ĝ = ḡ. We thus focus on the event in which
ĝ 6= ḡ and the above three inequalities hold. In this event, we necessarily
have(
E[Y − ḡ(X)][g′(X)− g′′(X)]

)∑n
i=1[Yi − ḡ(Xi)][g

′(Xi)− g′′(Xi)]

n
≤ 0,

hence by using (4.5) and (4.6), we get

|E[Y − ḡ(X)][g′(X)− g′′(X)]| ≤
√

8DL+
4L

3
, (4.8)

and ∣∣∣∣ |∑n
i=1[Yi − ḡ(Xi)][g

′′(Xi)− g′(Xi)]|
n

∣∣∣∣ ≤ √8DL+
4L

3
. (4.9)

Plugging (4.8) into (4.3), we get

R(ĝ)−R(ḡ) ≤ 2|t̂|
(√

8DL+
4L

3

)
+ t̂2D. (4.10)

This allows to get Inequality (4.1) when D ≤ 35L since |t̂| ≤ 1. Let us now
consider that D > 35L. Then, from (4.7), we have∑n

i=1[g
′′(Xi)− g′(Xi)]

2

n
≥ D−

√
8DL > 0. (4.11)

Besides, by definition of the empirical risk minimizer, (4.4) implies

|t̂| ≤
|
∑n

i=1[Yi − ḡ(Xi)][g
′′(Xi)− g′(Xi)]|∑n

i=1[g
′′(Xi)− g′(Xi)]2

, (4.12)

which, by using (4.9) and (4.11), implies

|t̂| ≤
√

8DL+ 4L
3

D−
√

8DL
.
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Combining this inequality with (4.10), we obtain

R(ĝ)−R(ḡ) ≤
(√

8DL+ 4L
3

D−
√

8DL

)2(
3D− 2

√
8DL

)
< 71L.

Still on the event in which ĝ 6= ḡ and (4.5), (4.6) and (4.7) hold, let us
now prove (4.2). Let D̂ =

∑n
i=1[g

′′(Xi)−g′(Xi)]
2

n . First the inequality is trivial
for D̂ = 0. Now when D̂ 6= 0, (4.12) and (4.9) imply

|t̂| ≤
√

8DL+ 4L
3

D̂
.

Combining (4.9) and (4.4), we have

r(ḡ)− r(ĝ) ≤ 2|t̂|
(√

8DL+
4L

3

)
+ t̂2D̂ ≤ 3|t̂|

(√
8DL+

4L

3

)
.

This allows to get Inequality (4.2) when D ≤ 34.6L since |t̂| ≤ 1. Let us
now consider that D > 34.6L. In that case, we again use (4.7) and get

r(ḡ)− r(ĝ) ≤ 3

(√
8DL+ 4L

3

)2
D−

√
8DL

≤ 54L,

which ends the proof of (4.2). �

5. PROOF OF THE MAIN RESULT

For any j, k in {1, . . . , d}, introduce

ĝj,k ∈ argmin
g∈[gj ,gk]

r(g)

and
ḡj,k ∈ argmin

g∈[gj ,gk]
R(g).

Without loss of generality, we may assume that g∗MS = g1. Let ê and ŝ be
such that ĝ(erm) = gê and ĝ(star) = ĝê,ŝ.

From Lemma 3 applied to the random variables [Yi− ḡ1,j(Xi)]
2− [Yi−

ḡj,k(Xi)]
2, j = 1, . . . , d, k = 2, . . . , d and by using a union bound, for any

ε1 > 0, with probability at least 1 − d(d − 1)ε1, for any j = 1, . . . , d and
k = 2, . . . , d, we simultaneously have

R(ḡj,k)−R(ḡ1,j) ≤ r(ḡj,k)−r(ḡ1,j)+

√
32E(ḡj,k − ḡ1,j)2 log(ε−11 )

n
+

4 log(ε−11 )

3n
.
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From Theorem 2 and the union bound argument, for any ε2 > 0, with prob-
ability at least 1− d(d− 1)ε2/2, for any 1 ≤ j < k ≤ d, we simultaneously
have

R(ĝj,k)−R(ḡj,k) ≤ 71
log(3ε−12 )

n
,

and

r(ḡj,k)− r(ĝj,k) ≤ 54
log(3ε−12 )

n
.

Let ε > 0. Define L = log[3d(d−1)ε−1]
n . Introduce the event on which the

following inequalities simultaneously hold for any j = 1, . . . , d and k =
2, . . . , d,

R(ḡj,k)−R(ḡ1,j) ≤ r(ḡj,k)−r(ḡ1,j)+
√

32E(ḡj,k − ḡ1,j)2L+
4L

3
, (5.1)

R(ĝj,k)−R(ḡj,k) ≤ 71L, (5.2)

and
r(ḡj,k)− r(ĝj,k) ≤ 54L. (5.3)

From the previous PAC bounds by taking ε1 = ε
3d(d−1) and ε2 = 4ε

3d(d−1) ,
this event holds with probability at least 1 − ε. We work hereafter on this
high probability event.

Let ê, ŝ in {1, . . . , d} such that gê = ĝ(erm) and ĝê,ŝ = ĝ(star). We distin-
guish two cases.
First case: R(ḡê,ŝ) ≤ R(g1) + 107L.
Then we have

R(ĝ(star)) = R(ĝê,ŝ) ≤ R(ḡê,ŝ) + 71L ≤ R(g1) + 200L.

Second case: R(ḡê,ŝ) > R(g1) + 107L.
Introduce â = R(gê) − R(ḡ1,ê) and b̂ = R(g1) − R(ḡ1,ê) ≤ â (see Figure
1). From (5.2), we have

R(ĝ(star))−R(g1) = R(ĝ(star))−R(ḡê,ŝ) +R(ḡê,ŝ)−R(ḡ1,ê) +R(ḡ1,ê)−R(g1)

≤ 71L + â− b̂ (5.4)

From (5.1), we have

b̂ < R(ḡê,ŝ)−R(ḡ1,ê)−107L ≤ r(ḡê,ŝ)− r(ḡ1,ê)+
√

32E(ḡê,ŝ − ḡ1,ê)2L−
317

3
L,

with r(ḡê,ŝ)− r(ḡ1,ê) ≤ r(ḡê,ŝ)− r(ĝ(star)) ≤ 54L and

E(ḡê,ŝ − ḡ1,ê)2 ≤ 2E(ḡê,ŝ − gê)2 + 2E(gê − ḡ1,ê)2

≤ 2[R(gê)−R(ḡê,ŝ)] + 2â
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Figure 1: the second case configuration

≤ 2[R(gê)−R(g1)− 107L] + 2â

= 4â− 2b̂− 214L.

Consequently, we have

b̂ < R(ḡê,ŝ)−R(ḡ1,ê) ≤ −
155

3
L +

√
128âL− 64b̂L− 6848L2. (5.5)

From (5.1), noting that ḡê,ê = gê, we also have

â = R(gê)−R(ḡ1,ê) ≤ r(gê)− r(ḡ1,ê) +
√

32E(gê − ḡ1,ê)2L +
4L

3

≤ r(gê)− r(ḡ1,ê) +
√

32âL +
4L

3
,

and

r(gê)− r(ḡ1,ê) ≤ r(g1)− r(ḡ1,ê)

≤ R(g1)−R(ḡ1,ê) +
√

32E(g1 − ḡ1,ê)2L +
4L

3

≤ b̂+
√

32b̂L +
4L

3

Combining the last two inequalities, we get

â ≤ b̂+
√

32b̂L +
√

32âL +
8L

3
,

hence â ≤ 16 + v + 2
√

64 + 8v, with v = b̂ +
√

32b̂L + 8L
3 . Plugging

this inequality into (5.5) and solving the inequation gives b̂ ≤ 64L, hence
â− b̂ ≤ 129L. From (5.4), this gives the desired result.
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6. EXTENSIONS

Consider a (loss) function ` : [−1, 1]× [−1, 1]→ R such that there exist
b1 > 0 and b2 > 0 for which for any y ∈ [−1, 1], the function `y : y′ 7→
`(y, y′) is twice differentiable and satisties: for any y′ ∈ [−1, 1], `y′(y′) = 0
and

b1 ≤ `′′y(y′) ≤ b2.

The results can be extended to the setting where the least square risk is re-
placed by

R(g) = E(X,Y )∼P `[Y, g(X)].

Besides, for the least square risk, we have considered boundedness as-
sumptions, which can be weakened. In particular, the results still hold (up
to modification of the constant factors) if we assume that for some positive
real numbers a,M,B,

E
(
ea|Y−E(Y |X=x)|∣∣X = x

)
≤M for any x ∈ X

and

‖g′−g′′‖∞ ≤ B for any g′, g′′ in {g1, . . . , gd} ∪ {x 7→ E(Y |X = x)}.

To get this extension, one can use a similar analysis to the one done in Sec-
tion 7.1.1 of [1, Chapter 1].
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