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Supervised learning

Training data = n input-output pairs :

Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn)

A new input X comes.
Goal: predict the corresponding output Y .

Probabilistic assumption (batch setting):

Z = (X ,Y ),Z1, . . . ,Zn i.i.d.

from some unknown distribution P
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Measuring the quality of prediction

`(y , y ′) = loss incurred for predicting y ′ while the true
output is y
Typical losses are:

the least square loss for real outputs

`(y , y ′) = (y − y ′)2

the classification loss for discrete outputs

`(y , y ′) = 1y 6=y ′

Prediction function: f : X → Y
Risk: R(f ) = E `[Y , f (X )]
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Statistical learning theory (SLT)

Achievable goal for an estimator f̂ : predict as well as the
best function in a set of prediction functions F (provided
that F is not too large)
Central goal of SLT: study R(f̂ ) (whatever f̂ is)
Prominent tool of SLT: probabilistic analysis of the
supremum

sup
f∈F

∣∣R(f )− r(f )
∣∣

with

r(f ) =
1
n

n∑
i=1

`[Yi , f (Xi)].
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Kullback-Leibler (KL) divergence

K (ρ, π) =

{
Eρ(df ) log( ρπ (f )) if ρ� π

+∞ otherwise

1 If ρ� π, then we have K (ρ, π) = Eπ(df )χ
(
ρ
π (f )

)
with

χ : u 7→ u log(u) + 1− u convex and nonnegative

2 K (ρ, π) ≥ 0

3 K (ρ, π) = 0⇔ ρ = π

4 If F is finite and π is the uniform distribution on F , let
H(ρ) = −

∑
f∈F ρ(f ) log ρ(f ), then

K (ρ, π) = log(|F|)− H(ρ) ≤ log |F|.
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Legendre transform of the KL divergence

Let h : F → R s.t. Eπ(df )eh(f ) < +∞. Define

πh(df ) =
eh(f )

Eπ(df ′)eh(f ′) · π(df )

1 K (ρ, πh) = K (ρ, π)− Eρ(df )h(f ) + log Eπ(df )eh(f )

2 supρ
{
Eρ(df )h(f )− K (ρ, π)

}
= log Eπ(df )eh(f )

3 argmaxρ
{
Eρ(df )h(f )− K (ρ, π)

}
= πh

4 λ 7→ K (πλh, π) is nondecreasing on [0,+∞).
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PAC-Bayesian analysis

Study Eρ̂(df )R(f ) for any distribution ρ̂ on F depending on
the training data
−→ similar to the study of R(f̂ ) (whatever f̂ is)
Uses a (prior) distribution to evaluate the complexity of the
data-dependent (or posterior) distribution
−→ different from VC bounds where the complexity is a
global quantity characterizing the model F
The bound holds for any prior and posterior
−→ different from the usual Bayesian approach
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McAllester’s bound (1998,1999)

We assume 0 ≤ `(y , y ′) ≤ 1 for any y , y ′.

For any distribution π on F , with probability at least 1− ε, for
any distribution ρ on F

∣∣Eρ(df )R(f )− Eρ(df )r(f )
∣∣ ≤

√
K (ρ, π) + log(4nε−1)

2n − 1

Equivalently (measurability problems set aside), for any
data-dependent (posterior) distribution ρ̂, with probability at
least 1− ε,

∣∣Eρ̂(df )R(f )− Eρ̂(df )r(f )
∣∣ ≤

√
K (ρ̂, π) + log(4nε−1)

2n − 1
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Seeger’s proof (slightly revisited)

The PAC lemma

Let V be a real-valued random variable s.t. EeV ≤ 1, then with
probability at least 1− ε, we have

V ≤ log(ε−1).

McAllester’s bound:
V = supρ

{
(2n − 1)

[
Eρ(df )R(f )− Eρ(df )r(f )

]2 − K (ρ, π)− log(4n)
}
≤ log(ε−1).

First step: Jensen’s ineq. + Legendre transform of KL

V ≤ sup
ρ

{
(2n − 1)Eρ(df )[R(f )− r(f )]2 − K (ρ, π)− log(4n)

}
= − log(4n) + log Eπ(df )e(2n−1)[R(f )−r(f )]2
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Seeger’s proof (second step)

EeV ≤ 1
4n

EEπ(df )e(2n−1)[R(f )−r(f )]2

=
1

4n
Eπ(df )

(
1 + E

{
e(2n−1)[R(f )−r(f )]2 − 1

})
=

1
4n

Eπ(df )

(
1 +

∫ +∞

0
P(e(2n−1)[R(f )−r(f )]2 − 1 > t)dt

)
=

1
4n

Eπ(df )

(
1 +

∫ +∞

0
P(|R(f )− r(f )| >

√
log(t + 1)

2n − 1
)dt
)

≤ 1
4n

Eπ(df )

(
1 +

∫ +∞

0
2e−2n log(t+1)

2n−1 dt
)

=
1

4n
Eπ(df )

(
1 + 2

∫ +∞

1
(t + 1)−

2n
2n−1 dt

)
=

4n − 1
4n

≤ 1
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Minimizing McAllester’s bound and Gibbs estimator

Let B(ρ) = Eρ(df )r(f ) +
√

K (ρ,π)+log(4nε−1)
2n−1 .

McAllester’s bound implies: for any distribution ρ

Eρ(df )R(f ) ≤ B(ρ).

Theorem

There exists λ̂ ∈ [λ1, λ2] s.t. B(π−λ̂r ) = minρ B(ρ) with
λ1 =

√
4(2n − 1) log(4nε−1) and λ2 = 2λ1 + 4(2n − 1).

Besides, we have
1 λ̂ =

√
4(2n − 1)[K (π−λ̂r , π) + log(4nε−1)]

2 λ̂ ∈ argmin
λ>0

{
− 1

λ log Eπ(df )e−λr(f ) + λ
4(2n−1) + log(4nε−1)

λ

}
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Seeger’s PAC Bayesian bound

Seeger’s bound for classification (2002)
slightly revisited

K (p||q) = K
(
Be(p),Be(q)

)
= p log

(p
q

)
+ (1− p) log

( (1−p
1−q

)
Theorem
With probability at least 1− ε, for any distribution ρ on F ,

K
(
Eρ(df )r(f )||Eρ(df )R(f )

)
≤ K (ρ, π) + log(2

√
nε−1)

n
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Seeger’s PAC Bayesian bound

This time, it suffices to prove
V = supρ

{
nK (Eρ(df )r(f ))||Eρ(df )R(f ))− K (ρ, π)− log(2

√
n)
}
≤ log(ε−1).

We have

EeV ≤ Eesupρ
{

nEρ(df )K (r(f )||R(f ))−K (ρ,π)−log(2
√

n)
}

=
1

2
√

n
EEπ(df )enK (r(f )),R(f ))

=
1

2
√

n
Eπ(df )

n∑
k=0

P(nr(f ) = k)
( k

nR(f )

)k( n − k
n[1− R(f )]

)n−k

=
1

2
√

n
Eπ(df )

n∑
k=0

(
n
k

)(k
n

)k(n − k
n

)n−k

≤ 1,

where the last inequality is obtained from computations using
Stirling’s approximation.
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Seeger’s PAC Bayesian bound

McAllester’s bound vs Seeger’s bound

∣∣Eρ(df )R(f )− Eρ(df )r(f )
∣∣ ≤√K (ρ,π)+log(4nε−1)

2n−1 (1)

K
(
Eρ(df )r(f )||Eρ(df )R(f )

)
≤ K (ρ,π)+log(2

√
nε−1)

n (2)
(2)⇒ (1) up to constant since from Pinsker’s inequality:∣∣Eρ(df )R(f )− Eρ(df )r(f )

∣∣ ≤√K
(
Eρ(df )r(f )||Eρ(df )R(f )

)
.

(2)� (1) when Eρ(df )R(f ) is close to 0 since (2) implies

∣∣Eρ(df )R(f )− Eρ(df )r(f )
∣∣ ≤√2Eρ(df )r(f )[1− Eρ(df )r(f )]K

n
+

4K
3n

with
K = K (ρ, π) + log(2

√
nε−1).
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Catoni’s old PAC Bayesian bound

Catoni’s old bound for classification (2002)

Let Ψ(λ) = et−1−t
t2 −→

t→0
1
2 .

Theorem
For λ > 0, with proba. at least 1− ε, for any distribution ρ on F ,

Eρ(df )R(f ) ≤
Eρ(df )r(f )

1− λ
n Ψ(λn )

+
K (ρ, π) + log(ε−1)

λ[1− λ
n Ψ(λn )]

Since typical values of λ are in [C
√

n; Cn], we roughly have

Eρ(df )R(f ) / Eρ(df )r(f ) +
λ

2n
Eρ(df )r(f ) +

K (ρ, π) + log(ε−1)

λ

≈
choice of λ

Eρ(df )r(f ) +

√
2Eρ(df )r(f )

K (ρ, π) + log(ε−1)

n
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Audibert’s PAC Bayesian bound

Audibert’s bound (2004)

Let Ψ(λ) = et−1−t
t2 −→

t→0
1
2 .

Theorem
For λ > 0, with proba. at least 1− ε, for any distribution ρ on F ,

Eρ(df )R(f ) ≤ Eρ(df )r(f ) +
λ

n
Ψ

(
λ

n

)
Eρ(df )Var Z `(Y , f (X ))

+
K (ρ, π) + log(ε−1)

λ
.
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Zhang’s PAC Bayesian bound

Zhang’s bound (2005)

Theorem
For λ > 0, with proba. at least 1− ε, for any distribution ρ on F ,

−n
λ

Eρ(df ) log EZ e−
λ
n `(Y ,f (X)) ≤ Eρ(df )r(f ) +

K (ρ, π) + log(ε−1)

λ
.

Since we have

−1
t

log EZ e−t`(Y ,f (X)) = R(f )− t
2

Var Z `(Y , f (X )) + O(t2),

we have

l.h.s. ≈ Eρ(df )R(f )− λ

2n
Eρ(df )Var Z `(Y , f (X ))
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Zhang’s PAC Bayesian bound

Comparison of the bounds in classification

Zhang and Audibert:

Eρ(df )R(f ) / Eρ(df )r(f )+

√
2Eρ(df )

(
R(f )[1− R(f )]

)K (ρ, π) + log(ε−1)

n

Catoni:
Eρ(df )R(f ) / Eρ(df )r(f ) +

√
2Eρ(df )R(f )K (ρ,π)+log(ε−1)

n

Seeger:

Eρ(df )R(f ) ≤ Eρ(df )r(f ) +

√
2Eρ(df )R(f )[1− Eρ(df )R(f )]K

n
+

2K
3n

with K = K (ρ, π) + log(2
√

nε−1). Besides, we have

Eρ(df )R(f )[1− Eρ(df )R(f )] ≥ Eρ(df )R(f )[1− R(f )]

⇒ similar PAC-Bayes bounds
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Explicit Laplace transform in classification

Instead of using

log Ee−
λ
n `(Y ,f (X)) ≤ −λ

n
R(f ) +

λ2

n2 Ψ
(λ

n

)
R(f ),

use

log Ee−
λ
n `(Y ,f (X)) = log

(
1− R(f )(1− e−

λ
n )
)

= −λ
n

Φλ
n

(
R(f )

)
.

with

Φa(p) = −a−1 log[1− (1− e−a)p] = p − a
2

p(1− p) + O(a2)

Zhang’s bound can be used to obtain exactly the same
basic bound as Theorem 1.2.6.
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Concentration of the risk w.r.t. the posterior distribution

All PAC-Bayes bounds can be stated as: for any posterior
distribution ρ̂, with probability at least 1− ε w.r.t. to the joint
probability P⊗nρ̂ of the training set and the randomized
prediction function f̂ ∼ ρ̂,

R(f̂ ) ≤ r(f̂ ) + terms with log
( ρ̂
π

(f̂ )
)

instead of K (ρ̂, π)

For instance, Seeger’s bound becomes:

K
(
r(f̂ )||R(f̂ )

)
≤

log( ρ̂π (f̂ )) + log(2
√

nε−1)

n
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Unbiased empirical bounds

Known problem of PAC bounds: pessimistic constants

Proposed solution: find an empirical quantity B(ρ) s.t.

E[Eρ(df )R(f )] ≤ E[B(ρ)],

and choose the estimator or the parameters by minimizing
B(ρ).
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Relative bounds

Main idea: the difference of empirical risks of two close
prediction functions has much smaller variations around its
mean than the empirical risk of one of these functions.
Typically, we start with

Eρ1(df )R(f )− Eρ2(df )R(f ) ≤ Eρ1(df )r(f )− Eρ2(df )r(f )

+
λ

n
Ψ

(
2λ
n

)
Eρ1(df )Eρ2(df )Var Z

[
`(Y , f1(X ))− `(Y , f2(X ))

]
+

K (ρ1, π1) + K (ρ2, π2) + log(ε−1)

λ
.

instead of

Eρ(df )R(f ) ≤ Eρ(df )r(f ) +
λ

n
Ψ

(
λ

n

)
Eρ(df )Var Z `(Y , f (X ))

+
K (ρ, π) + log(ε−1)

λ
.
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1 Fast rates under margin assumptions
in classification

Mammen and Tsybakov’s assumption: for a reference
prediction function f̃ ∈ G, for any f ∈ G,

P[f (X ) 6= f̃ (X )] ≤ C[R(f )− R(f̃ )]1/κ

Catoni’s margin functions:

ϕ(t) = sup
f∈F

{
E
∣∣1Y 6=f (X) − 1Y 6=f̃ (X)

∣∣− t [R(f )− R(f̃ )]
}

ϕ̄(t) = sup
f∈F

{
Ē
∣∣1Y 6=f (X) − 1Y 6=f̃ (X)

∣∣− t [r(f )− r(f̃ )]
}

in least squares regression, under reasonable assumptions,

Var Z
[
`(Y , f (X ))− `(Y , f̃ (X ))

]
≤ c[R(f )− R(f̃ )]

2 Algorithm design by successive improvement



A better variance control in classification

Classification : |Y| < +∞ and L(y, y′) , 1y 6=y′

Transductive setting : we are given the training set ZN
1 and

N points to classify XN+1, . . . , X2N .
Target : predict unknown labels YN+1, . . . , Y2N



































P̄ , 1
N

∑N
i=1 δ(Xi,Yi)

P̄′ , 1
N

∑2N
i=N+1 δ(Xi,Yi)

¯̄
P , 1

2N

∑2N
i=1 δ(Xi,Yi)

r(f) , 1
N

∑N
i=1 1Yi 6=f(Xi) = P̄[Y 6= f(X)]

r′(f) , 1
N

∑2N
i=N+1 1Yi 6=f(Xi) = P̄′[Y 6= f(X)]

¯̄
Pf1,f2

, ¯̄
P[f1(X) 6= f2(X)]

Statistical learning theory: a PAC-Bayesian approach – J.-Y. AUDIBERT – p. 10/35



Another way of controlling the variance term

Reminder

ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤ 2λ
N

(ρ1 ⊗ ρ2)
¯̄
P·,· +

K1,2

λ

Target : use the bounds to design efficient estimators

Basic approach : consider (ρ2, π2, ρ1, π1) =
(

ρ, π, δf̃ , δf̃

)

.

 ρr′ − r′(f̃) ≤ ρr − r(f̃) + 2λ
N

ρ ¯̄
P·,f̃ + K(ρ,π)+log(ε−1)

λ

Main problem : control the variance term

solution : use iteratively the bounds through comparisons
between observable estimators

Statistical learning theory: a PAC-Bayesian approach – J.-Y. AUDIBERT – p. 15/35



Non localized estimator

Theorem. Let L , log
[

log(eN)ε−1
]

and

S(ρ′, ρ′′) , min
λ∈[

√
N ;N ]

{

2λ
N

(

ρ′ ⊗ ρ′′) ¯̄
P·,· +

√
eK(ρ′,π)+K(ρ′′,π)+L

λ

}

.

With P⊗N -proba at least 1 − ε, ∀ρ′, ρ′′ ∈ M1
+(F),

ρ′′r′ − ρ′r′ ≤ ρ′′r − ρ′r + S(ρ′, ρ′′)

Algorithm. Let ρ0 = π. For any k ≥ 1, define ρk as the distribution

with the smallest complexity K(ρk, π) such that

ρkr − ρk−1r + S(ρk−1, ρk) ≤ 0. Classify using a function drawn

according to the last posterior distribution ρK .

Statistical learning theory: a PAC-Bayesian approach – J.-Y. AUDIBERT – p. 16/35



Non localized estimator

Theorem. Let

G(λ) , − 1
λ

log π exp
(

− λr′
)

+ 1
2λ

log π−λr′ exp
(

72
√

eλ2

N
π−λr′

¯̄
P·,·

)

+ L
2λ

.

With P⊗2N -probability at least 1 − ε, for any k ∈ {1, . . . , K},
ρkr − ρk−1r + S(ρk, ρk−1) = 0, ρkr < ρk−1r and ρkr

′ ≤ ρk−1r
′,

K(ρk, π) ≥ K(ρk−1, π),

ρKr′ ≤ min√
N

6
√

e
≤λ≤ N

6
√

e

G(λ).

Statistical learning theory: a PAC-Bayesian approach – J.-Y. AUDIBERT – p. 17/35



Optimality of the estimator

Tsybakov’s type assumptions:

there exists C ′ > 0 and 0 < q < 1 such that the covering entropy

of the model F for the distance P·,· satisfies for any u > 0,

H(u,F ,P·,·) ≤ C ′u−q,

there exist c′′, C ′′ > 0 and κ ≥ 1 such that for any function f ∈ F ,

c′′
[

R(f) − R(f̃)
]

1
κ ≤ Pf,f̃ ≤ C ′′[R(f) − R(f̃)

]
1
κ ,

⇒ with P⊗2N -probability at least 1 − ε,

G(λ) ≤ r′(f̃) + log(eε−1)O
(

N− κ
2κ−1+q

)

provided that λ = N
κ

2κ−1+q (∈ [
√

N ; N ]) and π is appropriately chosen.

Statistical learning theory: a PAC-Bayesian approach – J.-Y. AUDIBERT – p. 18/35
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PAC-Bayesian localization

For a given ρ̂, the prior minimizing the expected value of
the bound for ρ̂ is

π = argminπ′EK (ρ̂, π′) = E[ρ̂]

since EK (ρ̂, π) = EK (ρ̂,E[ρ̂]) + K (E[ρ̂], π).

Problem: E[ρ̂] is not observable
First solution (Catoni, 2003): apply basic PAC bound to
π−βR, expand K (ρ̂, π−βR) and develop additional empirical
bounds to control the non observable terms

Zhang (2005) uses πα log EZ e−λ`(Y ,f (X)) .
Ambroladze, P.-H. and S.-T. (2006) localizes by cutting the
training set into two parts
Catoni (2007) uses π−βΦ

− βn
[R(f )].

Alquier (2007,2008) also uses π−βR but for general
unbounded losses (regression, density estimation)
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Properties of PAC-Bayesian localization

Advantages
allow to replace K (ρ, π) with K (ρ, π−λr )
gain of logarithmic factor in parametric convergence rates

Disadvantages = increase of the constant factors
Open question = useful to build linear classifiers ?
(Herbrich, Graepel, 2001; Langford, Shawe-Taylor, 2002;
Germain, Lacasse, Laviolette, Marchand, 2009)



A better variance control in classification

Classification : |Y| < +∞ and L(y, y′) , 1y 6=y′

Transductive setting : we are given the training set ZN
1 and

N points to classify XN+1, . . . , X2N .
Target : predict unknown labels YN+1, . . . , Y2N
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Relative PAC-Bayesian bounds

Definitions. • A function Q on Z2N is said to be exchangeable iff for

any permutation σ, QZσ(1),...,Zσ(2N)
= QZ1,...,Z2N

. • πh ,
exp(h)

π exp(h)
· π

Theorem. Let π1 and π2 be exchangeable prior distributions. Define

K1,2 , K(ρ1, π1) + K(ρ2, π2) + log(ε−1). For any ε > 0, λ > 0, with

P⊗2N -probability at least 1 − ε, for any ρ1, ρ2 ∈ M1
+(F),

ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤ 2λ
N

(ρ1 ⊗ ρ2)
¯̄
P·,· +

K1,2

λ
.

Theorem. For any ξ ∈]0; 1[ and λ, λ1, λ2 > 0, define
Kloc

1,2 , K
(

ρ1, (π1)−λ1r

)

+ K
(

ρ2, (π2)−λ2r

)

+ log(π1)−λ1r exp
( λ2

1

2ξN
ρ1

¯̄
P·,·

)

+ log(π2)−λ2r exp
( λ2

2

2ξN
ρ2

¯̄
P·,·

)

+ (1 + ξ)log(ε−1).

With P⊗2N -probability at least 1 − ε, for any ρ1, ρ2 ∈ M1
+(F),

ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤ 2λ
N

(ρ1 ⊗ ρ2)
¯̄
P·,· +

Kloc
1,2

(1−ξ)λ
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Application to VC theory (1/3)

X , X2N
1

A(X) ,
{

{

f ∈ F : ∀1 ≤ i ≤ N, f(Xi) = σi

}

; σ2N
1 ∈ {0; 1}2N

}

N(X) ,
∣

∣A(X)
∣

∣ =
∣

∣

{

[f(Xk)]
2N
k=1 : f ∈ F

}∣

∣

πU(X) : exchangeable distribution uniform on A(X) to the extent

that πU(X)(A) = 1
N(X)

for any A ∈ A(X).

Theorem. With P⊗2N -probability at least 1 − ε, for any f1, f2 ∈ F ,

r′(f2) − r′(f1) ≤ r(f2) − r(f1) +

√

8 ¯̄
Pf1,f2

[

2 log N(X)+log(ε−1)
]

N
.

In particular, introducing f̃ ′ , argminF r′, we obtain

r′(f̂ERM) − r′(f̃ ′) ≤ r(f̂ERM) − r(f̃ ′) +

√

8 ¯̄
Pf̂ERM,f̃ ′ [2 log N(X)+log(ε−1)]

N
.
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Application to VC theory (2/3)

Localized theorem. For any λ ≥ 0, define

Cλ(f) , log
∑

A∈A(X) exp
{

− λ
[

(r + r′)A − (r + r′)(f)
]

}

.

Let C(f, g) , minλ≥0

{

Cλ(f) + Cλ(g)
}

. For any ε > 0, with

P⊗2N -probability at least 1 − ε,

r′(f̂ERM)−r′(f̃ ′) ≤ r(f̂ERM)−r(f̃ ′)+

√

8 ¯̄
Pf̂ERM,f̃ ′ [C(f̂ERM,f̃ ′)+log(ε−1)]

N
.

Illustration of localization efficiency by a toy example.

X = [0; 1], F = {1[θ;1]; θ ∈ [0; 1]}
Y = 1X≥θ̃ for some θ̃ ∈ [0; 1] and P(dX) absolutely continuous

wrt Lebesgue measure.

 Non localized inequality gives r′(f̂ERM) ≤ 8 log(2N+1)+4log(ε−1)
N

 Localized inequality gives r′(f̂ERM) ≤ 37+5log(ε−1)
N
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Context McAllester’s pioneering work The different PAC-Bayes bounds Main ideas in Chap.1 Application to linear least squares

Framework

Target

`(y , y ′) = (y − y ′)2

R(f ) = E(Y − f (X ))2

ϕ1, . . . , ϕd functions from X to R

X −→

 ϕ1(X )
...
ϕd (X )

 = ϕ(X )

Θ ⊂ Rd closed convex
F =

{
fθ =

∑d
j=1 θjϕj ; θ = (θ1, . . . , θd ) ∈ Θ

}
Goal: predict as well as f ∗ ∈ argminf∈FR(f )

(
which is

possibly different from f (reg) : x 7→ E(Y |X = x)
)



Context McAllester’s pioneering work The different PAC-Bayes bounds Main ideas in Chap.1 Application to linear least squares

Framework

Decomposition of the risk

Gram matrix: Q = E[ϕ(X )ϕT (X )]

The risk is a quadratic form with matrix Q:

R(fθ) = E(Y − θTϕ(X ))2

= EY 2 − 2θT E[ϕ(X )Y ] + θT Qθ



Context McAllester’s pioneering work The different PAC-Bayes bounds Main ideas in Chap.1 Application to linear least squares

Framework

Motivations

Better understanding of the parametric linear least squares
regression
Central task for nonparametric regression with linear
approximation space
Two-stage model selection



Context McAllester’s pioneering work The different PAC-Bayes bounds Main ideas in Chap.1 Application to linear least squares

Variants of known results

Ordinary least squares and empirical risk minimization

Linear aggregation: F = Flin = span{ϕ1, . . . , ϕd} and f ∗lin = f ∗

Let f̂ (ols) ∈ argminf∈Flin

1
n

∑n
i=1[Yi − f (Xi )]2.

ER(f̂ (ols))− R(f ∗lin) = E
[
f̂ (ols)(X )− f ∗lin(X )

]2
.

if supx∈X Var (Y |X = x) = σ2 < +∞ and f (reg) = f ∗lin, we have

E
{

1
n

n∑
i=1

[
f̂ (ols)(Xi )− f ∗lin(Xi )

]2} ≤ σ2 d
n
.

It does not imply a d
n upper bound on ER(f̂ (ols))− R(f ∗lin).
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Variants of known results

Theorem (Györfi, Kohler, Krzyżak, Walk, 2004)

If supx∈X Var (Y |X = x) = σ2 < +∞ and

‖f (reg)‖∞ = sup
x∈X
|f (reg)(x)| ≤ H

for some H > 0, then the truncated estimator
f̂ (ols)
H = (f̂ (ols) ∧ H) ∨ −H satisfies

ER(f̂ (ols)
H )− R(f (reg))

≤ 8[R(f ∗lin)− R(f (reg))] + κ
(σ2 ∨ H2)d log n

n

for some numerical constant κ.
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Variants of known results

Theorem (Birgé, Massart, 1998)

Assume that for any f1, f2 in F , ‖f1 − f2‖∞ ≤ H and ∃f0 ∈ F satisfying

for any x ∈ X , E
{

exp
[
A−1

∣∣Y − f0(X )
∣∣] ∣∣∣X = x

}
≤ M,

for some positive constants A and M. Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖
∑d

j=1 θjφj‖2
∞

‖θ‖2
∞

where the infimum is taken w.r.t. all possible orthonormal basis of F
for 〈f1, f2〉 = Ef1(X )f2(X ). Then, with probability at least 1− ε:

R(f̂ (erm))− R(f ∗) ≤ κ(A2 + H2)
d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

where κ is a positive constant depending only on M.
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Variants of known results

Projection estimator

Theorem (Tsybakov, 2003)

Let φ1, . . . , φd be an o.n.b. of Flin for 〈f1, f2〉 = Ef1(X )f2(X ).
The projection estimator on this basis is f̂ (proj) =

∑d
j=1 θ̂

(proj)
j φj , with

θ̂(proj) =
1
n

n∑
i=1

Yiφj (Xi ).

If
sup
x∈X

Var (Y |X = x) = σ2 < +∞

and
‖f (reg)‖∞ = sup

x∈X
|f (reg)(x)| ≤ H < +∞,

then we have
ER(f̂ (proj))− R(f ∗lin) ≤ (σ2 + H2)

d
n
.
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Variants of known results

Conclusion of the survey

R(f̂ (erm))− R(f ∗) = O
(d log(2+n/d)+log(ε−1)

n

)
for L∞-bounded

F and exponential moments

There is no simple d/n which does not require strong
assumptions

Degraded convergence rate when Q is ill-conditioned ?
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New results

Theorem

Assume E
[
‖ϕ(X )‖4

]
< +∞ and sup E

{
[Y − f̃ (X )]2

∣∣X} ≤ σ2. For any
ε > 0, there is nε s.t. for any n ≥ nε, with proba. at least 1− ε,

R(f̂ (erm)) ≤ R(f ∗lin) + σ2 30d + 1000 log(3ε−1)

n
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New results

Θ bounded

π uniform distribution on F

λ > 0

Wi (f , f ′) = λ
n

{[
Yi − f (Xi )

]2 − [Yi − f ′(Xi )
]2}

Ê(f ) = log Eπ(df ′)
1∏n

i=1[1−Wi (f ,f ′)+ 1
2 Wi (f ,f ′)2]

We consider the “posterior” distribution π̂ = π−Ê(f )

for λn small enough, 1−Wi (f , f ′) + 1
2 Wi (f , f ′)2 is close to

e−Wi (f ,f ′), and consequently

Ê(f ) ≈ λr(f ) + log Eπ(df ′)e−λr(f ′),

and
π̂ ≈ π−λr
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New results

Theorem

Assume supf1,f2∈F ‖f1 − f2‖∞ ≤ H and, for some σ > 0,

sup
x∈X

E
{

[Y − f ∗(X )]2
∣∣X = x

}
≤ σ2 < +∞.

Let λ = n
3(2σ+H)2 and f̂ be a prediction function drawn from the

distribution π̂.
Then for any ε > 0, with probability at least 1− ε, we have

R(f̂ )− R(f ∗) ≤ 17(2σ + H)2 d + log(2ε−1)

n
.
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