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Context:
- MAP inference for MRF/CRF models.

Contributions:
- Novel MAP-estimation framework that

uses learning to significantly speed-up
MRF/CRF inference.

- Maintains/improves accuracy of MAP esti-
mation.

Notations
To represent a discrete MRF modelM, we use the following notation:

M =
(
V , E ,L, {φi}i∈V, {φij}(i,j)∈E

)
.

A graph G = [V , E ]

xi ∈ L: the configuration of vertex i

φi ∈ L → R: the unary potential of vertex i

φij ∈ L × L → R: the pairwise potential of edge ij

x = (xi)i∈V: the configuration ofM.

The energy (the total cost) of a solution x is:

E(x|M) =
∑
i∈V

φi(xi) +
∑
(i,j)∈E

φij(xi, xj)
.

The goal of MAP estimation is to find a solution that has minimum energy:

xMAP = arg min
x∈L|V|

E(x|M) .

The pruning matrix A : V × L → {0, 1}:

A(i, l) =

{
1 if label l is active at vertex i
0 if label l is pruned at vertex i

and its associated solution space:

S(M, A) =
{
x ∈ L|V| | (∀i), A(i, xi) = 1

}
.

Approach
To obtain an inference speed-up we need to solve:

min
x∈S(M,A)

E(x|M) .

with A such that:
(1) xMAP ∈ S(M, A)

(2) Most elements of A are 0 (i.e., the labels are pruned)

The IbyL framework iteratively estimates A by:
(1) Building a coarse to fine set of MRFs fromM.
(2) Learning at each scale pruning classifiers to refine A

Model Coarsening
Given a modelM and a grouping function g : V → N, we create a “coarser” version of this model:

M′ =
(
V ′, E ′,L, {φ′i}i∈V ′, {φ′ij}(i,j)∈E ′

)

Circles: V , Lines: E , Squares:
V ′, Lines: E ′.

The vertice and edges ofM′ are given by:

V ′ = {i′ | ∃i ∈ V , i′ = g(i)} ,
E ′ = {(i′, j′) | ∃(i, j) ∈ E , i′ = g(i), j′ = g(j), i′ 6= j′} .

The unary and pairwise potentials ofM′ are given by

(∀i′ ∈ V ′), φ′i′(l) =
∑

i∈V|i′=g(i) φi(l) +
∑

(i,j)∈E|i′=g(i)=g(j) φij(l, l),

(∀(i′, j′) ∈ E ′), φ′i′j′(l0, l1) =
∑

(i,j)∈E|i′=g(i),j′=g(j) φij(l0, l1) .

With a slight abuse of notation, we define the coarsening as:
g(M) =M′

and the up-sampling of a solution ofM′→M as:
g−1(x′) = x

Coarse to fine optimization and label pruning
We iteratively apply the previous coarsening to build a coarse to fine set of N+1 progressively coarser MRFs:

M(0) =M and (∀s), M(s+1) = g(s)(M(s)) with M(s) =
(
V (s), E (s),L, {φ(s)i }i∈V (s), {φ(s)ij }(i,j)∈E (s)

)
We set all elements of the coarsest pruning matrix AN to 1 (no pruning).

At each scale s, we apply the following steps:
Step 1: Optimize the current MRFM(s):

x(s) ≈ argminx∈S(M(s),A(s))E(x|M(s))

Step 2: Update the next scale pruning matrix A(s−1),
(i):Compute the feature map:

z(s) : V (s) × L → RK

(ii):Update the pruning matrix from off-line trained classifier f (s) : RK → {0, 1}:
(∀i ∈ V (s−1), ∀l ∈ L), A(s−1)(i, l) = f (s)(z(s)(g(s−1)(i), l)) .

Step 3: Up-sample the current solution for next scale:
x(s−1) = [g(s−1)]−1(x(s))

Inference by learning framework

Data: ModelM(0) =M, grouping functions (g(s))0≤s<N , classifiers (f (s))0<s≤N
Result: x(0)
Compute the coarse to fine sequence of MRFs:
for s = [0 . . . N − 1] do
M(s+1)← g(s)(M(s))

Optimize the coarse to fine sequence of MRFs over pruned solution spaces:
Initialization: set x(N) and (∀i ∈ V (N),∀l ∈ L), A(N)(i, l)← 1

for s = [N...0] do
Update x(s) by iterative minimization: x(s) ≈ argminx∈S(M(s),A(s))E(x|M(s))

if s 6= 0 then
Compute feature map z(s)

Update pruning matrix for next finer scale:
A(s−1)(i, l) = f (s)(z(s)(g(s−1)(i), l))

Upsample x(s) for initializing solution x(s−1) at next scale:
x(s−1)← [g(s−1)]−1(x(s))

Feature map
The feature map z(s) is formed of K stacked features defined on V (s) × L:
Presence of strong discontinuity:

PSD(s)(i, l) =

{
1 ∃(i, j) ∈ E (s)| φij(x(s)i , x

(s)
j ) > ρ

0 otherwise
Local energy variation:

LEV(s)(i, l) = φ
(s)
i (l)−φ(s)i (x

(s)
i )

N
(s)
V (i)

+
∑

j:(i,j)∈E (s)
φ
(s)
ij (l,x

(s)
j )−φ(s)ij (x

(s)
i ,x

(s)
j )

N
(s)
E (i)

with N
(s)
V (i) = card{i′ ∈ V (s−1) : g(s−1)(i′) = i}

and N
(s)
E (i) = card{(i′, j′) ∈ E (s−1) : g(s−1)(i′) = i, g(s−1)(j′) = j}.

Unary “coarsening”:

UC(s)(i, l) =
∑

i′∈V (s−1)|g(s−1)(i′)=i
|φ(s−1)i′ (l)−φ(s)i (l)/N

(s)
V (i)|

N
(s)
V (i)

Computing the ground truth
On a training set of MRFs, we run the IbyL framework without
any pruning, i.e., A(s) ≡ 1.
We keep track of features and compute:

X
(s)
MAP : V (s) × L → {0, 1}

such that:

X
(0)
MAP(i, l) =

{
1, if l is the ground truth label for node i

0, otherwise

X
(s+1)
MAP (i, l) =

∨
i′∈V (s):g(s+1)(i′)=iX

(s)
MAP(i

′, l)

where
∨

denotes the binary OR operator.

Learning pruning classifier
At each scale s, we split the features in two groups w.r.t the PSD feature. For each group:

(1) We have two classes defined from X
(s)
MAP :

c0: to prune;
c1: to remain active.

(2) We also introduce weights for each class:
weight of c0: 1
weight of c1: λ

card(c0)
card(c1)

(3) We train a linear C-SVM classifier.

λ ∈ R+ is the pruning aggressiveness factor and controls how much pruning happens. During
testing, the classifier f (s) applies the trained classifier of the corresponding group (w.r.t. the PSD
feature).

Experiments: Setup
We experiment with two problems:

(1) Stereo-matching.
(2) Optical flow.

We evaluate different pruning aggressiveness factor λ, and compute:
(1) The speed-up w.r.t. the direct optimization.
(2) The ratio of active labels.
(3) The energy ratio w.r.t. the direct optimization.
(4 The MAP agreement w.r.t. the best computed solution.

As an optimization subroutine we use Fast-PD.

For all experiments we use five scales and learn the pruning classifiers from only
one MRF (Tsukuba for stereo-matching and Army for Optical flow).
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Conclusion
The IbyL framework:

(1) Gives an important speedup.
(2) Maintains excellent accuracy of the solution.
(3) Can be easily adapted by computing task dependent features.
(4) Can be easily adapted to high order MRFs.
(5) Is available to download at:

http://imagine.enpc.fr/˜conejob/ibyl/
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