I. Supervised Learning: introduction

The general goal of supervised learning is to learn decision rules from labeled examples. The examples are denoted by

\[X_1, \ldots, X_n \in \mathcal{X} \] (feature space)

while the labels are

\[Y_1, \ldots, Y_n \in \mathcal{Y} \] (label set)

It is assumed that \((X_i, Y_i)\) are independent random variables drawn from a distribution \(P\). This distribution is unknown. The aim is to design a prediction rule,

\[g: \mathcal{X} \rightarrow \mathcal{Y} \]

such that for every "new" pair \((X, Y)\) drawn from \(P\), \(g(X)\) is very likely to be a good prediction of \(Y\).

Example 1. (Character recognition)

Each example \(X_i\) corresponds to a digital image of a digit \(0, 1, 2, \ldots, 9\) (the interested reader may have a look on the MNIST dataset). Pay attention \(X_i\) is an image representing a digit, not a digit by itself.
Usually $X_i \in \{0,1,\ldots,9\}$ and $Y_i \in \{0,1,\ldots,9\}$.

The goal is to find an automatic rule that takes as input an image and provides as output an element of $Y = \{0,1,\ldots,9\}$.

Example 2 (Prediction of stock option prices).

Let P_t be the price of a stock option at time t.

Our goal is to use the historical data (P_{t-k+1},\ldots,P_t) in order to predict the highest value in the near future: $\max_{1 \leq j \leq 30} P_{t+j}$ (highest value of the next 30 days).

So here $Y = \max_{1 \leq j \leq 30} P_{t+j} \in \mathbb{R}_+$

$X = (P_{t-k+1},\ldots,P_t) \in \mathbb{R}^k$

Usually in this problem, it is better to transform these variables as follows:

$Y = \max_{1 \leq j \leq 30} (P_{t+j} - P_t)/P_t \in \mathbb{R}$

$X = \left(\frac{P_{t-k+1}}{P_{t-1}}, \frac{P_{t-k+1}}{P_{t-k}}, \ldots, \frac{P_{t-k+1}}{P_{t-k}} \right) \in \mathbb{R}^k$

Considering different stock options and different time periods, we get our training sample $(X_1,Y_1),\ldots,(X_n,Y_n)$

This sample can be used to infer a prediction rule.

Ⅱ Bayes Predictor

The setting: P is a probability on $\mathbb{X} \times \mathbb{Y}$

$(X_i,Y_i) \overset{iid}{\sim} P \quad i = 1,\ldots,n$
We look for a prediction function
\[g : \mathcal{X} \to \mathcal{Y}. \]
To quantify the quality of \(g \), we introduce a loss function
\[l : \mathcal{Y} \times \mathcal{Y}^* \to \mathbb{R}_+ \]
Here \(l(y, y') \) corresponds to the loss incurred when \(y \) is predicted by \(y' \). Generally, the loss function satisfies the relation \(l(y, y) = 0 \) \(\forall y \in \mathcal{Y} \).

Example 1 (Binary classification)
Here, \(\mathcal{X} \) is arbitrary and \(\mathcal{Y} = \{0, 1\} \) or \(\mathcal{Y} = \{-1, +1\} \).
The usual loss in this setting is the 0-1 loss
\[l(y, y') = I(y \neq y') \]
The risk of a prediction function \(g \) is then
\[R_P(g) = \mathbb{E}[l(Y, g(X))] = \mathbb{P}(Y \neq g(X)) \]

Example 2 (Least-squares regression)
The set \(\mathcal{X} \) is still arbitrary and \(\mathcal{Y} = \mathbb{R} \).
The squared loss is \(l(y, y') = (y - y')^2 \) and the risk is
\[R_P(g) = \mathbb{E}[(Y - g(X))^2] \]

DEF. We call the Bayes rule any prediction function
\[g^* : \mathcal{X} \to \mathcal{Y} \]
satisfying
\[g^* \in \text{arg min}_g R_P(g) \quad (\Rightarrow R_P(g^*) \leq R_P(g) \quad \forall g) \]
At a heuristic level, the Bayes rule is the best prediction function that we would use if we were given the probability \(P \). Since \(P \) is unknown, we cannot use \(g^* \) directly.
Theorem

Let P be a probability on $X \times Y$ and $R_{P}(g) = \mathbb{E}[\ell(Y, g(x))]$.

a) The Bayes rule g^*_P can be computed by

$$g^*_P(x) \in \arg\min_{a \in Y} \mathbb{E} [\ell(Y, a) \mid X = x] \quad \forall x \in X$$

b) In the problem of regression with least-squares loss

$$g^*_P(x) = \mathbb{E}[Y \mid X = x] \quad \forall x \in X$$

c) In the problem of binary classification with $Y = \{0, 1\}$,

$$g^*_P(x) = \mathbb{1} \left(\eta(x) > \frac{1}{2} \right) \quad \forall x \in X$$

where $\eta(x) = \mathbb{E}[Y \mid X = x] = P(Y = 1 \mid X = x)$.

Proof. According to the total probabilities formula

$$P(dx, dy) = P(dy \mid X = x) \cdot P_x(dx)$$

where $P_x(dx)$ is the marginal distribution of X.

a) Therefore,

$$R_{P}(g) = \mathbb{E}[\ell(Y, g(x))] = \int_{X \times Y} \ell(y, g(x)) P(dx, dy)$$

$$= \int_{X} \left(\int_{Y} \ell(y, g(x)) P(dy \mid X = x) \right) P_x(dx)$$

$$= \int_{X} \mathbb{E}[\ell(Y, g(x)) \mid X = x] P_x(dx)$$

$$\geq \int_{X} \min_{a} \mathbb{E}[\ell(Y, a) \mid X = x] P_x(dx)$$

$$= \int_{X} \mathbb{E}[\ell(Y, g^*(x)) \mid X = x] P_x(dx)$$

$$= R_{P}(g^*)$$

This implies that $R_{P}(g) \geq R_{P}(g^*)$ for every g,

which means that g^* is the Bayes rule.
b) When $l(y, g(x)) = (y - g(x))^2$, applying a) we get

$$g^*(x) = \arg \min_{a \in \mathbb{R}} E \left[\frac{(Y-a)^2}{\mathbb{P}(Y \mid X=x)} \right]$$

We have $F(a) = E[Y^2 \mid X=x] - 2aE[Y \mid X=x] + a^2$.

The minimum of this function is attained when

$$a = E[Y \mid X=x].$$

c) For $l(y, a) = 1(y \neq a)$ we have

$$\arg \min_{a \in \{0, 1\}} E\left[1(Y=a) \mid X=x\right]$$

$$= \arg \min_{a \in \{0, 1\}} P(Y=a \mid X=x)$$

$$= \arg \max_{a \in \{0, 1\}} P(Y=a \mid X=x)$$

$$= \begin{cases} 1, & \text{if} \ P(Y=1 \mid X=x) > \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

III) Empirical risk minimization

$(X_i, Y_i) \sim P \quad \forall : \mathcal{X} \rightarrow \mathcal{Y} \quad R_p(g) = E[l(Y, g(X))]$

We want now to find g such that $R_p(g)$ is small without using the probability P.

The main idea is that when n is large the empirical risk

$$\hat{R}_n(g) = \frac{1}{n} \sum_{i=1}^{n} l(Y_i, g(X_i))$$

is a good approximation of $R_p(g)$. Indeed, according to the central limit theorem.
\[\hat{R}_n(g) - R_P(g) \approx \frac{\mathbb{E}(g)}{\sqrt{n}} \]

where \(\mathbb{E}(g) \sim N(0, \sigma^2) \). However, this relation is true only for a fixed \(g \). If \(G \) is a very wide class of functions, the quantity

\[\sup_{g \in G} (\hat{R}_n(g) - R_P(g)) \]

does not necessarily go to 0 when \(n \to +\infty \).

DEF. Given a set of candidate prediction functions, \(G \), we call empirical risk minimizer (ERM) the function

\[\hat{g}_n \in \arg \min_{g \in G} \hat{R}_n(g). \]

The choice of the set \(G \) is of central importance. This is clear from the following decomposition:

\[R_P(\hat{g}_n) - R_P(g^*) = R_P(\hat{g}_n) - R_P(\hat{g}_n^*) + R_P(\hat{g}_n^*) - R_P(g^*) \]

where \(\hat{g}_n^* \in \arg \min_{g \in G} R_P(g) \).

It is clear that both \(T_1 \) and \(T_2 \) are \(> 0 \). In addition \(T_1 \) increases when \(G \) becomes larger, whereas \(T_2 \) decreases when \(G \) increases.

- \(T_1 \) is called statistical error.
- \(T_2 \) is called bias or approximation error.

When \(T_1 \) is too small and \(T_2 \) is too large, we say that \(\hat{g}_n \) underfits. When \(T_2 \) is too small and \(T_1 \) too large, then \(\hat{g}_n \) overfits.