Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation

Thibault Groueix¹, Matthew Fisher², Vladimir G. Kim³, Bryan C. Russell², Mathieu Aubry¹
¹LIGM (UMR 8049), Ecole des Ponts, UPE, ²Adobe Research

http://imagine.enpc.fr/~groueixt/atlasnet/

Motivation

Goal: Generate directly a mesh with a neural network

Previous work: mainly generate voxels and points

Challenges:
1. How to generate a mesh with a neural network?
2. How to generate beyond a fixed set of points?

Key Ideas

Learn to generate points [1]

Learn a surface transformation

Learn an atlas

Pipeline

1. Latent shape representation
2. Generated 3D points
3. MLP
4. K generated 3D points
5. Ensembled 3D shape
6. Circuit Truth
7. Circuit Truth
8. Circuit Truth
9. Loss

Advantages:
- unlimited number of points can be sampled on the surface.
- natural UV parametrization
- theoretical guarantees:
 1. can approximate any surface
 2. locally a surface

Results

Qualitative results

Single-View Reconstruction

Image => 3D mesh

3D surface reconstruction

3D point cloud => 3D mesh

Applications

Optimising texture maps

Shape interpolation

Follow up: Shape correspondences from learnt template-based parametrization

State of the art results on FAUST inter correspondences, available on ArXiv

Code and results in the project webpage

Ground Truth

Poisson Surface Reconstruction

Ours

1 Sphere

25 squares

Quantitative results

Single-View Reconstruction

Quantitative Auto-encoder results

Quantitative Generalization results

Code and results in the project webpage

http://imagine.enpc.fr/~groueixt/atlasnet/