Inference with Higher-order Models

Pushmeet Kohli

Microsoft Research

 $\mathsf{E}(\mathsf{x}) \qquad \qquad \mathsf{x} \ \mathsf{in} \ \{\mathsf{o}, \mathsf{1}\}^\mathsf{n}$

Pixel Colour

Unary Cost (c_i)
Dark (Bg) Bright (Fg)

x in {0,1}ⁿ

x* = arg min E(x)

[Boykov and Jolly 'o1] [Blake et al. 'o4]

x in {0,1}ⁿ

Unary Cost (c_i)
Dark (Bg) Bright (Fg)

[Boykov and Jolly 'o1] [Blake et al. 'o4]

Space of Problems

March 2014

Perfect Graphs, Low-tree width, Submodular functions, Structured decomposable functions ...

Space of Problems

Tractability Properties

Space of Problems

Tractability Properties

Constraints on the terms of your energy functions

$$d_{ij} |x_i - x_j|$$

Language or Form Tractability

Space of Problems

So how does this work?

Demo

.. So what are the challenges?

Modelling Challenges

Does not enforce connectivity

Short boundary bias

Cannot enforce priors on label counts

Examples of Higher order Models

- Taskar et al. 02 associative potentials
- Roth & Black 05 field of experts
- Kohli Kumar Torr. 07 segment consistency
- Kohli Ladicky Torr 08 segment consistency
- Woodford et al. 08 planarity constraint
- Vicente et al. 08 connectivity constraint
- Nowozin & Lampert 09 connectivity constraint
- Ladický et al. 09 consistency over several scales
- Woodford et al. 09 marginal probability
- Delong et al. 10 label occurrence costs
- Ladicky et al. 10 label set co-occurrence costs
- Jegelka and Bilmes 11 label set co-occurrence costs
- ... many others

Different Approaches

Transformation schemes

[Kolmogorov'02] [Kohli et al.07, 08,09]

Constrained Inference using Parametric Mincuts

[Kolmogorov'07] [Lim et al.08, 14]

Decomposition Techniques

[Woodford et al. '09] [Komodakis' 09] ..

- Iterative refinement of constraints (Connectivity and Bounding Box Potentials)
 [Nowozin and Lampert '08, Lempitsky et al.'09]..
- Special purpose message computation

[Gupta and Sarawagi '07, 08] [Tarlow et al. 09] ...

Learning to preserve higher-order statistics
 [Pletscher and Kohli '12]

Different Approaches

Transformation schemes

[Kolmogorov'02] [Kohli et al.07, 08,09]

Constrained Inference using Parametric Mincuts

[Kolmogorov'07] [Lim et al.08, 14]

Decomposition Techniques

[Woodford et al. '09] [Komodakis' 09] ..

- Iterative refinement of constraints (Connectivity and Bounding Box Potentials)
 [Nowozin and Lampert '08, Lempitsky et al .'09] ..
- Special purpose message computation

[Gupta and Sarawagi '07, 08] [Tarlow et al. 09] ...

Learning to preserve higher-order statistics
 [Pletscher and Kohli '12]

Approach 1: Transforming higher order potentials

Ensure tractability of the transformed problem

Example

Labelling Consistency in Pixel Groups

Pixels belonging to a group should take the same label

$$h(X_p) = \begin{cases} 0 & \text{if } x_i = L, I \in p \\ C & \text{otherwise} \end{cases}$$

Labelling Consistency in Pixel Groups

Labelling Consistency in Pixel Groups

Energy Minimization Sky Building

Segmentation Solution

Grass

Tree

Example

$$h(X_p) = \begin{cases} 0 & \text{if all } x_i = \text{``Tree''}(0), I \in p \\ 1 & \text{otherwise} \end{cases}$$

Pixels belonging to the group p should take the same label "tree"

Transforming higher order potentials

$$f(x) = \begin{cases} 0 & \text{if all } x_i = 0 \\ 1 & \text{otherwise} \end{cases}$$

Transforming higher order potentials

$$f(x) = \begin{cases} 0 & \text{if all } x_i = 0 \\ 1 & \text{otherwise} \end{cases}$$

Transforming higher order potentials

$$\min_{X} f(x) = \min_{X,a \in \{0,1\}} a + \bar{a} \sum_{i} x_{i}$$

Higher Order Submodular Function Quadratic Submodular Function

$$f(x) = \begin{cases} 0 & \text{if all } x_i = 0 \\ 1 & \text{otherwise} \end{cases}$$

More Results

[Runner-Up, PASCAL VOC 2008]

Another Example

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{i} d_{ij} |x_{i} - x_{j}|$$
Encourages short boundaries

lmage

Segmentation

Penalize types of boundaries not the actual number of boundaries!

Cooperative Cuts [Jegelka and Bilmes, CVPR 2011]

$$E(X) = \sum c_i x_i + \sum a_{ij} |x_i - x_j|$$

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{j} c_{i} x_{j} + \sum_{j} c_{j} x_{j} + \sum_{j} c_{j} c_{j} x_{j}$$

- Divide edges into different types
- Incorporate a higher order consistency potential over the edges

$$h_g(X_p) = F(\sum_{ij \text{ in } g} |x_i - x_j|)$$

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{j} a_{j} | x_{i} - x_{j}| + \sum_{j} h_{g}(X_{p})$$

- Divide edges into different types
- Incorporate a higher order consistency potential over the edges

$$h_g(X_p) = F(\sum_{ij \text{ in } g} |x_i - x_j|)$$

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{j} a_{j} | x_{j} - x_{j}| + \sum_{j} h_{g}(X_{p})$$

- Divide edges into different types
- Incorporate a higher order consistency potential over the edges

$$h_g(X_p) = F(\sum_{ij \text{ in } g} |x_i - x_j|)$$

Needs Special Purpose Minimization

Transform Higher order model

$$H_g(Y) = \min \left\{ \sum_{(ij) \in g} d_{ij} |y_i - y_j|, T \right\}$$

Transformation

$$H_g(Y) = \min_{h_g \in \{0,1\}} h_g \sum d_{ij} (y_i + y_j - 2y_i y_j) + T(1 - h_g)$$
 f1

Transformation

So what happens to the results?

Results – Interactive Segmentation

lmage

Ground Truth

Pairwise Model

Results – Semantic Segmentation

Lower Envelope Representation

Lower envelop of concave functions is concave

Upper Envelopes

Submodular Function

Function

Very Hard Problem!!!!

[Kohli and Kumar, CVPR 2010]

Why Upper Envelopes?

SILHOUETTE CONSTRAINTS

[Sinha et al. '05, Cremers et al. '08]

3D RECONSTRUCTION

Rays must touch silhouette at least once

SIZE/VOLUME PRIORS

[Woodford et al. 2009]

BINARY SEGMENTATION

Prior on size of object (say n/2)

$$x* = \underset{x}{arg min} E(x)$$

Such that:

x has area A

$$\sum_{i \in V} x_i = \mathsf{A}$$

x has boundary length B

$$\sum_{(i,j)\in E} |x_i - x_j| = \mathsf{B}$$

Parametric Maxflow/st-Mincut $H^{\lambda}(\mathbf{x}) = E(\mathbf{x}) + \lambda \sum_{v \in V} x_v$

$$x* = arg min H^{\lambda}(x)$$

Parametric Maxflow/st-Mincut $H^{\lambda}(\mathbf{x}) = E(\mathbf{x}) + \lambda \sum_{v \in V} x_v$

Lemma 1. If an assignment \mathbf{x} minimizes the energy function H^{λ} for some λ , $E(\mathbf{x})$ is minimum under the same label count as \mathbf{x} .

Generalized (Multi-dimensional) Parametric Maxflow

Approach 3: Learning

Low-order Models for Enforcing Higher-order Statistics

$$E(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \psi(\mathbf{y}, \mathbf{x})$$

data:
$$\{\mathbf{x}^{k}, \mathbf{y}^{k}\}, k = 1..K$$

x y

Can we find parameters that lead to solutions consistent with higher-order statistics?

Low-order Models for Enforcing Higher-order Statistics

data:
$$\{\mathbf{x}^k, \mathbf{y}^k\}, k = 1..K$$

$$E(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \psi(\mathbf{y}, \mathbf{x})$$

$$\begin{aligned} & \min_{\boldsymbol{\xi} \geq \mathbf{0}, \mathbf{w}, \mathbf{U}} \quad o(\mathbf{w}, \mathbf{U}) := \frac{1}{2} \left\| \mathbf{w} \right\|^2 \\ & \text{sb.t.} \quad \mathbf{w}^{\top} \left[\boldsymbol{\psi}(\mathbf{x}^k, \mathbf{y}) - \boldsymbol{\psi}(\mathbf{x}^k, \mathbf{y}^k) \right] \geq \sum_{i \in \mathcal{V}} y_i \neq y_i^* \end{aligned}$$

Low-order Models for Enforcing Higher-order Statistics

$$E(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \psi(\mathbf{y}, \mathbf{x})$$

data:
$$\{\mathbf{x}^{k}, \mathbf{y}^{k}\}, k = 1..K$$

$$egin{aligned} \min_{oldsymbol{\xi} \geq \mathbf{0}, \mathbf{w}, \mathbf{U}} & o(\mathbf{w}, \mathbf{U}) := rac{1}{2} \left\| \mathbf{w}
ight\|^2 \ & ext{sb.t.} & \mathbf{w}^{ op} \left[oldsymbol{\psi}(\mathbf{x}^k, \mathbf{y}) - oldsymbol{\psi}(\mathbf{x}^k, \mathbf{y}^k)
ight] \geq \left| \sum_{i \in \mathcal{V}} y_i - \sum_{i \in \mathcal{V}} y_i^*
ight| \end{aligned}$$

$$\min_{oldsymbol{y}} E(oldsymbol{y}, oldsymbol{x}, oldsymbol{w}) - \left| \sum_{i \in \mathcal{V}} y_i - \sum_{i \in \mathcal{V}} y_i^* \right|$$

Learning Higher-order Model for Enforcing Low-order statistics

Eva	Train	Hamming better (%)	Count better (%)
4/S	Hamming	52.1 ± 7.0	47.9 ± 7.0
4,	Count	33.8 ± 8.3	66.2 ± 8.3
(D	Hamming	39.4 ± 6.1	60.6 ± 6.1
4/	Count	29.6 ± 8.3	70.4 ± 8.3

Challenges and Opportunities

- Adaptive data-driven representations for Higher order Potentials
- Global potentials that encode topology constraints
- Efficiency

Thanks for listening. Questions?