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Binary Image Segmentation
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Binary Image Segmentation

E(x) = ) G, +

Z dij | x; "le

x in {o,1}"

How to minimize E(x)?

x* = arg min E(X)

Pixel Colour Smoothness Prior

Old Solution

[Boykov and Jolly * 01] [Blake et al. ‘o4]



Energy Minimization Problems

Space of Problems



Energy Minimization Problems

IDITED BY
Lucas Bordeaux, Youssef Hamadi
and Pushmeet Kohli

Perfect Graphs, Low-tree width, Submodular functions,
Structured decomposable functions ...

Practical Approachesto

March 2014

Space of Problems




Energy Minimization Problems

Tractability Properties

Structural
Tractability

Space of Problems



Energy Minimization Problems

Tractability Properties

Constraints on the terms
of your energy functions

dij lxi'le
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So how does this work?

E(x)

Pairwise
Submodular

Solution

[Hammer, 1965] [Kolmogorov and Zabih, 2002]



Demo



.. So what are the challenges?



Modelling Challenges



Does not enforce
connectivity

Short boundary bias

Cannot enforce
priors on label counts




Examples of Higher order Models

Taskar et al. 02 — associative potentials

Roth & Black 05 — field of experts

Kohli Kumar Torr. 07 — segment consistency

Kohli Ladicky Torr 08 — segment consistency
Woodford et al. 08 — planarity constraint

Vicente et al. 08 — connectivity constraint
Nowozin & Lampert 09 — connectivity constraint
Ladicky et al. 09 — consistency over several scales
Woodford et al. 09 — marginal probability

Delong et al. 10 — label occurrence costs

Ladicky et al. 10 — [abel set co-occurrence costs
Jegelka and Bilmes 11 — label set co-occurrence costs
... many others



Different Approaches

= Transformation schemes

[Kolmogorov’o2] [Kohli et al.o7, 08,09]

= Constrained Inference using Parametric Mincuts

[Kolmogorov'o7] [Lim et al.08, 14]

= Decomposition Techniques
[Woodford et al. ‘og] [Komodakis’ 0g] ..

= lterative refinement of constraints (Connectivity and Bounding Box Potentials)
[Nowozin and Lampert ‘08, Lempitsky et al .’09] ..

= Special purpose message computation
[Gupta and Sarawagi ‘o7, o8] [Tarlow et al. 09] ..

= Learning to preserve higher-order statistics
[Pletscher and Kohli'12]



Different Approaches

= Transformation schemes

[Kolmogorov’o2] [Kohli et al.07, 08,09]

= Constrained Inference using Parametric Mincuts

[Kolmogorov'o7] [Lim et al.08, 14]

= Decomposition Techniques
[Woodford et al. ‘og] [Komodakis’ 0g] ..

= lterative refinement of constraints (Connectivity and Bounding Box Potentials)
[Nowozin and Lampert ‘08, Lempitsky et al .’09] ..

= Special purpose message computation
[Gupta and Sarawagi ‘o7, o8] [Tarlow et al. 09] ..

= Learning to preserve higher-order statistics
[Pletscher and Kohli '12]



Approach 1: Transforming higher order potentials

h{x,x,,x,X,)

h

Higher Order
Function

Ensure tractability of the transformed problem



Example



Labelling Consistency in Pixel Groups

Higher Order
Energy

Unary Potentials
[Shotton et al. ECCV 2006]

Colour, Location &

Pixels belonging to a
group should take the

Texture same label
B‘Uilding‘ e
Grass
+
Pairwise Smoothness
Potentials
h(X,) = { (C) ',fhxi:": Lep
Higher Order Potentials oTherwise

(Defined using multiple
Segmentations)
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Labelling Consistency in Pixel Groups

Unary Potentials
[Shotton et al. ECCV 2006]

Colour, Location &
Texture

Higher Order
Energy

Building

-+

Pairwise Smoothness
Potentials

Energy
Minimization

—

Building

Grass

Segmentation
Solution

Higher Order Potentials
(Defined using multiple
Segmentations)



Example

i O ifall x="Tree"(0),Iep
h(%) { 1 otherwise

Pixels belonging to the group p should
take the same label “tree”



Transforming higher order potentials

_J O ifadlx=0
f={ 9 falx .

T 1
1 2 3

2 X;—>



Transforming higher order potentials

£ _{ O ifallx;=0
(x)=% 1 otherwise 1 —

T 1
1 2 3

2 X;—>



Transforming higher order potentials

Higher Order Quadratic Submodular
Submodular Function Function

_J O ifadlx;=0
f={ O falx= )




More Results

Image Pairwise Higher Ground
(MSRC-21) CRF order CRF Truth

-
Y fei

[
= | &,

[Runner-Up, PASCALVOC 2008 ]




Another Example



Overcoming short-boundary bias

E(X) = Zcixi + Zdij|xi"xj|

Encourages short
boundaries

Penalize types of
boundaries not the actual
number of boundaries!

Segmentation

Cooperative Cuts [Jegelka and Bilmes, CVPR 2011]



Overcoming short-boundary bias

EX) = D> ax + Zd;j!';;-le



Overcoming short-boundary bias

E(X) = an Xi + Zd;;!‘;;-le + Z hg(Xp)

ginG

* Divide edges into different types
* Incorporate a higher order consistency potential over the edges

hy(Xp) = F (Xlx-x])

ijing

lei'le

ijing



Overcoming short-boundary bias
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Overcoming short-boundary bias

EQ) = Lexi + D dphaxl + 3 hy(X,)

ginG

* Divide edges into different types
* Incorporate a higher order consistency potential over the edges

hy(Xp) = F (Xlx-x])

ij ing

Needs Special Purpose
> Ixi-x] >petial FUTP
ijing Minimization



Transform Higher order model

Z dijlys—y;|, T

ij)Eg

H,(Y) = min { }
(

l Transformation

min _h, dii (U + ¥ —20y;) +T(1 —hy
he,€{0,1} '] Z ](/ Y Y /]) ( ./)




Transformation




So what happens to the results?



Results — Interactive Segmentation

Ground Pairwise
Truth Model



Results — Semantic Segmentation

Image Ground Pairwise
Truth Model



Approach 2: Constrained Inference



Lower Envelope Representation

Higher Order Quadratic Submodular

Submodular Function Function
fo(x)

Lower envelop
of concave
functions is

concave

[Kohli et al. ‘08]



Upper Envelopes

Higher Order Quadratic Submodular
Submodular Function Function

Upper envelope
of linear
functions is
convex

Very Hard

Problem!!!! [Kohli and Kumar, CVPR 2010]



Why Upper Envelopes?

SILHOUETTE CONSTRAINTS SIZE/VOLUME PRIORS

[Sinha et al. ‘o5, Cremers et al. '08] [Woodford et al. 2009]
3D RECONSTRUCTION BINARY SEGMENTATION
Prior on size
Rays must f obiect
ouch silhouette orobjec
at least once (say n/2)

Background

[Kohli and Kumar, CVPR 2010]



Approach 2: Constrained Inference

x* = argmin E(X)
X

Such that:

X has area A
E l’l =A
icV

x has boundary length B

Z |z; —x;| =B




Approach 2: Constrained Inference

Parametric Maxflow/st-Mincut H"(x) = E(x) + A Z T

X* = arg min H(x)



Approach 2: Constrained Inference

Parametric Maxflow/st-Mincut H"(x) = E(x) + A Z T

A=+400

> X, =0

x* = arg min H*(x)

Lemma 1. If an assignment X minimizes the energy function H* for some )\, E(x) is
minimum under the same label count as X.

[Gallo et al. 1986] [Kolmogorov et al. ICCV 2007]



Approach 2: Constrained Inference

Original 3 Sz.Cv

(481 xX321) (6.63%. 0.06s) (2.13%. 1.215)
Generalized |
(Multi-dimensional) L
Parametric Maxflow e '

()nonml No Mn.Vr
(450x600) (1.12%. 0.06s) (0.63%. 3.615s)




Approach 3: Learning



Low-order Models for Enforcing Higher-order Statistics

data: {xK.y*}. k=1.K

v (152 YR

X Y

Can we find parameters that lead to solutions
consistent with higher-order statistics?

[Pletscher and Kohli, AISTATS 2012 ]



Low-order Models for Enforcing Higher-order Statistics

data: {xK.y*}. k=1.K

by 2

Y

E(x,y.w)=w'(y.x)

; : 1 2
By o) =5l

sb.t. w' [w(xk, y) — p(xX, yk)] > yi # Y

eV

[AISTATS 2012]



Low-order Models for Enforcing Higher-order Statistics

data: {xK.y*}. k=1.K

by 2

Y

cf 4
E(x,y,w) =w'9(y,x) ns

: : 1 2
By o) =5l

sb.t.  w! [p(xK,y) — p(xK, y*)] > Y vi—> ul

icV iclV

Requires solution of

]IlillE(y,,:I:,“Lﬂ) _ Zy::—Zy’{

Y icV icy

[AISTATS 2012]



Learning Higher-order Model for Enforcing
Low-order statistics

(a) Hamming (c: 0.077, h: 0.077)

(b) Count (c: 0.037. h: 0.040).

(e} Count (c: 0.040. h: 0.043).

(d) Hamming (c: 0.047, h: 0.047).
Eval ITram Hamming better (%) | Count better (%)
2] Hamming 02.1x7.0 47.9+£7.0
< Count 33.8 8.3 66.2 = 8.3
A Hamming 39.4+6.1 60.6 6.1
< Count 20.6 & 8.3 70.4 + 8.3

[AISTATS 2012]



Challenges and Opportunities

= Adaptive data-driven representations for
Higher order Potentials

= Global potentials that encode topology
constraints

= Efficiency

Thanks for listening. Questions?



