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Conditional Random Fields (CRFs) 

• Extensive research for more than 20 years 

• Key task: inference/optimization for CRFs/MRFs 

• Lots of progress 

• Graph-cut based algorithms 

• Message-passing methods 

• LP relaxations 

• Dual Decomposition 

• …. 

• Many state-of-the-art methods: 
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– Nodes  
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• High-order MRF energy minimization problem 
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unary potential 
(one per node) 

hyperedges 

nodes 
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CRF training 

• But how do we choose the CRF potentials? 

• Through training 

• Parameterize potentials by w 

• Use training data to learn correct w  

• Characteristic example of structured output 
learning [Taskar], [Tsochantaridis, Joachims] 
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CRF training 

• Equally, if not more, important than MAP inference 

• Better optimize correct energy  
(even approximately) 

• Than optimize wrong energy exactly 

• Becomes even more important as we move 
towards: 

• complex models 

• high-order potentials 

• lots of parameters 

• lots of training data 
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CRF training 

• Denoising: 

• Z: noisy input image 

• X: denoised output image 
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CRF training 

• Object detection: 

• Z: input image 

• X: position of object parts 

Z X 

f : 

argf  parameterized 
by w 

Goal of training: 

estimate proper w 
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Choice 2: logistic loss  

 Can be shown to lead to maximum likelihood learning 
 

partition function  
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Max-margin vs Maximum-likelihood 

max-margin 

maximum likelihood 

soft-max 



Solving the learning 
formulations 
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 Differentiable & convex 

 

partition function  

 Global optimum via e.g. gradient descent  
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Maximum-likelihood learning 

gradient 

 Requires MRF probabilistic inference  
 
 NP-hard (exponentially many x): approximation via loopy-BP 

??? 
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x2 

subgradient at x1 

g(x2)+h2∙(x-x2) 

subgradient at x2 = gradient at x2 
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Max-margin learning (CONSTRAINED) 

subject to the constraints: 

linear in w 

• Quadratic program (great!) 

• But exponentially many constraints 
(not so great) 
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• What if we use only a small number of 
constrains? 

• Resulting QP can be solved 

• But solution may be infeasible 

Max-margin learning (CONSTRAINED) 

• only few constraints active at optimal solution !! 
(variables much fewer than constraints) 

• Constraint generation to the rescue 

• Given the active constraints, rest can be ignored 

• Then let’s try to find them! 
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1. Start with some constraints 

Constraint generation 

2. Solve QP  

3. Check if solution is feasible w.r.t. to all constraints 

4. If yes, we are done! 

5. If no, pick a violated constraint and add it to the 
current set of constraints. Go to step 2 

 (optionally, we can also remove inactive constraints) 
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• Key issue: we must always be able to find a violated 
constraint if one exists 

Constraint generation 

• Recall the constraints for max-margin learning 

• To find violated constraint, we therefore need to 
compute: 

(just like subgradient method!) 
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1. Initialize set of constraints C to empty  

Constraint generation 

2. Solve QP using current constraints C and 
obtain new (w,ξ)  

3. Compute global minimizers        at current w 

4. For each k, if the following constraint is violated 
then add it to set C:  

5. If no new constraint was added then terminate. 
Otherwise go to step 2. 

MRF-MAP estimation per sample  
(unfortunately NP-hard)  
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Max-margin learning (CONSTRAINED) 

subject to the constraints: 

• Alternatively, we can solve above QP in the dual 
domain 

• dual variables ↔ primal constraints 

• Too many variables, but most of them zero at 
optimal solution 

• Use a working-set method  
(essentially dual to constraint generation) 



CRF Training via Dual 
Decomposition [CVPR 2011] 
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CRF training 

• Key issue: can we more properly exploit CRF structure 
during training? 

• Existing max-margin (maximum likelihood) methods:  

• use MAP inference (probabilistic inference) w.r.t. 
an equally complex CRF as subroutine 

• have to call subroutine many times during learning 

• Suboptimal 

• computational efficiency ? 
• accuracy ? 
• theoretical guarantees/properties ? 
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CRF Training via Dual Decomposition 

• Reduces training of complex CRF to parallel training of a 

series of easy-to-handle slave CRFs 

• Handles arbitrary pairwise or higher-order CRFs 

• Uses very efficient projected subgradient learning scheme 

• Allows hierarchy of structured prediction learning 

algorithms of increasing accuracy 

• Very flexible and adaptable 
• Easily adjusted to fully exploit additional structure in any 

class of CRFs (no matter if they contain very high order 
cliques or not) 

• Efficient max-margin training method 
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MRF Optimization via Dual 
Decomposition 

• Very general framework for MAP inference [Komodakis 
et al. ICCV07, PAMI11] 

• Master  =     (MAP-MRF on hypergraph G)
                              

=  min 



MRF Optimization via Dual 
Decomposition 

• Very general framework for MAP inference [Komodakis 
et al. ICCV07, PAMI11] 

• Set of slaves  =     
(MRFs on sub-hypergraphs Gi whose union covers G) 

• Many other choices possible as well 



MRF Optimization via Dual 
Decomposition 

• Very general framework for MAP inference [Komodakis 
et al. ICCV07, PAMI11] 

• Optimization proceeds in an iterative fashion via 
master-slave coordination     
 



MRF Optimization via Dual Decomposition 

convex dual relaxation  

Set of slave MRFs  

For each choice of slaves, master solves (possibly different) 
dual relaxation 



MRF Optimization via Dual Decomposition 

convex dual relaxation  

Set of slave MRFs  

For each choice of slaves, master solves (possibly different) 
dual relaxation 
• Sum of slave energies = lower bound on MRF optimum 



MRF Optimization via Dual Decomposition 

convex dual relaxation  

Set of slave MRFs  

For each choice of slaves, master solves (possibly different) 
dual relaxation 
• Sum of slave energies = lower bound on MRF optimum 
• Dual relaxation = maximum such bound 



MRF Optimization via Dual Decomposition 

convex dual relaxation  

Set of slave MRFs  

Choosing more difficult slaves   tighter lower bounds 
   tighter dual relaxations 






Dual Decomposition for MRF 
Optimization  

(short review finished) 
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loss-augmented potentials 

                

Max-margin learning via dual decomposition 
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Max-margin learning via dual decomposition 

now 

before 

Essentially, training of complex CRF decomposed 
to parallel training of easy-to-handle slave CRFs !!! 
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Max-margin learning via dual decomposition 

• Global optimum via projected subgradient method  
(slight variation of subgradient method) 

Repeat  
 1. compute subgradient at current w 
 2. update w by taking a step in the negative subgradient  
  direction 
 3. project into feasible set 
until convergence 

Projected subgradient 



• Input: 

• K training samples 

• Vector valued feature functions 

Projected subgradient learning algorithm 

• Hypergraph 
(in general hypergraphs can vary per sample)   
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Projected subgradient learning algorithm 

so as to satisfy 

fully specified from  

(we only need to know how to optimize slave MRFs !!) 



• Incremental subgradient version: 

• Further improves computational efficiency 

• Same optimality guarantees & theoretical 
properties 

• Same as before but considers subset of slaves per 
iteration 

• Subset chosen 

• deterministically or  

• randomly (stochastic subgradient) 

Projected subgradient learning algorithm 



Projected subgradient learning algorithm 

so as to satisfy 

fully specified from  

pick k 
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• Resulting learning scheme: 

 Slave problems freely chosen by the user 

 Easily adaptable to further exploit special structure of 
any class of CRFs 

 Very efficient and very flexible 

 Requires from the user only to provide an optimizer 

for the slave MRFs 

Projected subgradient learning algorithm 
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•                         

      (upper bound property) 
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•                                       denotes following decomposition:  

– One slave per clique  
– Corresponding sub-hypergraph                              : 

                                             , 

• Resulting slaves often easy (or even trivial) to solve even 
if global problem is complex and NP-hard  

– leads to widely applicable learning algorithm 

 
• Corresponding dual relaxation is an LP 

– Generalizes well known LP relaxation for pairwise 
MRFs (at the core of most state-of-the-art methods) 

 

Choice of decompositions 
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• But we can do better if CRFs have special structure… 

Choice of decompositions 

• Structure means: 

• More efficient optimizer for slaves (speed) 

• Optimizer that handles more complex slaves 
(accuracy) 

(Almost all known examples fall in one of above two cases) 

• We are essentially adapting decomposition to exploit the 
structure of the problem at hand 



 
• But we can do better if CRFs have special structure… 

• E.g., pattern-based high-order potentials (for a clique c) 

[Komodakis & Paragios CVPR09]  
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• But we can do better if CRFs have special structure… 

• E.g., pattern-based high-order potentials (for a clique c) 

[Komodakis & Paragios CVPR09]  

 

• We only assume: 

– Set  is sparse 

– It holds 

– No other restriction 
 

   subset of  (its vectors called patterns) 
 

Choice of decompositions 



 
• Tree decomposition 

(Ti  are spanning trees that cover the graph) 
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• Tree decomposition 

(Ti  are spanning trees that cover the graph) 

Choice of decompositions 

• No improvement in accuracy 

• But improvement in speed 
(                    converges faster than                      )  
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Image denoising 

• Piecewise constant images 

• Potentials: 

• Goal: learn pairwise potential  

Z X 

 k

p p p pu x x z     ,k

pq p q p qh x x V x x 
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Image denoising 
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High-order Pn Potts model 

Cost for optimizing slave CRF: O(|L|)  

• 100 training samples 

• 50x50 grid 

• clique size 3x3 

• 5 labels (|L|=5) 

[Kohli et al. CVPR07] 

Goal: learn high order CRF with potentials given by 

Fast training 



Learning to cluster [ICCV 2011] 
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Clustering 

• A fundamental task in vision and beyond 

• Typically formulated as an optimization problem based on a 
given distance function between datapoints 

• Choice of distance crucial for the success of clustering 

• Goal 1: learn this distance automatically based on training 
 data 

• Goal 2: learning should also handle the fact that the number 
 of clusters is typically unknown at test time 
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(cluster centers) 

set of datapoints 

distance between 
datapoints p and q 

penalty for choosing q as 
exemplar (cluster center) 

The above formulation allows to: 

• automatically estimate the number of clusters (i.e. size of Q)  

• use arbitrary distances  
(e.g., non-metric, asymmetric, non-differentiable) 



Exemplar based clustering formulation 

set of exemplars 
(cluster centers) 

set of datapoints 

distance between 
datapoints p and q 

penalty for choosing q as 
exemplar (cluster center) 

Inference can be performed efficiently using: 
Clustering via LP-based Stabilities [Komodakis et al., NIPS 2008] 
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Learning to cluster via high-order latent CRFs 

• Input: 

• K training samples 

• Vector valued feature function 

ground truth partition of         into clusters        

• Goal: lean distances dp,q and penalties dq,q  
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Learning to cluster via high-order latent CRFs 

measures inconsistency  
between x and partition    

• Loss function for clustering 

• Set of clusterings fully consistent with partition Ck  
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2. Both E(.) and Δ(.) are CRF energies of very high order 

Main problems: 

latent CRF 
model 
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Learning to cluster via high-order latent CRFs 

Solution: CRF training via dual decomposition for  
 latent CRFs 

How to efficiently deal with these problems during 
learning? 
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Learning to cluster via high-order latent CRFs 

• Use block coordinate descent 

• Alternately optimize 

a.   

b.   
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Training high-order latent CRFs via dual 
decomposition 

• K training samples  

observed variables 
(per sample) 

vector valued feature 
functions 

hidden variables 

• More generally, dual decomposition can be used for 
training any high-order latent model 
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Learning a weighted Euclidean distance 

• We consider a weighted Euclidean distance dpq for D-
dimensional datapoints  
 

• Goal: learn weights wi automatically from clustering data  
 

• Half of the D dimensions are assumed to be noisy 
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clustering  
accuracy:  
• 100% (Outex)  
• 86% (UIUC) 

Learn weighted comb. of distances between features: 
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Learning to cluster scene images 
Learn weighted combination of distances (multiple distances 
per feature, multiple features) 

clustering accuracy:  
63% (Scene)  
 

10 of the estimated 
exemplars for Outex 



Thank you for your attention! 

Questions? 

 


