
Learning with Inference for Discrete
Graphical Models

Nikos Komodakis

Ecole des Ponts ParisTech

Universite Paris-Est

 Tutorial at CVPR 2014
(Columbus, Ohio, June 2014)

Introduction

Conditional Random Fields (CRFs)

• Ubiquitous in computer vision

• segmentation stereo matching
optical flow image restoration
image completion object detection/localization
...

Conditional Random Fields (CRFs)

• Ubiquitous in computer vision

• segmentation stereo matching
optical flow image restoration
image completion object detection/localization
...

• and beyond

• medical imaging, computer graphics, digital
communications, physics…

Conditional Random Fields (CRFs)

• Ubiquitous in computer vision

• segmentation stereo matching
optical flow image restoration
image completion object detection/localization
...

• and beyond

• medical imaging, computer graphics, digital
communications, physics…

• Really powerful formulation

Conditional Random Fields (CRFs)

• Key task: inference/optimization for CRFs/MRFs

Conditional Random Fields (CRFs)

• Extensive research for more than 20 years

• Key task: inference/optimization for CRFs/MRFs

Conditional Random Fields (CRFs)

• Extensive research for more than 20 years

• Key task: inference/optimization for CRFs/MRFs

• Lots of progress

• Graph-cut based algorithms

• Message-passing methods

• LP relaxations

• Dual Decomposition

• ….

• Many state-of-the-art methods:

MAP inference for CRFs/MRFs

• Hypergraph

– Nodes

– Hyperedges/cliques

hyperedges

nodes

MAP inference for CRFs/MRFs

• Hypergraph

– Nodes

– Hyperedges/cliques

• High-order MRF energy minimization problem

hyperedges

nodes

MAP inference for CRFs/MRFs

• Hypergraph

– Nodes

– Hyperedges/cliques

• High-order MRF energy minimization problem

unary potential
(one per node)

hyperedges

nodes

MAP inference for CRFs/MRFs

• Hypergraph

– Nodes

– Hyperedges/cliques

• High-order MRF energy minimization problem

high-order potential
(one per clique)

unary potential
(one per node)

hyperedges

nodes

CRF training

• But how do we choose the CRF potentials?

CRF training

• But how do we choose the CRF potentials?

• Through training

• Parameterize potentials by w

• Use training data to learn correct w

CRF training

• But how do we choose the CRF potentials?

• Through training

• Parameterize potentials by w

• Use training data to learn correct w

• Characteristic example of structured output
learning [Taskar], [Tsochantaridis, Joachims]

CRF training

• Equally, if not more, important than MAP inference

• Better optimize correct energy
(even approximately)

• Than optimize wrong energy exactly

CRF training

• Equally, if not more, important than MAP inference

• Better optimize correct energy
(even approximately)

• Than optimize wrong energy exactly

• Becomes even more important as we move
towards:

• complex models

• high-order potentials

• lots of parameters

• lots of training data

CRF training

f : Z X

CRF training

can contain any
kind of data

f : Z X

input
space

CRF training

can contain any
kind of data

CRF variables
(structured object)

f : Z X

input
space

output
space

CRF training

can contain any
kind of data

CRF variables
(structured object)

Hereafter, we will use:

• symbol z to denote elements of space Z

• symbol x to denote elements of space X

f : Z X

input
space

output
space

CRF training

• Stereo matching:

• Z: left, right image

• X: disparity map

CRF training

• Stereo matching:

• Z: left, right image

• X: disparity map

Z X

f :

CRF training

• Stereo matching:

• Z: left, right image

• X: disparity map

Z X

f :

argf 

CRF training

• Stereo matching:

• Z: left, right image

• X: disparity map

Z X

f :

argf  parameterized
by w

CRF training

• Stereo matching:

• Z: left, right image

• X: disparity map

Z X

f :

argf  parameterized
by w

Goal of training:

estimate proper w

CRF training

• Denoising:

• Z: noisy input image

• X: denoised output image

Z X

f :

argf  parameterized
by w

Goal of training:

estimate proper w

CRF training

• Object detection:

• Z: input image

• X: position of object parts

Z X

f :

argf  parameterized
by w

Goal of training:

estimate proper w

CRF training (some further notation)

CRF training (some further notation)

CRF training (some further notation)

CRF training (some further notation)

vector valued feature
functions

CRF training (some further notation)

vector valued feature
functions

Learning formulations

Risk minimization

K training samples

Risk minimization

K training samples

Risk minimization

K training samples

Regularized Risk minimization

Regularized Risk minimization

Regularized Risk minimization

Replace Δ(.) with easier to handle upper bound LG
(e.g., convex w.r.t. w)

Regularized Risk minimization

Replace Δ(.) with easier to handle upper bound LG
(e.g., convex w.r.t. w)

Choice 1: Hinge loss

Choice 1: Hinge loss

 Upper bounds Δ(.)

Choice 1: Hinge loss

 Upper bounds Δ(.)

 Leads to max-margin learning

Choice 1: Hinge loss

 Upper bounds Δ(.)

 Leads to max-margin learning

Max-margin learning

Max-margin learning

energy of
ground truth

Max-margin learning

energy of
ground truth

any other
energy

Max-margin learning

energy of
ground truth

any other
energy

desired
margin

Max-margin learning

energy of
ground truth

any other
energy

desired
margin

slack

Max-margin learning

subject to the constraints:

energy of
ground truth

any other
energy

desired
margin

slack

Max-margin learning

subject to the constraints:

energy of
ground truth

any other
energy

desired
margin

slack

Max-margin learning

subject to the constraints:

Max-margin learning

subject to the constraints:

or equivalently

Max-margin learning

subject to the constraints:

or equivalently

CONSTRAINED

Max-margin learning

subject to the constraints:

or equivalently

CONSTRAINED

UNCONSTRAINED

Choice 2: logistic loss

partition function

Choice 2: logistic loss

 Can be shown to lead to maximum likelihood learning

partition function

Max-margin vs Maximum-likelihood

max-margin

maximum likelihood

Max-margin vs Maximum-likelihood

max-margin

maximum likelihood

Max-margin vs Maximum-likelihood

max-margin

maximum likelihood

Max-margin vs Maximum-likelihood

max-margin

maximum likelihood

Max-margin vs Maximum-likelihood

max-margin

maximum likelihood

soft-max

Solving the learning
formulations

Maximum-likelihood learning

Maximum-likelihood learning

partition function

Maximum-likelihood learning

 Differentiable & convex

partition function

Maximum-likelihood learning

 Differentiable & convex

partition function

 Global optimum via e.g. gradient descent

Maximum-likelihood learning

gradient

Recall that:

Maximum-likelihood learning

gradient

 Requires MRF probabilistic inference

Maximum-likelihood learning

gradient

 Requires MRF probabilistic inference

 NP-hard (exponentially many x): approximation via loopy-BP

???

Max-margin learning (UNCONSTRAINED)

Max-margin learning (UNCONSTRAINED)

Max-margin learning (UNCONSTRAINED)

 Convex but non-differentiable

Max-margin learning (UNCONSTRAINED)

 Convex but non-differentiable

 Global optimum via subgradient method

Max-margin learning (UNCONSTRAINED)

 Convex but non-differentiable

 Global optimum via subgradient method

Subgradient

subgradient at x1

Subgradient

x2

subgradient at x1

g(x2)+h2∙(x-x2)

subgradient at x2 = gradient at x2

Subgradient

Subgradient

Subgradient

Subgradient

Subgradient

Subgradient

Subgradient

x

Subgradient

x

Subgradient

Subgradient

Subgradient

subgradient of LG =

Max-margin learning (UNCONSTRAINED)

total subgr. =

Max-margin learning (UNCONSTRAINED)

total subgr. =

Repeat
 1. compute global minimizers at current w

 2. compute total subgradient at current w
 3. update w by taking a step in the negative total subgradient
 direction
until convergence

Subgradient algorithm

Max-margin learning (UNCONSTRAINED)

partial subgradient =

Repeat
 1. pick k at random
 2. compute global minimizer at current w

 3. compute partial subgradient at current w
 4. update w by taking a step in the negative partial subgradient
 direction
until convergence

Stochastic subgradient algorithm

Max-margin learning (UNCONSTRAINED)

partial subgradient =

Repeat
 1. pick k at random
 2. compute global minimizer at current w

 3. compute partial subgradient at current w
 4. update w by taking a step in the negative partial subgradient
 direction
until convergence

Stochastic subgradient algorithm

MRF-MAP estimation per iteration

Max-margin learning (UNCONSTRAINED)

partial subgradient =

Repeat
 1. pick k at random
 2. compute global minimizer at current w

 3. compute partial subgradient at current w
 4. update w by taking a step in the negative partial subgradient
 direction
until convergence

Stochastic subgradient algorithm

MRF-MAP estimation per iteration
 (unfortunately NP-hard)

Max-margin learning (CONSTRAINED)

Max-margin learning (CONSTRAINED)

subject to the constraints:

Max-margin learning (CONSTRAINED)

subject to the constraints:

Max-margin learning (CONSTRAINED)

subject to the constraints:

linear in w

Max-margin learning (CONSTRAINED)

subject to the constraints:

linear in w

• Quadratic program (great!)

Max-margin learning (CONSTRAINED)

subject to the constraints:

linear in w

• Quadratic program (great!)

• But exponentially many constraints
(not so great)

• What if we use only a small number of
constrains?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• What if we use only a small number of
constrains?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• Constraint generation to the rescue

• What if we use only a small number of
constrains?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• only few constraints active at optimal solution !!
(variables much fewer than constraints)

• Constraint generation to the rescue

• What if we use only a small number of
constrains?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• only few constraints active at optimal solution !!
(variables much fewer than constraints)

• Constraint generation to the rescue

• Given the active constraints, rest can be ignored

• What if we use only a small number of
constrains?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• only few constraints active at optimal solution !!
(variables much fewer than constraints)

• Constraint generation to the rescue

• Given the active constraints, rest can be ignored

• Then let’s try to find them!

1. Start with some constraints

Constraint generation

1. Start with some constraints

Constraint generation

2. Solve QP

1. Start with some constraints

Constraint generation

2. Solve QP

3. Check if solution is feasible w.r.t. to all constraints

1. Start with some constraints

Constraint generation

2. Solve QP

3. Check if solution is feasible w.r.t. to all constraints

4. If yes, we are done!

1. Start with some constraints

Constraint generation

2. Solve QP

3. Check if solution is feasible w.r.t. to all constraints

4. If yes, we are done!

5. If no, pick a violated constraint and add it to the
current set of constraints. Go to step 2

 (optionally, we can also remove inactive constraints)

• Key issue: we must always be able to find a violated
constraint if one exists

Constraint generation

• Key issue: we must always be able to find a violated
constraint if one exists

Constraint generation

• Recall the constraints for max-margin learning

• Key issue: we must always be able to find a violated
constraint if one exists

Constraint generation

• Recall the constraints for max-margin learning

• To find violated constraint, we therefore need to
compute:

(just like subgradient method!)

1. Initialize set of constraints C to empty

Constraint generation

1. Initialize set of constraints C to empty

Constraint generation

2. Solve QP using current constraints C and
obtain new (w,ξ)

1. Initialize set of constraints C to empty

Constraint generation

2. Solve QP using current constraints C and
obtain new (w,ξ)

3. Compute global minimizers at current w

1. Initialize set of constraints C to empty

Constraint generation

2. Solve QP using current constraints C and
obtain new (w,ξ)

3. Compute global minimizers at current w

4. For each k, if the following constraint is violated
then add it to set C:

1. Initialize set of constraints C to empty

Constraint generation

2. Solve QP using current constraints C and
obtain new (w,ξ)

3. Compute global minimizers at current w

4. For each k, if the following constraint is violated
then add it to set C:

5. If no new constraint was added then terminate.
Otherwise go to step 2.

1. Initialize set of constraints C to empty

Constraint generation

2. Solve QP using current constraints C and
obtain new (w,ξ)

3. Compute global minimizers at current w

4. For each k, if the following constraint is violated
then add it to set C:

5. If no new constraint was added then terminate.
Otherwise go to step 2.

MRF-MAP estimation per sample
(unfortunately NP-hard)

Max-margin learning (CONSTRAINED)

subject to the constraints:

• Alternatively, we can solve above QP in the dual
domain

Max-margin learning (CONSTRAINED)

subject to the constraints:

• Alternatively, we can solve above QP in the dual
domain

• dual variables ↔ primal constraints

Max-margin learning (CONSTRAINED)

subject to the constraints:

• Alternatively, we can solve above QP in the dual
domain

• dual variables ↔ primal constraints

• Too many variables, but most of them zero at
optimal solution

Max-margin learning (CONSTRAINED)

subject to the constraints:

• Alternatively, we can solve above QP in the dual
domain

• dual variables ↔ primal constraints

• Too many variables, but most of them zero at
optimal solution

• Use a working-set method
(essentially dual to constraint generation)

CRF Training via Dual
Decomposition [CVPR 2011]

CRF training

• Existing max-margin (maximum likelihood) methods:

CRF training

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

CRF training

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

• have to call subroutine many times during learning

CRF training

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

• have to call subroutine many times during learning

• Suboptimal

CRF training

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

• have to call subroutine many times during learning

• Suboptimal

• computational efficiency ?

CRF training

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

• have to call subroutine many times during learning

• Suboptimal

• computational efficiency ?
• accuracy ?

CRF training

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

• have to call subroutine many times during learning

• Suboptimal

• computational efficiency ?
• accuracy ?
• theoretical guarantees/properties ?

CRF training

• Key issue: can we more properly exploit CRF structure
during training?

• Existing max-margin (maximum likelihood) methods:

• use MAP inference (probabilistic inference) w.r.t.
an equally complex CRF as subroutine

• have to call subroutine many times during learning

• Suboptimal

• computational efficiency ?
• accuracy ?
• theoretical guarantees/properties ?

CRF Training via Dual Decomposition

• Efficient max-margin training method

CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a

series of easy-to-handle slave CRFs

• Efficient max-margin training method

CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a

series of easy-to-handle slave CRFs

• Handles arbitrary pairwise or higher-order CRFs

• Efficient max-margin training method

CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a

series of easy-to-handle slave CRFs

• Handles arbitrary pairwise or higher-order CRFs

• Uses very efficient projected subgradient learning scheme

• Efficient max-margin training method

CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a

series of easy-to-handle slave CRFs

• Handles arbitrary pairwise or higher-order CRFs

• Uses very efficient projected subgradient learning scheme

• Allows hierarchy of structured prediction learning

algorithms of increasing accuracy

• Efficient max-margin training method

CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a

series of easy-to-handle slave CRFs

• Handles arbitrary pairwise or higher-order CRFs

• Uses very efficient projected subgradient learning scheme

• Allows hierarchy of structured prediction learning

algorithms of increasing accuracy

• Very flexible and adaptable
• Easily adjusted to fully exploit additional structure in any

class of CRFs (no matter if they contain very high order
cliques or not)

• Efficient max-margin training method

Dual Decomposition for MRF
Optimization
(short review)

MRF Optimization via Dual
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

MRF Optimization via Dual
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Master = coordinator (has global view)
Slaves = subproblems (have only local view)

MRF Optimization via Dual
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Master = (MAP-MRF on hypergraph G)

= min

MRF Optimization via Dual
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Set of slaves =
(MRFs on sub-hypergraphs Gi whose union covers G)

• Many other choices possible as well

MRF Optimization via Dual
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Optimization proceeds in an iterative fashion via
master-slave coordination

MRF Optimization via Dual Decomposition

convex dual relaxation

Set of slave MRFs

For each choice of slaves, master solves (possibly different)
dual relaxation

MRF Optimization via Dual Decomposition

convex dual relaxation

Set of slave MRFs

For each choice of slaves, master solves (possibly different)
dual relaxation
• Sum of slave energies = lower bound on MRF optimum

MRF Optimization via Dual Decomposition

convex dual relaxation

Set of slave MRFs

For each choice of slaves, master solves (possibly different)
dual relaxation
• Sum of slave energies = lower bound on MRF optimum
• Dual relaxation = maximum such bound

MRF Optimization via Dual Decomposition

convex dual relaxation

Set of slave MRFs

Choosing more difficult slaves tighter lower bounds
 tighter dual relaxations




Dual Decomposition for MRF
Optimization

(short review finished)

Max-margin learning via dual decomposition

Max-margin learning via dual decomposition

Max-margin learning via dual decomposition

Max-margin learning via dual decomposition

loss-augmented potentials

loss-augmented potentials

Max-margin learning via dual decomposition

loss-augmented potentials

Max-margin learning via dual decomposition

loss-augmented potentials

Max-margin learning via dual decomposition

loss-augmented potentials

Max-margin learning via dual decomposition

Learning objective intractable due to this term

Problem

Max-margin learning via dual decomposition

Max-margin learning via dual decomposition

Solution: approximate this term with dual relaxation
from decomposition

Solution: approximate this term with dual relaxation
from decomposition

Max-margin learning via dual decomposition

Solution: approximate this term with dual relaxation
from decomposition

Max-margin learning via dual decomposition

now

Max-margin learning via dual decomposition

now

before

Max-margin learning via dual decomposition

now

before

Essentially, training of complex CRF decomposed
to parallel training of easy-to-handle slave CRFs !!!

Max-margin learning via dual decomposition

• Global optimum via projected subgradient method
(slight variation of subgradient method)

Max-margin learning via dual decomposition

• Global optimum via projected subgradient method
(slight variation of subgradient method)

Repeat
 1. compute subgradient at current w
 2. update w by taking a step in the negative subgradient
 direction
 3. project into feasible set
until convergence

Projected subgradient

• Input:

• K training samples

• Vector valued feature functions

Projected subgradient learning algorithm

• Hypergraph
(in general hypergraphs can vary per sample)

Projected subgradient learning algorithm

so as to satisfy

Projected subgradient learning algorithm

so as to satisfy

Projected subgradient learning algorithm

so as to satisfy

Projected subgradient learning algorithm

so as to satisfy

fully specified from

Projected subgradient learning algorithm

so as to satisfy

fully specified from

Projected subgradient learning algorithm

so as to satisfy

fully specified from

(we only need to know how to optimize slave MRFs !!)

• Incremental subgradient version:

• Further improves computational efficiency

• Same optimality guarantees & theoretical
properties

• Same as before but considers subset of slaves per
iteration

• Subset chosen

• deterministically or

• randomly (stochastic subgradient)

Projected subgradient learning algorithm

Projected subgradient learning algorithm

so as to satisfy

fully specified from

pick k

• Resulting learning scheme:

 Very efficient and very flexible

Projected subgradient learning algorithm

• Resulting learning scheme:

 Very efficient and very flexible

 Requires from the user only to provide an optimizer

for the slave MRFs

Projected subgradient learning algorithm

• Resulting learning scheme:

 Slave problems freely chosen by the user

 Very efficient and very flexible

 Requires from the user only to provide an optimizer

for the slave MRFs

Projected subgradient learning algorithm

• Resulting learning scheme:

 Slave problems freely chosen by the user

 Easily adaptable to further exploit special structure of
any class of CRFs

 Very efficient and very flexible

 Requires from the user only to provide an optimizer

for the slave MRFs

Projected subgradient learning algorithm

Choice of decompositions

Choice of decompositions

= true loss (intractable)

= loss when using decomposition

Choice of decompositions

= true loss (intractable)

= loss when using decomposition

•

 (upper bound property)

Choice of decompositions

•
 (hierarchy of learning algorithms)

= true loss (intractable)

= loss when using decomposition

•

 (upper bound property)

• denotes following decomposition:

– One slave per clique
– Corresponding sub-hypergraph :

 ,

Choice of decompositions

• denotes following decomposition:

– One slave per clique
– Corresponding sub-hypergraph :

 ,

• Resulting slaves often easy (or even trivial) to solve even
if global problem is complex and NP-hard

– leads to widely applicable learning algorithm

Choice of decompositions

• denotes following decomposition:

– One slave per clique
– Corresponding sub-hypergraph :

 ,

• Resulting slaves often easy (or even trivial) to solve even
if global problem is complex and NP-hard

– leads to widely applicable learning algorithm

• Corresponding dual relaxation is an LP

– Generalizes well known LP relaxation for pairwise
MRFs (at the core of most state-of-the-art methods)

Choice of decompositions

• But we can do better if CRFs have special structure…

Choice of decompositions

• But we can do better if CRFs have special structure…

Choice of decompositions

• Structure means:

• More efficient optimizer for slaves (speed)

• But we can do better if CRFs have special structure…

Choice of decompositions

• Structure means:

• More efficient optimizer for slaves (speed)

• Optimizer that handles more complex slaves
(accuracy)

(Almost all known examples fall in one of above two cases)

• But we can do better if CRFs have special structure…

Choice of decompositions

• Structure means:

• More efficient optimizer for slaves (speed)

• Optimizer that handles more complex slaves
(accuracy)

(Almost all known examples fall in one of above two cases)

• We are essentially adapting decomposition to exploit the
structure of the problem at hand

• But we can do better if CRFs have special structure…

• E.g., pattern-based high-order potentials (for a clique c)

[Komodakis & Paragios CVPR09]

 subset of (its vectors called patterns)

Choice of decompositions

• But we can do better if CRFs have special structure…

• E.g., pattern-based high-order potentials (for a clique c)

[Komodakis & Paragios CVPR09]

• We only assume:

– Set is sparse

– It holds

– No other restriction

 subset of (its vectors called patterns)

Choice of decompositions

• Tree decomposition

(Ti are spanning trees that cover the graph)

Choice of decompositions

• Tree decomposition

(Ti are spanning trees that cover the graph)

Choice of decompositions

• No improvement in accuracy

• Tree decomposition

(Ti are spanning trees that cover the graph)

Choice of decompositions

• No improvement in accuracy

• But improvement in speed
(converges faster than)

Image denoising

• Piecewise constant images

Z X

Image denoising

• Piecewise constant images

• Potentials:

Z X

 k

p p p pu x x z     ,k

pq p q p qh x x V x x 

Image denoising

• Piecewise constant images

• Potentials:

• Goal: learn pairwise potential

Z X

 k

p p p pu x x z     ,k

pq p q p qh x x V x x 

Image denoising

 learnt potential

Image denoising

 learnt potential

Image denoising

 learnt potential

Image denoising

Stereo matching

• Potentials:      k left right

p p pu x I p I p x  

   , ()k left

pq p q p qh x x f I p x x    

Stereo matching

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model

     k left right

p p pu x I p I p x  

   , ()k left

pq p q p qh x x f I p x x    

Stereo matching

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model

     k left right

p p pu x I p I p x  

   , ()k left

pq p q p qh x x f I p x x    

 learnt function f

Stereo matching

“Venus” disparity using f (.) as estimated at
different iterations of learning algorithm

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model

     k left right

p p pu x I p I p x  

   , ()k left

pq p q p qh x x f I p x x    

Stereo matching

Sawtooth
4.9%

Poster
3.7%

Bull
2.8%

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model

     k left right

p p pu x I p I p x  

   , ()k left

pq p q p qh x x f I p x x    

Stereo matching

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model

     k left right

p p pu x I p I p x  

   , ()k left

pq p q p qh x x f I p x x    

High-order Pn Potts model

[Kohli et al. CVPR07]

Goal: learn high order CRF with potentials given by

High-order Pn Potts model

Cost for optimizing slave CRF: O(|L|)

[Kohli et al. CVPR07]

Goal: learn high order CRF with potentials given by

Fast training

High-order Pn Potts model

Cost for optimizing slave CRF: O(|L|)

• 100 training samples

• 50x50 grid

• clique size 3x3

• 5 labels (|L|=5)

[Kohli et al. CVPR07]

Goal: learn high order CRF with potentials given by

Fast training

Learning to cluster [ICCV 2011]

Clustering

• A fundamental task in vision and beyond

• Typically formulated as an optimization problem based on a
given distance function between datapoints

• Choice of distance crucial for the success of clustering

Clustering

• A fundamental task in vision and beyond

• Typically formulated as an optimization problem based on a
given distance function between datapoints

• Choice of distance crucial for the success of clustering

• Goal 1: learn this distance automatically based on training
 data

Clustering

• A fundamental task in vision and beyond

• Typically formulated as an optimization problem based on a
given distance function between datapoints

• Choice of distance crucial for the success of clustering

• Goal 1: learn this distance automatically based on training
 data

• Goal 2: learning should also handle the fact that the number
 of clusters is typically unknown at test time

Exemplar based clustering formulation

set of datapoints

Exemplar based clustering formulation

set of exemplars
(cluster centers)

set of datapoints

Exemplar based clustering formulation

set of exemplars
(cluster centers)

set of datapoints

distance between
datapoints p and q

Exemplar based clustering formulation

set of exemplars
(cluster centers)

set of datapoints

distance between
datapoints p and q

penalty for choosing q as
exemplar (cluster center)

Exemplar based clustering formulation

set of exemplars
(cluster centers)

set of datapoints

distance between
datapoints p and q

penalty for choosing q as
exemplar (cluster center)

The above formulation allows to:

• automatically estimate the number of clusters (i.e. size of Q)

Exemplar based clustering formulation

set of exemplars
(cluster centers)

set of datapoints

distance between
datapoints p and q

penalty for choosing q as
exemplar (cluster center)

The above formulation allows to:

• automatically estimate the number of clusters (i.e. size of Q)

• use arbitrary distances
(e.g., non-metric, asymmetric, non-differentiable)

Exemplar based clustering formulation

set of exemplars
(cluster centers)

set of datapoints

distance between
datapoints p and q

penalty for choosing q as
exemplar (cluster center)

Inference can be performed efficiently using:
Clustering via LP-based Stabilities [Komodakis et al., NIPS 2008]

Exemplar based clustering as a high-order CRF

Exemplar based clustering as a high-order CRF

Exemplar based clustering as a high-order CRF

Exemplar based clustering as a high-order CRF

Exemplar based clustering as a high-order CRF

Learning to cluster via high-order latent CRFs

• Goal: lean distances dp,q and penalties dq,q

Learning to cluster via high-order latent CRFs

• Input:

• K training samples

• Goal: lean distances dp,q and penalties dq,q

Learning to cluster via high-order latent CRFs

• Input:

• K training samples

ground truth partition of into clusters

• Goal: lean distances dp,q and penalties dq,q

Learning to cluster via high-order latent CRFs

• Input:

• K training samples

• Vector valued feature function

ground truth partition of into clusters

• Goal: lean distances dp,q and penalties dq,q

Learning to cluster via high-order latent CRFs

• Loss function for clustering

Learning to cluster via high-order latent CRFs

measures inconsistency
between x and partition

• Loss function for clustering

Learning to cluster via high-order latent CRFs

measures inconsistency
between x and partition

• Loss function for clustering

• Set of clusterings fully consistent with partition Ck

Learning to cluster via high-order latent CRFs

Main problems:

Learning to cluster via high-order latent CRFs

1. Training data do not specify ground truth solution xk
(all elements of xk are hidden/latent in this case)

Main problems:

Learning to cluster via high-order latent CRFs

1. Training data do not specify ground truth solution xk
(all elements of xk are hidden/latent in this case)

• they only constraint it:

Main problems:

Learning to cluster via high-order latent CRFs

1. Training data do not specify ground truth solution xk
(all elements of xk are hidden/latent in this case)

• they only constraint it:

Main problems:

latent CRF
model

Learning to cluster via high-order latent CRFs

1. Training data do not specify ground truth solution xk
(all elements of xk are hidden/latent in this case)

• they only constraint it:

2. Both E(.) and Δ(.) are CRF energies of very high order

Main problems:

latent CRF
model

Learning to cluster via high-order latent CRFs

1. Training data do not specify ground truth solution xk
(all elements of xk are hidden/latent in this case)

• they only constraint it:

2. Both E(.) and Δ(.) are CRF energies of very high order

Main problems:

latent CRF
model

Learning to cluster via high-order latent CRFs

How to efficiently deal with these problems during
learning?

Learning to cluster via high-order latent CRFs

Solution: CRF training via dual decomposition for
 latent CRFs

How to efficiently deal with these problems during
learning?

Learning to cluster via high-order latent CRFs

Learning to cluster via high-order latent CRFs

Learning to cluster via high-order latent CRFs

Learning to cluster via high-order latent CRFs

Learning to cluster via high-order latent CRFs

Learning to cluster via high-order latent CRFs

Choosing decomposition for clustering

Choosing decomposition for clustering

Choosing decomposition for clustering

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

+ +

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

+ +

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

+ +

Choosing decomposition for clustering

One slave CRF per datapoint p

One slave CRF per ground truth cluster C

+ +

Learning to cluster via high-order latent CRFs

Learning to cluster via high-order latent CRFs

• Use block coordinate descent

• Alternately optimize

a.

b.

Optimizing over

Optimizing over

Optimizing over

optimal cluster
centers (exemplars)

Optimizing over

optimal cluster
centers (exemplars)

Optimizing over

Optimizing over

 is known

• Back to fully supervised learning

Optimizing over

 is known

• Back to fully supervised learning

• As already explained, in this case training
requires solving the slave CRFs

Optimizing over

 is known

• Back to fully supervised learning

• As already explained, in this case training
requires solving the slave CRFs

Solving slave CRF

Solving slave CRF

Solving slave CRF

Solving slave CRF

Solving slave CRF

Solving slave CRF

Solving slave CRF

Learning scheme

Training high-order latent CRFs via dual
decomposition

• More generally, dual decomposition can be used for
training any high-order latent model

Training high-order latent CRFs via dual
decomposition

• K training samples

• More generally, dual decomposition can be used for
training any high-order latent model

Training high-order latent CRFs via dual
decomposition

• K training samples

observed variables
(per sample)

• More generally, dual decomposition can be used for
training any high-order latent model

Training high-order latent CRFs via dual
decomposition

• K training samples

observed variables
(per sample)

hidden variables

• More generally, dual decomposition can be used for
training any high-order latent model

Training high-order latent CRFs via dual
decomposition

• K training samples

observed variables
(per sample)

vector valued feature
functions

hidden variables

• More generally, dual decomposition can be used for
training any high-order latent model

Learning a weighted Euclidean distance

• We consider a weighted Euclidean distance dpq for D-
dimensional datapoints

Learning a weighted Euclidean distance

• We consider a weighted Euclidean distance dpq for D-
dimensional datapoints

• Half of the D dimensions are assumed to be noisy

Learning a weighted Euclidean distance

• We consider a weighted Euclidean distance dpq for D-
dimensional datapoints

• Goal: learn weights wi automatically from clustering data

• Half of the D dimensions are assumed to be noisy

Learning a weighted Euclidean distance

 D = 100

Learning a weighted Euclidean distance

 D = 100

Learning a weighted Euclidean distance

 D = 100

noisy dimensions get
suppressed weights

after training

Learning a weighted Euclidean distance

 D = 100

noisy dimensions get
suppressed weights

after training

Learning a weighted Euclidean distance

 D = 100

noisy dimensions get
suppressed weights

after training

Learning to cluster texture images

Learn weighted comb. of distances between features:

Learning to cluster texture images

clustering
accuracy:
• 100% (Outex)
• 86% (UIUC)

 learnt weights

Learn weighted comb. of distances between features:

Learning to cluster texture images

10 of the estimated
exemplars for Outex

clustering
accuracy:
• 100% (Outex)
• 86% (UIUC)

Learn weighted comb. of distances between features:

Learning to cluster scene images
Learn weighted combination of distances (multiple distances
per feature, multiple features)

Learning to cluster scene images
Learn weighted combination of distances (multiple distances
per feature, multiple features)

 learnt weights

Learning to cluster scene images
Learn weighted combination of distances (multiple distances
per feature, multiple features)

 learnt weights

Learning to cluster scene images
Learn weighted combination of distances (multiple distances
per feature, multiple features)

clustering accuracy:
63% (Scene)

10 of the estimated
exemplars for Outex

Thank you for your attention!

Questions?

