
Fast, Approximately Optimal Solutions for Single and Dynamic MRFs∗

Nikos Komodakis, Georgios Tziritas

University of Crete, Computer Science Department

{komod,tziritas}@csd.uoc.gr

Nikos Paragios

MAS, Ecole Centrale de Paris

nikos.paragios@ecp.fr

Abstract
A new efficient MRF optimization algorithm, called Fast-

PD, is proposed, which generalizes α-expansion. One of

its main advantages is that it offers a substantial speedup

over that method, e.g. it can be at least 3-9 times faster

than α-expansion. Its efficiency is a result of the fact that

Fast-PD exploits information coming not only from the orig-

inal MRF problem, but also from a dual problem. Further-

more, besides static MRFs, it can also be used for boost-

ing the performance of dynamic MRFs, i.e. MRFs varying

over time. On top of that, Fast-PD makes no compromise

about the optimality of its solutions: it can compute exactly

the same answer as α-expansion, but, unlike that method, it

can also guarantee an almost optimal solution for a much

wider class of NP-hard MRF problems. Results on static

and dynamic MRFs demonstrate the algorithm’s efficiency

and power. E.g., Fast-PD has been able to compute dispar-

ity for stereoscopic sequences in real time, with the resulting

disparity coinciding with that of α-expansion.

1. Introduction

Discrete MRFs are ubiquitous in computer vision, and

thus optimizing them is a problem of fundamental impor-

tance. According to it, given a weighted graph G (with

nodes V , edges E and weights wpq), one seeks to assign

a label xp (from a discrete set of labels L) to each p ∈ V , so

that the following cost is minimized:
∑

p∈V
cp(xp) +

∑

(p,q)∈E
wpqd(xp, xq). (1)

Here, cp(·), d(·, ·) determine the singleton and pairwise

MRF potential functions respectively.

Up to now, graph-cut based methods, like α-expansion

[3], have been very effective in MRF optimization, generat-

ing solutions with good optimality properties [8]. However,

besides solutions’ optimality, another important issue is that

of computational efficiency. In fact, this issue has recently

been looked at for the special case of dynamic MRFs [5, 4],

i.e. MRFs varying over time. Thus, trying to concentrate on

both of these issues here, we raise the following questions:

can there be a graph-cut based method, which will be

more efficient, but equally (or even more) powerful, than

α-expansion, for the case of single MRFs? Furthermore,

∗This work was partially supported from the French ANR-Blanc grant

SURF (2005-2008) and Platon (2006-2007).

can that method also offer a computational advantage for

the case of dynamic MRFs? With respect to the questions

raised above, this work makes the following contributions.

Efficiency for single MRFs: α-expansion works by

solving a series of max-flow problems. Its efficiency

is thus largely determined from the efficiency of these

max-flow problems, which, in turn, depends on the number

of augmenting paths per max-flow. Here, we build upon

recent work of [6], and propose a new primal-dual MRF

optimization method, called Fast-PD. This method, like [6]

or α-expansion, also ends up solving a max-flow problem

for a series of graphs. However, unlike these techniques,

the graphs constructed by Fast-PD ensure that the number

of augmentations per max-flow decreases dramatically over

time, thus boosting the efficiency of MRF inference. To

show this, we prove a generalized relationship between the

number of augmentations and the so-called primal-dual

gap associated with the original MRF problem and its dual.

Furthermore, to fully exploit the above property, 2 new ex-

tensions are also proposed: an adapted max-flow algorithm,

as well as an incremental graph construction method.

Optimality properties: Despite its efficiency, our

method also makes no compromise regarding the optimality

of its solutions. So, if d(·, ·) is a metric, Fast-PD is as pow-

erful as α-expansion, i.e. it computes exactly the same solu-

tion, but with a substantial speedup. Moreover, it applies to

a much wider class of MRFs1, e.g. even with a non-metric

d(·, ·), while still guaranteeing an almost optimal solution.

Efficiency for dynamic MRFs: Furthermore, our

method can also be used for boosting the efficiency of

dynamic MRFs (introduced to computer vision in [5]). Two

works have been proposed in this regard recently [5, 4].

These methods can be applied to dynamic MRFs that are bi-

nary or have convex priors. On the contrary, Fast-PD natu-

rally handles a much wider class of dynamic MRFs, and can

do so by also exploiting information from a problem, which

is dual to the original MRF problem. Fast-PD can thus be

thought of as a generalization of previous techniques.

The rest of the paper is organized as follows. In sec. 2,

we briefly review the work of [6] about using the primal-

dual schema for MRF optimization. The Fast-PD algorithm

is then described in sec. 3. Its efficiency for optimizing

1Fast-PD requires only d(a, b)≥0, d(a, b)=0⇔a=b



1: [x, y]←INIT DUALS PRIMALS( ); xold←x

2: for each label c in L do

3: y←PREEDIT DUALS(c,x,y);

4: [x′,y′]←UPDATE DUALS PRIMALS(c,x,y);

5: y′←POSTEDIT DUALS(c,x′,y′);

6: x←x′; y←y′;

7: end for

8: if x 6=xold then

9: xold←x; goto 2;

10: end if

Fig. 1: The primal dual schema for MRF optimization.

single MRFs is further analyzed in sec. 4, where related

results and some important extensions of Fast-PD are

presented as well. Sec. 5 explains how Fast-PD can boost

the performance of dynamic MRFs, and also contains more

experimental results. Finally, we conclude in section 6.

2. Primal-dual MRF optimization algorithms
In this section, we review very briefly the work of [6].

Consider the primal-dual pair of linear programs, given by:

PRIMAL: min cTx DUAL: max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c

One seeks an optimal primal solution, with the extra con-

straint of x being integral. This makes for an NP-hard prob-

lem, and so one can only hope for finding an approximate

solution. To this end, the following schema can be used:

Theorem 1 (Primal-Dual schema). Keep generating pairs

of integral-primal, dual solutions (xk,yk), until the ele-

ments of the last pair, say x,y, are both feasible and have

costs that are close enough, e.g. their ratio is ≤ fapp:

cT x ≤ fapp · bTy (2)

Then x is guaranteed to be an fapp-approximate solution to

the optimal integral solution x∗, i.e. cT x ≤ fapp · c
T x∗.

The above schema has been used in [6], for deriving ap-

proximation algorithms for a very wide class of MRFs. To

this end, MRF optimization was first cast as an equivalent

integer program and then, as required by the primal-dual

schema, its linear programming relaxation and its dual were

derived. Based on these LPs, the authors then show that, for

Theorem 1 to be true with fapp = 2 dmax

dmin

2, it suffices that

the next (so-called relaxed complementary slackness) con-

ditions hold true for the resulting primal and dual variables:

hp(xp) = mina∈L hp(a), ∀p∈V (3)

ypq(xp)+yqp(xq) = wpqd(xp, xq), ∀pq∈E (4)

ypq(a)+yqp(b)≤2wpqdmax, ∀pq∈E , a∈L, b∈L (5)

In these formulas, the primal variables, denoted by

x = {xp}p∈V , determine the labels assigned to nodes

(called active labels hereafter), e.g. xp is the active label

of node p. Whereas, the dual variables are divided into

balance and height variables. There exist 2 balance

variables ypq(a), yqp(a) per edge (p, q) and label a, as

well as 1 height variable hp(a) per node p and label a.

Variables ypq(a), yqp(a) are also called conjugate and, for

the dual solution to be feasible, these must be set opposite

to each other, i.e.: yqp(·) ≡ −ypq(·). Furthermore, the

height variables are always defined in terms of the balance

variables as follows:

2dmax≡maxa 6=b d(a, b), dmin≡mina 6=b d(a, b)

hp(·) ≡ cp(·) +
∑

q:qp∈E
ypq(·). (6)

Note that, due to (6), only the vector y (of all balance vari-

ables) is needed for specifying a dual solution. In addition,

for simplifying conditions (4),(5), one can also define:

loadpq(a, b)≡ypq(a)+yqp(b). (7)

The primal-dual variables are iteratively updated until

all conditions (3)-(5) hold true. The basic structure of a

primal-dual algorithm can be seen in Fig. 1. During an

inner c-iteration (lines 3-6 in Fig. 1), a label c is selected

and a new primal-dual pair of solutions (x′,y′) is generated

based on the current pair (x,y). To this end, among all bal-

ance variables ypq(.), only the balance variables of c-labels

(i.e. ypq(c)) are updated during a c-iteration. |L| such itera-

tions (i.e. one c-iteration per label c in L) make up an outer

iteration (lines 2-7 in Fig. 1), and the algorithm terminates if

no change of label takes place at the current outer iteration.

During an inner iteration, the main update of the

primal and dual variables takes place inside UP-

DATE DUALS PRIMALS, and (as shown in [6]) this update

reduces to solving a max-flow problem in an appropriate

graph Gc. Furthermore, the routines PREEDIT DUALS and

POSTEDIT DUALS simply apply corrections to the dual

variables before and after this main update, i.e. to variables

y and y′ respectively. Also, for simplicity’s sake, note that

we will hereafter refer to only one of the methods derived

in [6], and this will be the so-called PD3a method.

3. Fast primal-dual MRF optimization
The complexity of the PD3a primal-dual method largely

depends on the complexity of all max-flow instances (one

instance per inner-iteration), which, in turn, depends on the

number of augmentations per max-flow. So, for designing

faster primal-dual algorithms, we first need to understand

how the graph Gc, associated with the max-flow problem at

a c-iteration of PD3a, is constructed. To this end, we also

have to recall the following intuitive interpretation of the

dual variables [6]: for each node p, a separate copy of all la-

bels in L is considered, and all these labels are represented

as balls, which float at certain heights relative to a reference

plane. The role of the height variables hp(·) is then to deter-

mine the balls’ height (see Figure 2(a)). E.g. the height of

label a at node p is given by hp(a). Also, expressions like

“label a at p is below/above label b” imply hp(a) ≶ hp(b).
Furthermore, balls are not static, but may move in pairs

through updating pairs of conjugate balance variables. E.g.,

in Figure 2(a), label c at p is raised by +δ (due to adding +δ
to ypq(c)), and so label c at q has to move down by −δ (due

to adding −δ to yqp(c) so that condition ypq(c) =−yqp(c)
still holds). Therefore, the role of balance variables is to

raise or lower labels. In particular, the value of balance vari-

able ypq(a) represents the partial raise of label a at p due to

edge pq, while (by (6)) the total raise of a at p equals the

sum of partial raises from all edges of G incident to p.



+δ -δ

c

c

p q
wpq

hp(xp)

hq(xq)hp(c)

hq(c)

capptcapsp

xp

chp(xp)

hp(c)

hp(c)

hp(xp)

fpt

p p

xp

c

fsp

(a) (b) (c)

fsp

capsps p
fpt

cappt tp

xp=a

xq=a

Fig. 2: (a) Dual variables’ visualization for a simple MRF with 2

nodes {p, q} and 2 labels {a, c}. A copy of labels {a, c} exists for

every node, and all these labels are represented by balls floating at

certain heights. The role of the height variables hp(·) is to specify

exactly these heights. Furthermore, balls are not static, but may

move (i.e. change their heights) in pairs by updating conjugate

balance variables. E.g., here, ball c at p is pulled up by +δ (due

to increasing ypq(c) by +δ) and so ball c at q moves down by

−δ (due to decreasing yqp(c) by −δ). Active labels are drawn

with a thicker circle. (b) If label c at p is below xp, then (due

to (3)) we want label c to raise and reach xp. We thus connect

node p to the source s with an edge sp (i.e. p is an s-linked

node), and flow fsp represents the total raise of c (we also set

cap
sp = hp(xp) − hp(c)). (c) If label c at p is above xp, then

(due to (3)) we want label c not to go below xp. We thus connect

node p to the sink t with edge pt (i.e. p is a t-linked node), and

flow fpt represents the total decrease in the height of c (we also

set cappt
=hp(c)−hp(xp) so that c will still remain above xp).

Hence, PD3a tries to iteratively move labels up or down,

until all conditions (3)-(5) hold true. To this end, it uses the

following strategy: it ensures that conditions (4)-(5) hold at

each iteration (which is always easy to do) and is just left

with the main task of making the labels’ heights satisfy con-

dition (3) as well in the end (which is the most difficult part,

requiring each active label xp to be the lowest label for p).

For this purpose, labels are moved in groups. In particular,

during a c-iteration, only the c-labels are allowed to move.

Furthermore, it was shown in [6] that the movement of all

c-labels (i.e. the update of dual variables ypq(c) and hp(c)
for all p, q) can be simulated by pushing the maximum flow

through a directed graph Gc (which is constructed based on

the current primal-dual pair (x,y) at a c-iteration). The

nodes of Gc consist of all nodes of graph G (the internal

nodes), plus 2 external nodes, the source s and the sink t.

In addition, all nodes of Gc are connected by two types of

edges: interior and exterior edges. Interior edges come in

pairs pq, qp (with one such pair for every 2 neighbors p, q in

G), and are responsible for updating the balance variables.

In particular, the flows fpq/fqp of these edges represent the

increase/decrease of balance variable ypq(c), i.e. y′pq(c)=
ypq(c) + fpq − fqp. Also, as we shall see, the capacities

of interior edges are used together with PREEDIT DUALS,

POSTEDIT DUALS to impose conditions (4), (5).

But for now, in order to understand how to make a faster

primal-dual method, it is the exterior edges (which are in

charge of the update of height variables), as well as their

capacities (which are used for imposing the remaining

condition (3)), that are of interest to us. The reason is

that these edges determine the number of s-linked nodes,

which, in turn, affects the number of augmenting paths

per max-flow. In particular, each internal node connects to

either the source s (i.e. it is an s-linked node) or to the sink

t (i.e. it is a t-linked node) through one of these exterior

edges, and this is done (with the goal of ensuring (3)) as

follows: if label c at p is above xp during a c-iteration (i.e.

hp(c) > hp(xp)), then label c should not go below xp, or

else (3) will be violated for p. Node p thus connects to t

through directed edge pt (i.e. p becomes t-linked), and flow

fpt represents the total decrease in the height of c after

UPDATE DUALS PRIMALS, i.e. h′p(c)=hp(c)−fpt (see Fig.

2(c)). Furthermore, the capacity of pt is set so that label c
will still remain above xp, i.e. cappt

= hp(c)− hp(xp). On

the other hand, if label c at p is below active label xp (i.e.

hp(c) < hp(xp)), then (due to (3)) label c should raise so

as to reach xp, and so p connects to s through edge sp (i.e.

p becomes s-linked), while flow fsp represents the total

raise of ball c, i.e. h′p(c) = hp(c)+fsp (see Fig. 2(b)). In

this case, we also set cap
sp =hp(xp)−hp(c).

This way, by pushing flow through the exterior edges

of Gc, all c-labels that are strictly below an active

label try to raise and reach that label during UPDATE DU-

ALS PRIMALS3. Not only that, but the fewer are the c-labels

below an active label (i.e. the fewer are the s-linked nodes),

the fewer will be the edges connected to the source, and thus

the less will be the number of possible augmenting paths.

In fact, the algorithm terminates when, for any label c, there

are no more c-labels strictly below an active label (i.e. no

s-linked nodes exist and thus no augmenting paths may be

found), in which case condition (3) will finally hold true,

as desired. Put another way, UPDATE DUALS PRIMALS

tries to push c-labels (which are at a low height) up, so that

the number of s-linked nodes is reduced and thus fewer

augmenting paths may be possible for the next iteration.

However, although UPDATE DUALS PRIMALS tries to

reduce the number of s-linked nodes (by pushing the maxi-

mum amount of flow), PREEDIT DUALS or POSTEDIT DU-

ALS very often spoil that progress. As we shall see later,

this occurs because, in order to restore condition (4) (which

is their main goal), these routines are forced to apply correc-

tions to the dual variables (i.e. to the labels’ height). This is

abstractly illustrated in Figure 3, where, as a result of push-

ing flow, a c-label initially managed to reach an active label

xp, but it again dropped below xp, due to some correction

applied by these routines. In fact, as one can show, the only

point where a new s-linked node can be created is during

either PREEDIT DUALS or POSTEDIT DUALS.

3Equivalently, if c-label at p cannot raise high enough to reach xp,

UPDATE DUALS PRIMALS then assigns that c-label as the new active label

of p (i.e. x′
p=c), thus effectively making the active label go down. This

helps condition (3) to become true, and forms the main rationale behind

the update of the primal variables x in UPDATE DUALS PRIMALS.



c

capsp

hp(xp)

hp(c)

p

xp

c

hp(xp) hp(c)

p

xp

c

fsp

capsp

hp(xp)

hp(c)

p

xp

correction

(a) before max-flow (b) after max-flow (c) after correction by
PREEDIT_DUALS or POSTEDIT_DUALS

Fig. 3: (a) Label c at p is below xp, and thus label c is allowed

to raise itself in order to reach xp. This means that p will

be an s-linked node of graph Gc, i.e. cap
sp > 0, and thus a

non-zero flow fsp (representing the total raise of label c) may

pass through edge sp. Therefore, in this case, edge sp may

become part of an augmenting path during max-flow. (b) After

UPDATE DUALS PRIMALS, label c has managed to raise by fsp

and reach xp. Since it cannot go higher than that, no flow can pass

through edge sp, i.e. cap
sp = 0, and so no augmenting path may

traverse that edge thereafter. (c) However, due to some correction

applied to c-label’s height, label c has dropped below xp once

more and p has become an s-linked node again (i.e. cap
sp > 0).

Edge sp can thus be part of an augmenting path again (as in (a)).

To fix this problem, we will redefine PREEDIT DUALS,

POSTEDIT DUALS so that they can now ensure condition (4)

by using just a minimum amount of corrections for the dual

variables, (e.g. by touching these variables only rarely). To

this end, however, UPDATE DUALS PRIMALS needs to be

modified as well. The resulting algorithm, called Fast-PD,

carries the following main differences over PD3a during a

c-iteration (its pseudocode appears in Fig. 4):

- the new PREEDIT DUALS modifies a pair ypq(c), yqp(c)
of dual variables only when absolutely necessary. So,

whereas the previous version modified these variables

(thereby changing the height of a c-label) whenever c 6=xp,

c6=xq (which could happen extremely often), a modification

is now applied only if loadpq(c, xq) > wpqd(c, xq) or

loadpq(xp, c) > wpqd(xp, c) (which, in practice, happens

much more rarely). In this case, a modification is needed

(see code in Fig. 4), because the above inequalities indicate

that condition (4) will be violated if either (c, xq) or (xp, c)
become the new active labels for p, q. On the contrary, no

modification is needed if the following inequalities are true:

loadpq(c, xq) < wpqd(c, xq), loadpq(xp, c) < wpqd(xp, c),
because then, as we shall see below, the new UP-

DATE DUALS PRIMALS can always restore (4) (i.e. even

if (c, xq) or (xp, c) are the next active labels - e.g., see

(12)). In fact, the modification to ypq(c) that is occasionally

applied by the new PREEDIT DUALS can be shown to be the

minimal correction that restores exactly the above inequ-

alities (assuming, of course, this restoration is possible).

- Similarly, the new POSTEDIT DUALS modifies4 bal-

ance variables y′pq(x
′
p) (with x′p = c) and y′qp(x

′
q) (with

x′q =c) only if the inequality load′pq(x
′
p, x
′
q)>wpqd(x′p, x

′
q)

holds, in which case POSTEDIT DUALS simply has to

4We recall that POSTEDIT DUALS may modify only dual solution y
′.

For that solution, we define load′
pq(a, b)≡y′

pq(a)+y′
qp(b), as in (7).

[x,y]←INIT DUALS PRIMALS( ): x←random labels; y←0;
∀pq, adjust ypq(xp) or yqp(xq) so that loadpq(xp, xq)=wpqd(xp, xq)

y←PREEDIT DUALS(c, x, y):

∀pq, if loadpq(c, xq)>wpqd(c, xq) or loadpq(xp, c)>wpqd(xp, c)
adjust ypq(c) so that loadpq(c, xq)=wpqd(c, xq)

[x′, y′]←UPDATE DUALS PRIMALS(c, x, y): x′←x; y′←y;
Construct Gc

and apply max-flow to compute all flows fsp/fpt, fpq

∀pq, y′

pq
(c)←ypq(c)+fpq−fqp

∀p , if an unsaturated path from s to p exists, then x′

p
←c

y′←POSTEDIT DUALS(c, x′, y′): {We denote load′

pq
(·, ·)=y′

pq
(·)+y′

qp
(·)}

∀pq, if load′

pq
(x′

p
, x′

q
)>wpqd(x′

p
, x′

q
) {This implies x′

p
=c or x′

q
=c}

adjust y′

pq
(c) so that load′

pq
(x′

p
, x′

q
)=wpqd(x′

p
, x′

q
)

Fig. 4: Fast-PD’s pseudocode.

reduce load′pq(x
′
p, x′q) for restoring (4). However, this

inequality will hold true very rarely (e.g. for a metric d(·, ·),
one may show that it can never hold), and so POSTEDIT DU-

ALS will modify a c-balance variable (thereby changing the

height of a c-label) only in very seldom occasions.

- But, to allow for the above changes, we also need

to modify the construction of graph Gc in UPDATE DU-

ALS PRIMALS. In particular, for c 6=xp and c 6=xq , the ca-

pacities of interior edges pq, qp must now be set as follows:5

cappq =
[

wpqd(c, xq)−loadpq(c, xq)
]+

, (8)

capqp =
[

wpqd(xp, c)−loadpq(xp, c)
]+

, (9)

where [x]+≡ max(x, 0). Besides ensuring (5) (by not let-

ting the balance variables increase too much), the main ra-

tionale behind the above definition of interior capacities is

to also ensure that (after max-flow) condition (4) will be

met by most pairs (p, q), even if (c, xq) or (xp, c) are the

next labels assigned to them (which is a good thing, since

we will thus manage to avoid the need for a correction by

POSTEDIT DUALS for all but a few p, q). For seeing this,

the crucial thing to observe is that if, say, (c, xq) are the

next labels for p and q, then capacity cappq can be shown to

represent the increase of loadpq(c, xq) after max-flow, i.e.:

load′pq(c, xq) = loadpq(c, xq) + cappq. (10)

Hence, if the following inequality is true as well:

loadpq(c, xq) ≤ wpqd(c, xq) , (11)

then condition (4) will do remain valid after max-flow, as

the following trivial derivation shows:

load′pq(c, xq)
(10),(8)

= loadpq(c, xq)+[wpqd(c, xq)−loadpq(c, xq)]
+

(11)
= wpqd(c, xq) (12)

But this means that a correction may need to be applied by

POSTEDIT DUALS only for pairs p, q violating (11) (before

max-flow). However, such pairs tend to be very rare in prac-

tice (e.g., as one can prove, no such pairs exist when d(·, ·) is

a metric), and thus very few corrections need to take place.

Fig. 5 summarizes how Fast-PD sets the capacities for

all edges of Gc. As already explained, the interior capaci-

ties (with the help of PREEDIT DUALS, POSTEDIT DUALS

5If c=xp or c=xq , then cappq=capqp=0 as before, i.e. as in PD3a.



in a few cases) allow UPDATE DUALS PRIMALS to impose

conditions (4),(5), while the exterior capacities allow UP-

DATE DUALS PRIMALS to impose condition (3). As a re-

sult, the next theorem holds (see [1] for a complete proof):

Theorem 2. The last primal-dual pair (x,y) of Fast-PD

satisfies (3)-(5), and so x is an fapp-approximate solution.

In fact, Fast-PD maintains all good optimality proper-

ties of the PD3a method. E.g., for a metric d(·, ·), Fast-PD

proves to be as powerful as α-expansion (see [1]):

Theorem 3. If d(·, ·) is a metric, then the Fast-PD algo-

rithm computes the best c-expansion after any c-iteration.

4. Efficiency of Fast-PD for single MRFs

But, besides having all these good optimality properties,

a very important advantage of Fast-PD over all previous

primal-dual methods, as well as α-expansion, is that it

proves to be much more efficient in practice.

In fact, the computational efficiency for all methods

of this kind is largely determined from the time taken by

each max-flow problem, which, in turn, depends on the

number of augmenting paths that need to be computed.

For the case of Fast-PD, the number of augmentations per

inner-iteration decreases dramatically, as the algorithm

progresses. E.g. Fast-PD has been applied to the problem of

image restoration, and fig. 7 contains a related result about

the denoising of a corrupted (with gaussian noise) “pen-

guin” image (256 labels and a truncated quadratic distance

d(a, b) = min(|a−b|2, D) - where D = 200 - has been used

in this case). Also, fig. 8(a) shows the corresponding num-

ber of augmenting paths per outer-iteration (i.e. per group

of |L| inner-iterations). Notice that, for both α-expansion,

as well as PD3a, this number remains very high (i.e. almost

over 2 ·106 paths) throughout all iterations. On the contrary,

for the case of Fast-PD, it drops towards zero very quickly,

e.g. only 4905 and 7 paths had to be found during the

8th and last outer-iteration respectively (obviously, as also

shown in Fig. 9(a), this directly affects the total time needed

per outer-iteration). In fact, for the case of Fast-PD, it is

very typical that, after very few inner-iterations, no more

than 10 or 20 augmenting paths need to be computed per

max-flow, which really boosts the performance in this case.

This property can be explained by the fact that Fast-PD

maintains both a primal, as well as a dual solution through-

out its execution. Fast-PD then manages to effectively use

the dual solutions of previous inner iterations, so as to re-

duce the number of augmenting paths for the next inner-

iterations. Intuitively, what happens is that Fast-PD ulti-

mately wants to close the gap between the primal and the

xp ≠ c
⋀

xq ≠ c

cappq=[wpqd(c,xq)-loadpq(c,xq)]
+

capqp=[wpqd(xp,c)-loadpq(xp,c)]+

xp = c
⋁

xq = c

cappq= 0

capqp= 0

capsp=[hp(xp)-hp(c)]+

cappt=[hp(c)-hp(xp)]
+

interior capacitiesexterior capacities

Fig. 5: Capacities of graph Gc, as set by Fast-PD.

dual1 dualkdualk-1… primalk primalk-1 primal1
gapk

…

dual costs primal costs

(a) High-level view of the Fast-PD algorithm

dual1 primalk primalk-1 primal1
gapk

…

fixed dual cost primal costs

(b) High-level view of the α-expansion algorithm

Fig. 6: (a) Fast-PD generates pairs of primal-dual solutions iter-

atively, with the goal of always reducing the primal-dual gap (i.e.

the gap between the resulting primal and dual costs). But, for the

case of Fast-PD, this gap can be viewed as a rough estimate for the

number of augmentations, and so this number is forced to reduce

over time as well. (b) On the contrary, α-expansion works only

in the primal domain (i.e. it is as if a fixed dual cost is used at the

start of each new iteration) and thus the primal-dual gap can never

become small enough. Therefore, no significant reduction in the

number of augmentations takes place as the algorithm progresses.

dual cost (see Theorem 1), and, for this, it iteratively gener-

ates primal-dual pairs, with the goal of decreasing the size

of this gap (see Fig. 6(a)). But, for Fast-PD, the gap’s size

can be thought of as, roughly speaking, an upper-bound for

the number of augmenting paths per inner-iteration. Since,

furthermore, Fast-PD manages to reduce this gap at any

time throughout its execution, the number of augmenting

paths is forced to decrease over time as well.

On the contrary, a method like α-expansion, that

works only in the primal domain, ignores dual solutions

completely. It is, roughly speaking, as if α-expansion

is resetting the dual solution to zero at the start of each

inner-iteration, thus effectively forgetting that solution

thereafter (see Fig. 6(b)). For this reason, it fails to

reduce the primal-dual gap and thus also fails to achieve a

reduction in path augmentations over time, i.e. across inner-

iterations. But the PD3a algorithm as well fails to mimic

Fast-PD’s behavior (despite being a primal-dual method).

As explained in sec. 3, this happens because, in this case,

PREEDIT DUAL and POSTEDIT DUAL temporarily destroy

the gap just before the start of UPDATE DUALS PRIMALS,

i.e. just before max-flow is about to begin computing the

augmenting paths. (Note, of course, that this destruction

is only temporary, and the gap is restored again after the

execution of UPDATE DUALS PRIMALS).

The above mentioned relationship between primal-dual

gap and number of augmenting paths is formally described

in the next theorem (see [1] for a complete proof):

Theorem 4. For Fast-PD, the primal-dual gap at the cur-

rent inner-iteration forms an approximate upper bound for

the number of augmenting paths at each iteration thereafter.

Sketch of proof. During a c-iteration, it can be shown that

dual-cost≤
∑

p min(hp(c), hp(xp)), whereas primal-cost=
∑

p hp(xp), and so the primal-dual gap upper-bounds the

following quantity:
∑

p[hp(xp) − hp(c)]
+ =

∑

p cap
sp.



Fig. 7: Left: “Tsukuba”image and its disparity by Fast-PD. Mid-

dle: a “SRI tree” image and corresponding disparity by Fast-PD.

Right: noisy “penguin” image and its restoration by Fast-PD.

But this quantity obviously forms an upper-bound on the

maximum flow, which, in turn, upper-bounds the number of

augmentations (assuming integral flows).

Due to the above mentioned property, the time per

outer-iteration decreases dramatically over time. This has

been verified experimentally with virtually all problems

that Fast-PD has been tested on. E.g. Fast-PD has been

also applied to the problem of stereo matching, and fig.

7 contains the resulting disparity (of size 384 × 288 with

16 labels) for the well-known “Tsukuba” stereo pair, as

well as the resulting disparity (of size 256×233 with

10 labels) for an image pair from the well-known “SRI

tree” sequence (in both cases, a truncated linear distance

d(a, b)=min(|a− b|, D) - with D=2 and D=5 - has been

used, while the weights wpq were allowed to vary based

on the image gradient at p). Figures 9(b), 9(c) contain the

corresponding running times per outer iteration. Notice

how much faster the outer-iterations of Fast-PD become

as the algorithm progresses, e.g. the last outer-iteration

of Fast-PD (for the “SRI-tree” example) lasted less than 1

msec (since, as it turns out, only 4 augmenting paths had

to be found during that iteration). Contrast this with the

behavior of either the α-expansion or the PD3a algorithm,

which both require an almost constant amount of time per

outer-iteration, e.g. the last outer-iteration of α-expansion

needed more than 0.4 secs to finish (i.e. it was more than

400 times slower than Fast-PD’s iteration!). Similarly, for

the “Tsukuba” example, α-expansion’s last outer-iteration

was more than 2000 times slower than Fast-PD’s iteration.

Max-flow algorithm adaptation: However, for fully

exploiting the decreasing number of path augmentations

and reduce the running time, we had to properly adapt

the max-flow algorithm. To this end, the crucial thing to

observe was that the decreasing number of augmentations

was directly related to the decreasing number of s-linked

nodes, as already explained in sec. 3. E.g. fig. 8(b) shows

how the number of s-linked nodes varies per outer-iteration

for the “penguin” example (with a similar behavior being

observed for the other examples as well). As can be seen,

this number decreases drastically over time. In fact, as

1 4 7 10 13 16 19 22
0

0.5

1

1.5

2

x 10
6

outer iteration

N
o
. 
o
f 
a
u
g
m

e
n
ta

ti
o
n
s

PD3
a

α−expansion

Fast−PD

(a)

1 4 7 10 13 16 19 22
0

0.5

1

1.5

2

x 10
6

outer iteration

      No. of

s−linked nodes

   (Fast−PD)

(b)

Fig. 8: (a) Number of augmenting paths per outer iteration for the

“penguin” example (similar results hold for the other examples as

well). Only in the case of Fast-PD, this number decreases dramat-

ically over time. (b) This property of Fast-PD is directly related to

the decreasing number of s-linked nodes per outer-iteration (this

number is shown here for the same example as in (a)).

1 4 7 10 13 16 19 22
0

2

4

6

8

outer iteration
ti
m

e
 (

s
e

c
s
)

PD3
a

α−expansion

Fast−PD

(a) “penguin”

1 2 3 4 5 6 7
0

1

2

outer iteration

ti
m

e
 (

s
e

c
s
)

PD3
a

α−expansion

Fast−PD

(b) “Tsukuba”

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

outer iteration

ti
m

e
 (

s
e
c
s
)

PD3
a

α−expansion

Fast−PD

(c) “SRI tree”

17.44
3.37
0.54

penguin
tsukuba
SRI tree

173.1
15.63
2.56

a -e
x p a

nsi
o n

F a s
t-P

Dtotal 
time 
(secs)

175.9
17.52
2.49

PD
3 a

(d) Total times

Fig. 9: Total time per outer iteration for the (a) “penguin”, (b)

“Tsukuba” and (c) “SRI tree” examples. (d) Total running times.

For all experiments of this paper, a 1.6GHz laptop has been used.

implied by condition (3), no s-linked nodes will finally exist

upon the algorithm’s termination. Any augmentation-based

max-flow algorithm striving for computational efficiency,

should certainly exploit this property when trying to extract

its augmenting paths. The most efficient of these algorithms

[2] maintains 2 search trees for the fast extraction of these

paths, a source and a sink tree. Here, the source tree will

start growing by exploring non-saturated edges that are

adjacent to s-linked nodes, whereas the sink tree will grow

starting from all t-linked nodes. Of course, the algorithm

terminates when no adjacent unsaturated edges can be

found any more. However, in our case, maintaining the

sink tree is completely inefficient and does not exploit the

much smaller number of s-linked nodes. We thus propose

maintaining only the source tree during max-flow, which

will be a much cheaper thing to do here (e.g., in many inner

iterations, there can be fewer than 10 s-linked nodes, but

many thousands of t-linked nodes). Moreover, due to the

small size of the source tree, detecting the termination of the

max-flow procedure can now be done a lot faster, i.e. with-



20 40 60 80 100
1

100

200

300

inner iteration

suboptimality

bound (Tsukuba)

1000 3000 5000
1

3000

6000

9000

inner iteration

suboptimality

bound (penguin)

Fig. 10: Suboptimality bounds per inner iteration (for “Tsukuba”

and “penguin”). These bounds drop to 1 very fast, meaning that the

corresponding solutions have become almost optimal very early.

out having to fully expand the large sink tree (which is a

very costly operation), thus giving a substantial speedup. In

addition to that, for efficiently building the source tree, we

keep track of all s-linked nodes and don’t recompute them

from scratch each time. In our case, this tracking can be

done without cost, since, as explained in sec. 3, an s-linked

node can be created only inside the PREEDIT DUALS or the

POSTEDIT DUALS routine, and thus can be easily detected.

The above simple strategy has been extremely effective for

boosting the performance of max-flow, especially when a

small number of augmentations were needed.

Incremental graph construction: But besides the max-

flow algorithm adaptation, we may also modify the way

graph Gc is constructed. I.e. instead of constructing the ca-

pacitated graph Gc from scratch each time, we also propose

an incremental way of setting its capacities. The following

lemma turns out to be crucial in this regard:

Lemma 1. Let Gc, Ḡc be the graphs for the current and

previous c-iteration. Let also p, q be 2 neighboring MRF

nodes. If, during the interval from the previous to the cur-

rent c-iteration, no change of label took place for p and q,

then the capacities of the interior edges pq, qp in Gc and

of the exterior edges sp, pt, sq, qt in Gc equal the residual

capacities of the corresponding edges in Ḡc.

The proof follows directly from the fact that if no change

of label took place for p, q, then none of the height variables

hp(xp), hq(xq) or the balance variables ypq(xp), yqp(xq)
could have changed. Due to lemma 1, for building graphGc,

we can simply reuse the residual graph of Ḡc and only re-

compute those capacities of Gc for which the above lemma

does not hold, thus speeding-up the algorithm even further.

Combining speed with optimality: Fig. 9(d) contains

the running times of Fast-PD for various MRF problems.

As can be seen from that figure, Fast-PD proves to be much

faster than either the α-expansion6 or the PD3a method, e.g.

Fast-PD has been more than 9 times faster than α-expansion

for the case of the “penguin” image (17.44 secs vs 173.1

secs). In fact, this behavior is a typical one, since Fast-PD

has consistently provided at least a 3-9 times speedup for

all the problems it has been tested on. However, besides

its efficiency, Fast-PD does not make any compromise re-

garding the optimality of its solutions. On one hand, this is

ensured by theorems 2, 3. On the other hand, Fast-PD, like

6Since α-expansion cannot be used if d(·, ·) is not a metric, the method

proposed in [7] had to be used for the cases of a non-metric d(·, ·).

[x,y]←INIT DUALS PRIMALS(x̄, ȳ): x← x̄; y← ȳ;
∀pq, ypq(xp) +=wpqd(xp, xq)−w̄pqd̄(xp, xq);

∀p, hp(·)+=cp(·)−cp(·);

Fig. 11: Fast-PD’s new pseudocode for dynamic MRFs.

any other primal-dual method, can also tell for free how

well it performed by always providing a per-instance sub-

optimality bound for its solution. This comes at no extra

cost, since any ratio between the cost of a primal solution

and the cost of a dual solution can form such a bound. E.g.

fig. 10 shows how these ratios vary per inner-iteration for

the “tsukuba” and “penguin” problems (with similar results

holding for the other problems as well). As one can notice,

these ratios drop to 1 very quickly, meaning that an almost

optimal solution has already been estimated even after just

a few iterations (and despite the problem being NP-hard).

5. Dynamic MRFs

But, besides single MRFs, Fast-PD can be easily adapted

to also boost the efficiency for dynamic MRFs [5], i.e.

MRFs varying over time, thus showing the generality and

power of the proposed method. In fact, Fast-PD fits per-

fectly to this task. The implicit assumption here is that the

change between successive MRFs is small, and so, by ini-

tializing the current MRF with the final (primal) solution of

the previous MRF, one expects to speed up inference. A sig-

nificant advantage of Fast-PD in this regard, however, is that

it can exploit not only previous MRF’s primal solution (say

x̄), but also its dual solution (say ȳ). And this, for initializ-

ing current MRF’s both primal and dual solutions (say x,y).

Obviously, for initializing x, one can simply set x= x̄.

Regarding the initialization of y, however, things are

slightly more complicated. For maintaining Fast-PD’s

optimality properties, it turns out that, after setting y= ȳ,

a slight correction still needs to be applied to y. In

particular, Fast-PD requires its initial solution y to satisfy

condition (4), i.e. ypq(xp) + yqp(xq) = wpqd(xp, xq),
whereas ȳ satisfies ȳpq(xp) + ȳqp(xq) = w̄pq d̄(xp, xq),
i.e. condition (4) with wpqd(·, ·) replaced by the pairwise

potential w̄pq d̄(·, ·) of the previous MRF. The solution

for fixing that is very simple: e.g. we can simply set

ypq(xp)+= wpqd(xp, xq)−w̄pq d̄(xp, xq). Finally, for tak-

ing into account the possibly different singleton potentials

between successive MRFs, the new heights will obviously

need to be updated as hp(·)+=cp(·)−cp(·), where cp(·) are

the singleton potentials of the previous MRF. These are the

only changes needed for the case of dynamic MRFs, and

thus the new pseudocode appears in Fig. 11.

As expected, for dynamic MRFs, the speedup provided

by Fast-PD is even greater than single MRFs. E.g. Fig.

12(a) shows the running times per frame for the “SRI tree”

image sequence. Fast-PD proves to be be more than 10

times faster than α-expansion in this case (requiring on

average 0.22 secs per frame, whereas α-expansion required

2.28 secs on average). Fast-PD can thus run on about 5



40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

frame

ti
m

e
 (

s
e

c
s
)

α−expansion

Fast−PD

(a) Running times per frame for the “SRI tree” sequence

40 50 60 70 80 90
0

1

2

3

x 10
5

frame

N
o
. 
o
f 
a
u
g
m

e
n
ta

ti
o
n
s

α−expansion

Fast−PD

(b) Augmenting paths per frame for the “SRI tree” sequence

Fig. 12: Statistics for the “SRI tree” sequence.

frames/sec, i.e. it can do stereo matching almost in real time

for this example (in fact, if successive MRFs bear greater

similarity, even much bigger speedups can be achieved).

Furthermore, fig. 12(b) shows the corresponding number

of augmenting paths per frame for the “SRI tree” image

sequence (for both α-expansion and Fast-PD). As can be

seen from that figure, a substantial reduction in the number

of augmenting paths is achieved by Fast-PD, which helps

that algorithm to reduce its running time.

This same behavior has been observed in all other

dynamic problems that Fast-PD has been tested on as

well. Intuitively, what happens is illustrated in Fig. 13(a).

Fast-PD has already managed to close the gap between

the final primal-dual costs primalx̄, dualȳ of the previous

MRF. However, due to the possibly different singleton

(i.e. cp(·)) or pairwise (i.e. wpqd(·, ·)) potentials of the

current MRF, these costs need to be perturbed to generate

the new initial costs primalx, dualy. Nevertheless, as

only slight perturbations take place, the new primal-dual

gap (i.e. between primalx, dualy) will still be close to the

previous gap (i.e. between primalx̄, dualȳ). As a result,

the new gap will remain small. Few augmenting paths will

therefore have to be found for the current MRF, and thus

the algorithm’s performance is boosted.

Put otherwise, for the case of dynamic MRFs, Fast-PD

manages to boost performance, i.e. reduce number of aug-

menting paths, across two different “axes”. The first axis

lies along the different inner-iterations of the same MRF

(e.g. see red arrows in Fig. 13(b)), whereas the second axis

extends across time, i.e. across different MRFs (e.g. see blue

arrow in Fig. 13(b), connecting the last iteration of MRFt−1

to the first iteration of MRFt).

dualydualy primalx
gap
gap

(a) (b)

few
er 

aug
me

nta
tio

ns

…

MRFt

inner-iteration

…

inner-iteration
feweraugmentations

inner-iteration
feweraugmentations

MRFt-1

inner-iteration

…

inner-iteration
feweraugmentations

inner-iteration
feweraugmentations

…

primalx

Fig. 13: (a) The final costs primalx̄, dualȳ of the previous MRF

are slightly perturbed to give the initial costs primalx, dualy of the

current MRF. Therefore, the initial primal-dual gap of the current

MRF will be close to the final primal-dual gap of the previous

MRF. Since the latter is small, so will be the former, and thus few

augmenting paths will need to be computed for the current MRF.

(b) Fast-PD reduces the number of augmenting paths in 2 ways:

internally, i.e. across iterations of the same MRF (see red arrows),

as well as externally, i.e. across different MRFs (see blue arrow).

6. Conclusions

In conclusion, a new graph-cut based method for

MRF optimization has been proposed. It generalizes

α-expansion, while it also manages to be substantially

faster than this state-of-the-art technique. Hence, regarding

optimization of static MRFs, this method provides a

significant speedup. In addition to that, however, it can also

be used for boosting the performance of dynamic MRFs.

In both cases, its efficiency comes from the fact that it

exploits information not only from the “primal” problem

(i.e. the MRF optimization problem), but also from a “dual”

problem. Moreover, despite its speed, the proposed method

can nevertheless guarantee almost optimal solutions for a

very wide class of NP-hard MRFs. Due to all of the above,

and given the ubiquity of MRFs, we strongly believe that

Fast-PD can prove to be an extremely useful tool for many

problems in computer vision in the years to come.

References

[1] N. Komodakis, G. Tziritas and N. Paragios. Fast Primal-Dual

Strategies for MRF Optimization. Technical report, 2006. 5

[2] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. PAMI, 26(9), 2004. 6

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy

minimization via graph cuts. PAMI, 23(11), 2001. 1

[4] O. Juan and Y. Boykov. Active graph cuts. In CVPR, 2006. 1

[5] P. Kohli and P. H. Torr. Efficiently solving dynamic markov

random fields using graph cuts. In ICCV, 2005. 1, 7

[6] N. Komodakis and G. Tziritas. A new framework for approx-

imate labeling via graph-cuts. In ICCV, 2005. 1, 2, 3

[7] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital

tapestry. In CVPR, 2005. 7

[8] R. Szeliski, et al. A comparative study of energy minimization

methods for markov random fields. In ECCV, 2006. 1


