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Abstract

In this paper, a new exemplar-based framework is presented, which treats image completion, texture

synthesis and image inpainting in a unified manner. In order to be able to avoid the occurrence of

visually inconsistent results, we pose all of the above image-editing tasks in the form of a discrete global

optimization problem. The objective function of this problem is always well-defined, and corresponds to

the energy of a discrete Markov Random Field (MRF). For efficiently optimizing this MRF, a novel opti-

mization scheme, called Priority-BP, is then proposed, which carries two very important extensions over

the standard Belief Propagation (BP) algorithm: “priority-based message scheduling” and “dynamic label

pruning”. These two extensions work in cooperation to deal with the intolerable computational cost of BP,

which is caused by the huge number of labels associated with our MRF. Moreover, both of our extensions

are generic, since they do not rely on the use of domain-specific prior knowledge. They can therefore

be applied to any MRF, i.e to a very wide class of problems in image processing and computer vision,

thus managing to resolve what is currently considered as one major limitation of the Belief Propagation

algorithm: its inefficiency in handling MRFs with very large discrete state-spaces. Experimental results on

a wide variety of input images are presented, which demonstrate the effectiveness of our image-completion

framework for tasks such as object removal, texture synthesis, text removal and image inpainting.
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Fig. 1: Object removal is just one of the many cases where image completion needs to be applied. In the specific

example shown above, the user wants to remove a person from the input image on the left. He therefore simply

marks a region around that person and that region must then be filled automatically so that a visually plausible

outcome is obtained.

I. INTRODUCTION

The problem of image completion can be loosely defined as follows: given an image which is in-

complete, i.e it has missing regions (e.g see Figure 1), try to fill its missing parts in such a way that a

visually plausible outcome is obtained at the end. Although stating the image completion problem is very

simple, the task of actually trying to successfully solve it, is far from being a trivial thing to achieve.

Ideally, any algorithm that is designed to solve the image completion problem should have the following

characteristics:

• it should be able to successfully complete complex natural images,

• it should also be able to handle incomplete images with (possibly) large missing parts and

• in addition, all these should take place in a fully automatic manner, i.e without intervention from

the user.

Also, ideally, we would like any image completion algorithm to be able to handle the related problem of

texture synthesis as well. According to that problem, given a small texture as input, we are then asked

to generate an arbitrarily large output texture, which maintains the visual characteristics of the input (e.g

see Figure 2(a)). It is exactly due to all of the above requirements that image completion is, in general,

a very challenging problem. Nevertheless, it can be very useful in many areas, e.g it can be important

for computer graphics applications, image editing, film post-production, image restoration, etc.

It has thus attracted a considerable amount of research over the last years. Roughly speaking, there

have been three main approaches so far, for dealing with the image completion problem (see Fig. 2(b)):

• statistical-based methods,

• PDE-based methods,

• as well as exemplar-based methods.
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Fig. 2: (a) The texture synthesis problem. (b) The three main approaches to image completion.

In order to briefly explain the main limitations of current state-of-the-art methods for image completion,

we next provide a short review of related work for each one of the three classes mentioned above.

Statistical-based methods: These methods are mainly used for the case of texture synthesis. Typically,

what these methods do is that, given an input texture, they try to describe it by extracting some statistics

through the use of compact parametric statistical models. E.g Portilla and Simoncelli [1] use joint statistics

of wavelet coefficients for that purpose, while Heeger and Bergen [2] make use of color histograms at

multiple resolutions for the analysis of the textures. Then, in order to synthesize a new texture, these

methods typically start with an output image containing pure noise, and keep perturbing that image until

its statistics match the estimated statistics of the input texture. Besides the synthesis of still images,

parametric statistical models have been also proposed for the case of image sequences. E.g Soatto et al.

[3] have proposed the so-called dynamic texture model, while a similar idea has been also described by

Fitzgibbon in [4]. A parametric representation for image sequences had been previously presented by

Szummer and Picard [5] as well. These parametric models for video have been mainly used for modeling

and synthesizing dynamic stochastic processes, such as smoke, fire or water.

However, the main drawback of all methods that are based on parametric statistical models is that, as

already mentioned, they are applicable only to the problem of texture synthesis, and not to the general

problem of image completion. But even in the restricted case of texture synthesis, they can synthesize

only textures which are highly stochastic and usually fail to do so for textures containing structure as

well. Nevertheless, in cases where parametric models are applicable, they allow greater flexibility with

respect to the modification of texture properties. E.g Doretto and Soatto [6] can edit the speed, as well

as other properties of a video texture, by modifying the parameters of the statistical model they are using

(which is a linear dynamical system in their case). Furthermore, these methods can be very useful for
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(a) Original image (b) Image with missing region
(c) Completion using image in-
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Fig. 3: Image inpainting methods, when applied to large or textured missing regions, very often oversmooth the

image and introduce blurring artifacts.

the process which is reverse to texture synthesis, i.e the analysis of textures.

PDE-based methods: These methods, on the other hand, try to fill the missing region of an image

through a diffusion process, by smoothly propagating information from the boundary towards the interior

of the missing region. According to these techniques, the diffusion process is simulated by solving a

partial differential equation (PDE), which is typically non-linear and of high order. This class of methods

has been first introduced by Bertalmio et al. in [7], in which case the authors were trying to fill a hole in an

image by propagating image Laplacians in the isophote direction. Their algorithm was trying to mimic the

behavior of professional restorators in image restoration. In another case, the partial differential equations,

that have been employed for the image filling process, were related to the Navier-Stokes equations in fluid

dynamics [8], while Ballester et al. [9] have derived their own partial differential equations by formulating

the image completion problem in a variational framework. Furthermore, recently, Bertalmio et al. [10]

have proposed to decompose an image into two components. The first component is representing structure

and is filled by using a PDE based method, while the second component represents texture and is filled

by use of a texture synthesis method. Finally, Chan and Shen [11] have used an elastica based variational

model for filling the missing part of an image.

However, the main disadvantage of almost all PDE based methods is that they are mostly suitable for

image inpainting situations. This term usually refers to the case where the missing part of the image

consists of thin, elongated regions. Furthermore, PDE-based methods implicitly assume that the content
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Fig. 4: Exemplar-based methods synthesize textures simply by copying patches from the observed part to the

missing part of the image.

of the missing resion is smooth and non-textured. For this reason, when these methods are applied to

images where the missing regions are large and textured, they usually oversmooth the image and introduce

blurring artifacts (e.g see Figure 3). On the contrary, we would like our method to be able to handle

images that contain possibly large missing parts. In addition to that, we would also like our method

to be able to fill arbitrarily complex natural images, i.e images containing texture, structure or even a

combination of both.

Exemplar-based methods: Finally, the last class of methods consists of the so-called exemplar-based

techniques, which actually have been the most successful techniques up to now. These methods try to fill

the unknown region simply by copying content from the observed part of the image. Starting with the

seminal work of Efros and Leung in [12], these methods have been mainly used for the purpose of texture

synthesis. All exemplar-based techniques for texture synthesis that have appeared until now, were either

pixel-based [13], [14], or patch-based [15], [16], [17], meaning that the final texture was synthesized one

pixel, or one patch at a time (by simply copying pixels or patches from the observed image respectively).

Somewhere in between is the method of Ashikhmin [18], where a pixel-based technique, that favors the

copy of coherent patches, has been used in this case. Usually, patch-based methods achieve results of

higher quality, since they manage to implicitly maintain higher order statistics of the input texture. Among

patch-based methods, one should mention the work of Kwatra et al. [15], who managed to synthesize a

variety of textures by making use of computer vision graph-cut techniques. Another interesting work is

that of Hertzmann et al. [19], where the authors try to automatically learn painting styles from training

data that consist of input-output image pairs. The painting styles, once learnt, can then be applied to

new input images. Also, Efros and Freeman [20] use an exemplar-based method to perform texture

transfer, i.e rendering an object with a texture that has been taken from a different object. Exemplar-

based methods for texture synthesis have been also used for the case of video. E.g Schodl et al. [21]

are able to synthesize new video textures simply by rearranging the recorded frames of an input video,
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while the texture synthesis method of Kwatra et al. [15], that has been mentioned above, applies to image

sequences as well.

As already explained in the previous paragraph, exemplar-based methods have been mainly used for

the purpose of texture synthesis up to now. Recently, however, there have been a few authors who have

tried to extend these methods to image completion as well. But, in this case, a major drawback of

related approaches stems from their greedy way of filling the image, which can often lead to visual

inconsistencies. Some techniques try to alleviate this problem by asking assistance from the user instead.

E.g Jian Sun et al [22] require the user to specify the curves on which the most salient missing structures

reside (thus obtaining a segmentation of the missing region as well), while Drori et al [23] use what they

call “points of interest”. Also, some other methods [24] rely on already having a segmentation of the

input image. But it is a well known fact that natural images segmentation is an extremely difficult task

and, despite extensive research, no general method for reliably solving it currently exists. Some other

methods [25], [26] are preferring to take a more global approach and formulate the problem in a way

that a deterministic EM-like optimization scheme has to be used for image completion. It is well known,

however, that expectation-maximization schemes are particularly sensitive to the initialization and may

get easily trapped to poor local minima (thus violating the spirit of a global approach). For fixing this

problem, one must resort to the use of multi-scale image completion. Although this might help in some

cases, it is still not always safe. E.g any errors that may occur during the image completion process at the

coarse scale, will probably carry through at finer scales as well. Finally, recent exemplar-based methods

also place emphasis on the order by which the image synthesis proceeds, usually using a confidence map

for this purpose [27], [23]. However, two are the main handicaps of related existing techniques. First,

the confidence map is computed based on heuristics and ad hoc principles, that may not apply in the

general case, and second, once an observed patch has been assigned to a missing block of pixels, that

block cannot change its assigned patch thereafter. This last fact reveals the greediness of these techniques,

which may again lead to visual inconsistencies.

In order to overcome all the limitations of the above mentioned methods, a new exemplar-based

approach for image completion is proposed [28], which makes the following contributions:

1) Contrary to greedy synthesis methods, we pose image completion as a discrete global optimization

problem with a well defined objective function. In this manner, we are able to avoid the occurrence

of visual inconsistencies during the image completion process, and manage to produce visually

plausible results.

2) No user intervention is required by our method, which manages to avoid greedy patch assignments
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Fig. 5: (a) The labels associated with the image completion problem are chosen to be all w×h patches of the source

region S. (b) In this figure, we show the nodes (black dots) and edges (red segments) of the MRF that will be used

during image completion. For this particular example, the w, h parameters were set equal to w = 2gapx, h = 2gapy.

by maintaining (throughout its execution) many candidate source patches for each block of missing

pixels. In this way, each missing block of pixels is allowed to change its assigned patch many times

throughout the execution of the algorithm, and is not enforced to remain tied to the first label that

has been assigned to it during the early stages of the completion process.

3) Our formulation applies not only to image completion, but also to texture synthesis, as well as to

image inpainting, thus providing a unified framework for all of these tasks.

4) To this end, a novel optimization scheme is proposed, the “Priority-BP” algorithm, which carries

2 major improvements over standard belief propagation: “dynamic label pruning” and “priority-

based message scheduling”. Together, they bring a dramatic reduction in the overall computational

cost of BP, which would otherwise be intolerable due to the huge number of existing labels. We

should finally note that both extensions are generic and can be used for the optimization of any

MRF (i.e they are applicable to a very wide class of problems in image processing and computer

vision). Priority-BP can thus be viewed as a generic way for efficiently applying belief-propagation

to MRFs with very large discrete state-spaces, thus dealing, for the first time, with what was

considered as one of the main limitations of BP up to now.

II. IMAGE COMPLETION AS A DISCRETE GLOBAL OPTIMIZATION PROBLEM

Given an input image I0, as well as a target region T and a source region S (where S is always a

subset of I0−T ), the goal of image completion is to fill T in a visually plausible way simply by copying

patches from S . We propose to turn this into a discrete optimization problem with a well defined objective
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Fig. 6: An illustration of how the MRF potential functions are computed: for the boundary node r, its label cost

Vr(xr) will be an SSD over the red region, while for nodes p, q their potential Vpq(xp, xq) will be an SSD over

the green region. Node s is an interior node and so its label cost Vs(xs) will always be zero.

function. To this end, we propose the use of the following discrete Markov Random Field (MRF):

The labels L of the MRF will consist of all w×h patches from the source region S1 (see Figure 5(a)).

For defining the nodes of the MRF, an image lattice will be used with an horizontal and vertical spacing of

gapx and gapy pixels respectively. The MRF nodes V will be all lattice points whose w×h neighborhood

intersects the target region, while the edges E of the MRF will make up a 4-neighborhood system on

that lattice (see Figure 5(b)).

In this context, assigning a label (i.e a patch) to a node, will amount to copying that patch over the

node’s position in the image space. Based on this fact, we will next define the energy of our MRF, so that

only patches that are consistent with each other, as well as with the observed region, are allowed to be

copied into the missing region. To this end, the single node potential Vp(xp) (called label cost hereafter),

for placing patch xp over node p, will encode how well that patch agrees with the source region around

p, and will equal the following sum of squared differences (SSD):

Vp(xp) =
∑

dp∈[−w

2

w

2
]×[−h

2

h

2
]

M(p + dp)
(

I0(p + dp) − I0(xp + dp)
)2

. (1)

In the above formula, M(·) denotes a binary mask, which is non zero only inside region S (due to this

fact, i.e due to M(·) being zero outside S , the label costs of interior nodes, i.e nodes whose w × h

neighborhood does not intersect S , will obviously be all zero). In a similar fashion, the pairwise potential

Vpq(xp, xq), due to placing patches xp, xq over neighbors p, q, will measure how well these patches agree

at the resulting region of overlap, and will again be given by the SSD over that region (see Figure 6).

Note that gapx and gapy are set so that such a region of overlap always exists.

1Hereafter each label (i.e patch) will be represented by its center pixel



9

Based on this formulation, our goal will then be to assign a label x̂p ∈ L to each node p so that the

total energy F(x̂) of the MRF is minimized, where:

F(x̂) =
∑

p∈V

Vp(x̂p) +
∑

(p,q)∈E

Vpq(x̂p, x̂q). (2)

Intuitively, any algorithm optimizing this energy is, roughly speaking, trying to assemble a huge jigsaw

puzzle, where the source patches correspond to the puzzle pieces, while region T represents the puzzle

itself.

One important advantage of our formulation is that it also provides a unified framework for texture

synthesis and image inpainting. E.g to handle texture synthesis (where one wants to extend an input texture

T0 to a larger region T1), one suffices to set S = T0 and T = T1−T0. Put otherwise, you place the input

texture T0 at any location inside the larger region T1 and then you let the image completion algorithm

fill the remaining part of region T1. Moreover, thanks to the fact that we reduce image completion to

an energy optimization problem, our framework allows the use of (what we call) “completion by energy

refinement” techniques, one example of which we will see later.

III. PRIORITY-BP

Furthermore, an additional advantage is that we now can hopefully apply belief propagation (i.e a

state-of-the-art optimization method) to our energy function. Unfortunately, however, this is not the

case. The reason is the intolerable computational cost of BP, caused by the huge number of existing

labels. Motivated by this fact, one other major contribution of this work is the proposal of a novel MRF

optimization scheme, called Priority-BP, that can deal exactly with this type of problems, and carries

two significant extensions over standard BP: one of them, called dynamic label pruning, is based on the

key idea of drastically reducing the number of labels. However, instead of this happening beforehand

(which will almost surely lead to throwing away useful labels), pruning takes place on the fly (i.e while

BP is running), with a (possibly) different number of labels kept for each node. The important thing to

note is that only the beliefs calculated by BP are used for that purpose. This is exactly what makes the

algorithm generic and applicable to any MRF. Furthermore, the second extension, called priority-based

message scheduling, makes use of label pruning and allows us to always send cheap messages between

the nodes of the graphical model. Moreover, it considerably improves BP’s convergence, thus accelerating

completion even further.

The significance of our contribution also grows due to the fact that (as we shall see) Priority-BP

is a generic algorithm, applicable to any MRF energy function. This is unlike any prior use of Belief
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Propagation [29] and, therefore, our method resolves, for the first time, what is currently considered as

one of the main limitations of BP: its inefficiency to handle problems with a huge number of labels.

In fact, this issue has been a highly active research topic over the last years. Until now, however, the

techniques that have been proposed were valid only for restricted classes of MRFs [30], [31]. Not only

that, but our priority-based message scheduling scheme can be used (independently of label pruning) as

a general method for accelerating the convergence of BP.

A. Loopy Belief-Propagation

In order to explain the reason why belief-propagation has an intolerable computational cost in our case,

we will first briefly describe in this section how that algorithm works. Belief propagation is an iterative

algorithm, which tries to find a MAP estimate by iteratively solving a finite set of equations until a fixed

point is obtained [32]. However, before one is able to understand how this set of equations comes up, he

must first get acquainted with the notion of “messages”, which is another central concept in BP. In fact,

belief propagation does nothing more than continuously propagating local messages between the nodes

of an MRF graph. At every iteration, each node sends messages to all of its neighboring nodes, while

it also accepts messages from these nodes. This process repeats until all the messages have stabilized,

i.e they do not change any more. Therefore, the set of equations, whose fixed point one tries to find,

actually corresponds to the equations governing how messages are updated during each iteration.

The set of messages sent from a node p to a neighboring node q will be denoted by {mpq(xq)}xq∈L.

Therefore, the number of such messages is always |L| (i.e there exists one message per label in L).

Intuitively, message mpq(xq) expresses the opinion of node p about assigning label xq to node q.

Furthermore, whenever we say that node p sends a message mpq(xq) to node q, what we practically

mean is that the following recursive update of the message mpq(xq) is taking place:

mpq(xq) = min
xp∈L

{

Vpq(xp, xq) + Vp(xp) +
∑

r: r 6=q,(r,p)∈ E

mrp(xp)
}

(3)

The interpretation of the above equation is that, if node p wants to send the message mpq(xq) to node

q (i.e if node p wants to tell q its opinion about label xq), then node p must first traverse each one of

its own labels xp ∈ L, and then decide which one of them provides the greatest support for assigning

label xq to node q. The support of label xp with respect to the assignment of xq to node q is determined

based on two factors:

• the compatibility between labels xp and xq (measured by the term Vpq(xp, xq) in (3)), and
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Fig. 7: (a) If a node p wants to send a message mpq(xq) to a neighboring node q, then it must make use of the

messages msp(xp), mrp(xp), mtp(xp) coming from the rest of its neighbors. (b) If a node p wants to calculate its

belief bp(xp) about any of the labels xp ∈ L, it must then collect the messages msp(xp), mqp(xp), mrp(xp), mtp(xp)
coming from all of its neighboring nodes.

• the likelihood of assigning label xp to node p as well. Obviously, on one hand, this likelihood

will depend on the observed data at node p (see term Vp(xp) in (3)). On the other hand, node p

must also ask for the opinion of its other neighbors about label xp (this is measured by the sum
∑

r:r 6=q,(r,p)∈E mrp(xp) in (3)).

Therefore, before a node p sends a message to another node q, he must first consult the rest of its

neighbors by receiving messages from them (see Figure 7(a)). Put otherwise, during belief propagation,

all MRF nodes work in cooperation in order to make a decision about the labels that they should finally

choose. This cooperation between nodes is reflected by the exchange of opinions, i.e messages, which is

taking place during the algorithm.

The updating of messages according to equation (3) continues until all messages finally converge, i.e

until all nodes agree with each other about which labels are appropriate for them. Then, after convergence,

a set of so-called beliefs {bp(xp)}xp∈L is computed for every node p in the MRF. These beliefs are

estimated using the following equation:

bp(xp) = −Vp(xp) −
∑

r:(r,p)∈E

mrp(xp). (4)

Intuitively, the belief bp(xp) expresses the probability of assigning label xp to p, and for estimating it, node

p must first gather all messages (i.e all opinions) coming from its neighboring nodes (which is accounted

by the sum
∑

r:(r,p)∈E Vrp(xp) in equation (4), see also Figure 7(b)). Based on the above observations,
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once all beliefs have been computed, each node is then assigned the label having the maximum belief:

x̂p = arg max
xp∈L

bp(xp). (5)

Strictly speaking, beliefs actually approximate the so-called max-marginals2, i.e each belief bp(xp) ap-

proximates the maximum conditional probability that can be obtained, given the fact that node p has

already been assigned the label xp.

It can be proved that, in the case of a tree structured graph, belief propagation is exact, i.e the exact

global optimum of the MRF energy is computed. Not only that, but it can be actually shown that this

global optimum may be computed in just one iteration. However, if the MRF graph contains cycles,

then no such guarantee can be provided. Moreover, many iterations are then needed for the algorithm to

converge (this also explains why the algorithm has been given the name loopy belief propagation in this

case). Experimentally, however, it has been proved that Belief Propagation typically produces strong local

minimum (i.e solutions that are close to the optimum) for a wide variety of tasks in computer vision.

At this point, it is also important to note that, for the Belief Propagation algorithm to work properly, one

must ensure that all the messages get transmitted during any of the algorithm’s iterations. This practically

means that, for each edge (p, q) in E , one must ensure that all the messages from p to q, as well as all

the messages from q to p (i.e all the messages in both directions) are transmitted at each iteration.

Finally, we should note that there are actually two versions of the Belief Propagation method: the

“max-product” and the “sum-product” algorithm. The difference is that “sum-product” computes the

marginal posterior of each node, while “max-product” maximizes the posterior of each node, i.e it

computes the max-marginals. The algorithm that has been presented above corresponds to the “max-

product” version, but, due to the fact that we are using negative log probabilities, we are left with the

task of minimizing sums of terms, instead of maximizing products of terms (as normally done in the

“max-product” algorithm).

B. Priority-based message scheduling

In the form presented above, however, BP is impractical for problems with a large number of labels like

ours. In particular, if |L| is the total number of labels (which, in our case, can be many many thousands)

then just the basic operation of updating the messages from one node p to another node q takes O(|L|2)

time. In fact, the situation is much more worse for us. The huge number of labels also implies that for

2Actually, as we are working in the − log domain, beliefs approximate the min-marginals, e.g bp(xp) approximates the

minimum energy that can be obtained given that node p has already been assigned label xp.
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labels and see which one provides the best support for label xq . Hence, the cost of any outgoing message from p

will be O(n), where n is the number of available labels at p.

any pair of adjacent nodes p, q their matrix of pairwise potentials Vpq(·, ·) is so large that cannot fit

into memory and therefore cannot be precomputed. That matrix therefore must be reestimated every time

node p sends its messages to node q, meaning that |L|2 SSD calculations (between image patches) are

needed for each such update.

To deal with this issue we will try to reduce the number of labels by exploiting the beliefs calculated

by BP. However not all nodes have beliefs which are adequate for this purpose in our case. To see that, it

suffices to observe that the label costs at all interior nodes are all equal to zero. This in turn implies that

the beliefs at an interior node will initially be all equal as well, meaning that the node is “unconfident”

about which labels to prefer. No label pruning may therefore take place and so any message originating

from that node will be very expensive to calculate i.e it will take O(|L|) time. On the contrary, if we had

a node whose labels could be pruned (and assuming that the maximum number of labels after pruning

is Lmax with Lmax ≪ |L|) then any message from that node would take only O(Lmax) time.

Based on this observation we therefore propose to use a specific message scheduling scheme, whose

goal will be twofold. On one hand, it will make label pruning possible and favor the circulation of cheap

messages. On the other hand, it will speed up BP’s convergence. This issue of BP message scheduling,

although known to be crucial for the success of BP, it has been largely overlooked until now. Also, to

the best of the authors’ knowledge it is the first time that message scheduling is used in this manner

for general graphical models. Roughly, our message scheduling scheme will be based on the notion of

priorities that are assigned to the nodes of the MRF. Any such priority will represent a node’s confidence

about which labels to prefer and will be dynamically updated throughout the algorithm’s execution. Our

message scheduling will then obey the following simple principle:



14

Algorithm 1 Priority-BP

assign priorities to nodes and declare them uncommitted

for k = 1 to K do {K is the number of iterations}
execute ForwardPass and then BackwardPass

assign to each node p its label x̂p that maximizes bp(·)

ForwardPass:

for time = 1 to N do {N is the number of nodes}
p = “uncommitted” node of highest priority

apply “label pruning” to node p

forwardOrder[time] = p ; p→committed = true;

for any “uncommitted” neighbor q of node p do

send all messages mpq(·) from node p to node q

update beliefs bq(·) as well as priority of node q

BackwardPass:

for time = N to 1 do

p = forwardOrder[time]; p→committed = false;

for any “committed” neighbor q of node p do

send all messages mpq(·) from node p to node q

update beliefs bq(·) as well as priority of node q

Message-scheduling principle. The node most confident about its labels should be the first one (i.e it

has the highest priority) to transmit outgoing messages to its neighbors.

The above way of scheduling messages during BP is good for the following reasons:

• The first reason is that the more confident a node is, the more label pruning it can tolerate (before

sending its outgoing messages) and therefore the cheaper these messages will be. We recall here

that the cost of an outgoing message from a node p will be proportional to the number of available

labels for that node (see Figure 8).

• The second reason is that, in this way, we also help other nodes become more amenable to pruning.

Intuitively, this happens because the more confident a node is, the more informative its messages

are going to be, meaning that these messages can help the neighbors of that node to increase their

own confidence and thus these nodes will become more tolerable to pruning as well.

• Furthermore, by first propagating the most informative messages around the graphical model, we

also help BP to converge much faster. This has been verified experimentally as well. E.g Priority-

BP never needed more than a small fixed number of iterations to converge for all of our image

completion examples.

A pseudocode description of Priority-BP is contained in algorithm 1. Each iteration of Priority-BP is
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Fig. 9: Message scheduling during the forward pass: currently only red nodes have been committed and only

messages on red edges have been transmitted. Among uncommitted nodes (i.e blue nodes) the one with the highest

priority (i.e node p) will be committed next and will also send messages only along the green edges (i.e only to its

uncommitted neighbors q, r). Messages along dashed edges will be transmitted during the backward pass. Priorities

are indicated by the numbers inside uncommitted nodes.

divided into a forward and a backward pass. The actual message scheduling mechanism as well as label

pruning takes place during the forward pass. This is also where one half of the messages gets transmitted

(i.e each MRF edge is traversed in only one of the 2 directions). To this end, all nodes are visited in

order of priority. Each time we visit a node, say p, we mark it as “committed” meaning that we must not

visit him again during the current forward pass. We also prune its labels and then allow him to transmit

its “cheap” (due to pruning) messages to all of its neighbors apart from the committed ones (as these

have already sent a message to p during the current pass). The priorities of all neighbors that received a

new message are then updated and the process continues with the next uncommitted (i.e unvisited) node

of highest priority until no more uncommitted nodes exist.

The role of the backward pass is then just to ensure that the other half of the messages gets transmitted

as well. To this end, we do not make use of priorities but simply visit the nodes in reverse order (with

respect to the order of the forward pass) just transmitting the remaining unsent messages from each node.

For this reason, no label pruning takes place during this pass. We do update node priorities, though, so

that they are available during the next forward pass.

Also, as we shall see, a node’s priority depends only on the current beliefs at that node. One big

advantage out of this is that keeping the node priorities up-to-date can be done very efficiently in this

case, since only priorities for nodes with newly received messages need to be updated. The message

scheduling mechanism is further illustrated in Figure 9.

C. Assigning priorities to nodes

It is obvious that our definition of priority will play a very crucial role for the success of the algorithm.

As already mentioned priority must relate to how confident a node is about the labels that should be

assigned to him, with the more confident nodes having higher priority. An important thing to note in
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(a) original image (b) masked image
(c) visiting order during

first forward pass
(d) Priority-BP result (e) result of [27]

Fig. 10: In column (c) darker patches correspond to nodes that are visited earlier during message scheduling at the

first forward pass

our case is that the confidence of a node will depend solely on information that will be extracted by the

BP algorithm itself. This makes our algorithm generic (i.e applicable to any MRF energy function) and

therefore appropriate for a very wide class of problems.

In particular, our definition of confidence (and therefore priority as well) for node p will depend

only on the current set of beliefs {bp(xp)}xp∈L that have been estimated by the BP algorithm for that

node. Based on the observation that belief bp(xp) is roughly related to how likely label xp is for node

p, one way to measure the confidence of this node is simply by counting the number of likely labels

e.g those whose belief exceed a certain threshold bconf . The intuition for this is that the greater this

number, the more labels with high probability exist for that node and therefore the less confident that

node turns out to be about which specific label to choose. And vice versa, if this number is small then

node p needs to choose its label only among a small set of likely labels. Of course, only relative beliefs

brel
p (xp) = bp(xp)− bmax

p (where bmax
p = maxxp∈L bp(xp)) matter in this case and so by defining the set

CS(p) = |{xp ∈ L : brel
p (xp) ≥ bconf}| (which we will call the confusion set of node p hereafter) the

priority of p is then inversely related to the cardinality of that set:

priority(p) =
1

|CS(p)|
(6)

This definition of priority also justifies why during either the forward or the backward pass we were
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allowed to update priorities only for nodes that had just received new incoming messages: the reason

is that the beliefs (and therefore the priority) of a node may change only if at least one incoming

message to that node changes as well (this is true due to the way beliefs are defined i.e bp(xp) =

−Vp(xp)−
∑

r:(r,p)∈E mrp(xp)). Although we tested other definitions of priority as well (e.g by using an

entropy-like measure on beliefs), the above criterion for quantifying confidence gave the best results in

practice by far.

D. Applying Priority-BP to image completion

We pause here for a moment (postponing the description of label pruning to the next section) in order to

stress the advantages of applying our algorithm to image completion, while also showing related results.

First of all, we should mention that, although confidence has already been used for guiding image

completion in other works as well [27], [23], our use of confidence differs (with respect to these

approaches) in two very important aspects. The first is that we use confidence in order to decide upon

the order of BP message passing and not for greedily deciding which patch to fill next. These are two

completely different things: the former is part of a principled global optimization procedure, while the

latter just results in patches that cannot change their appearance after they have been filled.

The second aspect is that in all of the previous approaches the definition of confidence was mostly

based either on heuristics or on ad hoc principles that were simply making use of application-specific

knowledge about the image completion process. On the contrary, as we saw, our definition of confidence

is generic and therefore applicable to any kind of images. Moreover, this way our method is placed on

firm theoretical grounds.

Three examples of applying Priority-BP to image completion are shown in Figure 10. As can be seen,

the algorithm has managed to fill the missing regions in a visually plausible way. The third column in

that figure shows the visiting order of the nodes during the first forward pass (based on our definition of

priority). The darker a patch is in these images, the earlier the corresponding node was visited. Notice

how the algorithm learns by itself how to propagate first the messages of the nodes containing salient

structure, where the notion of saliency depends on each specific case. E.g the nodes that are considered

salient for the first example of Figure 10 are those lying along the horizon boundary. On the contrary, for

the second example of that figure the algorithm prefers to propagate information along the MRF edges

at the interior of the wooden trunk first. The remarkable thing is that in both cases such information was

not explicitly encoded but was, instead, inferred by the algorithm.
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(c) node c has high priority

(d) the MRF nodes a, b and c

Fig. 11: The plots in (a), (b) and (c) show the sorted relative beliefs for the MRF nodes a, b and c in figure (d) at

the start of Priority-BP. Relative beliefs plotted in red correspond to labels in the confusion set. This set determines

the priority of the corresponding node.

This is in contrast to the state-of-the-art method in [27], where the authors had to hardwire isophote-

related information into the definition of priority (i.e a measure which is not always reliably extracted

or even appropriate e.g in images with texture). The corresponding results produced by that method are

shown in the last column of Figure 10. In these cases, only one label (i.e patch) is greedily assigned to

each missing block of pixels and so any errors made early cannot be later backtracked, thus leading to

the observed visual inconsistencies. On the contrary, due to our global optimization approach, any errors

that are made during the very first iterations can be very well corrected later, since our algorithm always

maintain not one but many possible labels for each MRF node. A characteristic case for this is the third

example in Figure 10, where unless one employs a global optimization scheme it is not easy to infer the

missing structure.

Also, the plots in Figures 11(a), 11(b), 11(c) illustrate our definition of priority in (6). They display

the largest 20000 relative beliefs (sorted in ascending order) that are observed at the very beginning of

the algorithm for each of the MRF nodes a, b, c in Figure 11(d) respectively. Relative beliefs plotted in

red correspond to labels in the confusion set. Node a, being an interior node, has initially all the labels

in its confusion set (since their relative beliefs are all zero) and is therefore of lowest priority. Node b

still has too many labels in its confusion set due to the uniform appearance of the source region around
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(a) Nodes b and c of the MRF
(b) A map with the beliefs for all labels

of node b

(c) A map with the beliefs for all labels

of node c

Fig. 12: Figure (b) visualizes the beliefs (as estimated at the start of Priority-BP) for all the labels of node b. Figure

(c) does the same thing for all the beliefs of node c. In these visualizations, the whiter a pixel, the higher the belief

of the corresponding label. We recall that the label corresponding to a pixel is the patch having that pixel as its

center.

that node. On the contrary, node c is one of the nodes to be visited early during the first forward pass,

since only very few labels belong to its confusion set. Indeed, even at the very beginning, we can easily

exclude (i.e prune) many source patches from being labels of that node, without the risk of throwing

away useful labels. This is why Priority-BP prefers to visit him early.

This is also clearly illustrated in Figures 12(b) and 12(c), where we visualize the beliefs that have

been estimated at the start of Priority-BP for all the labels of nodes b and c respectively. In these figures,

the whiter a pixel appears, the higher the belief for the corresponding label is (we recall that the label

corresponding to a pixel is the patch having that pixel as its center).

E. Label pruning

The main idea of “label pruning” is that, as we are visiting the nodes of the MRF during the forward

pass (in the order induced by their priorities), we dynamically reduce the number of possible labels for

each node by discarding labels that are unlikely to be assigned to that node. In particular, after committing

a node, say p, all labels having a very low relative belief at p, say less than bprune, are not considered as

candidate labels for p thereafter. The remaining labels are called the “active labels” for that node. An

additional advantage we gain in this way is that after all MRF nodes have pruned their labels at least

once (e.g at the end of the first forward pass) then we can precompute the reduced matrices of pairwise

potentials (which can now fit into memory) and thus greatly enhance the speed of our algorithm. The

important thing to note is that “label pruning” relies only on information carried by the Priority-BP

algorithm itself as well. This keeps our method generic and therefore applicable to any energy function.

A key observation, however, relates to the fact that label pruning is a technique not meant to be used

on its own. Its use is allowed only in conjunction with our priority-based message scheduling scheme of
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Fig. 13: (a) Although the red, green and blue patches correspond to distinct labels, they are very similar and so

only one of them has to be used as an active label for an MRF node. (b) A map with the number of active labels

per node (for the 2nd example of Figure 10). Darker patches correspond to nodes with fewer labels. As can be

seen, interior nodes often require more labels. (c) The corresponding histogram showing the percentage of nodes

that use a certain number (in the range from Lmin = 3 to Lmax = 20) of active labels. (d) The active labels for

node a in Fig. (a).

visiting most confident nodes first (i.e nodes for which label pruning is safe and does not throw away

useful labels). This is exactly the reason why label pruning does not take place during the backward pass.

In practice, we apply label pruning only to nodes whose number of active labels exceeds a user specified

number Lmax. To this end, when we are about to commit a node, we traverse its labels in order of belief

(from high to low) and each such label is declared active until either no more labels with relative belief

greater than bprune exist or the maximum number of active labels Lmax has been reached. In the case of

image completion, however, it turns out that we also have to apply an additional filtering procedure as

part of label pruning. The problem is that otherwise we may end up having too many active labels which

are similar to each other, thus wasting part of the Lmax labels we are allowed to use. This issue is further

illustrated in Figure 13(a). To this end, as we traverse the sorted labels, we declare a label as active only

if it is not similar to any of the already active labels (where similarity is measured by calculating the SSD

between image patches), otherwise we skip that label and go to the next one. Alternatively, we apply a
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clustering procedure to the patches of all labels beforehand (e.g cluster them into textons) and then never

use more than one label from each cluster while traversing the sorted labels. Finally, we should note that

for all nodes a (user-specified) minimum number of active labels Lmin is always kept.

The net result of label pruning is thus to obtain a compact and diverse set of active labels for each

MRF node (all of them having reasonably good beliefs). E.g Figure 13(b) displays the number of active

labels used by each of the nodes in the second example of Figure 10. The darker a patch is in that

figure, the fewer are the active labels of the corresponding node. As it was expected, interior nodes often

require more active labels to use. The corresponding histogram, showing the percentage of nodes that

use a certain number of active labels, is displayed in Figure 13(c). Notice that more than half of the

MRF nodes do not use the maximum number of active labels (which was Lmax = 20 in this case). Also,

Fig. 13(d) displays the active labels that have been selected by the algorithm for node a in Fig. 13(a).

IV. EXTENSIONS & FURTHER RESULTS

Completion via energy refinement: One advantage of posing image completion as an optimization

problem is that one can now refine completion simply by refining the energy function (i.e adding more

terms to it). E.g to favor spatial coherence during image completion (i.e fill the target region with large

chunks of the source region) one simply needs to add the following “incoherence penalty terms” V 0
pq to

our energy function: V 0
pq(xp, xq) = w0 if xp−xq 6= p−q, while in all other cases V 0

pq(xp, xq) = 0. These

terms simply penalize (with a weight w0) the assignment of non-adjacent patches (with centers xp, xq) to

adjacent nodes p, q and have proved useful in texture synthesis problems (e.g see Figure 20). Thanks to

the ability of Priority-BP to handle effectively any energy function, we intend to explore the utility (with

respect to image completion) of many other refinement terms in the future. We believe that this will also

be an easy and effective way of applying prior knowledge or imposing user specified constraints on the

image completion process.

Pyramid-based image completion: Another advantage of our method is that it can also be used in

multi-scale image completion, where a Gaussian pyramid of images Ik,Ik−1, . . . ,I0 is provided as input.

In this case, we begin by applying Priority-BP to the image at the coarsest scale Ik. The output of this

procedure is then up-sampled and the result, say I ′
k, is used for guiding the completion of the image

Ik−1 at the next finer scale. To this end, the only part of our algorithm that needs to be modified is that

of how label costs are computed. In particular, instead of using equation (1), the following formula will
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(a) Original high-resolution image (b) Image with the price tags removed (c) The result of completion

Fig. 14: The result of a multi-scale image completion for a very high resolution input image of size 2816× 2112.

In this example, we wanted to remove the price tags from the original image (shown on the left). In this case, a

4-level image pyramid has been used during the completion process.

be applied for computing the label costs at level k − 1 of the completion process:

Vp(xp) =
∑

dp∈[−w

2

w

2
]×[−h

2

h

2
]

(

I ′
k(p + dp) − Ik−1(xp + dp)

)2
. (7)

Put another way, the up-sampled image I ′
k from level k is being used as an additional constraint for the

completion at level k − 1. The rest of the algorithm remains the same and this process is repeated until

we reach the image at the finest scale I0. An advantage we thus gain is that features at multiple scales

are captured during completion. On the other hand, a disadvantage is that if an error occurs at a coarse

scale, this may carry through the finer levels of the completion process. Fig. 14 shows a result produced

by our method for a multi-scale completion of a very high resolution input image.

More experimental results: Figures 15, 16 contain further results on image completion. These results

along with those in Figure 10 demonstrate the effectiveness of our method, which was tested on a wide

variety of input images. As can be seen from the presented examples, Priority-BP was able to handle

the completion of smooth regions, textured areas, areas with structure, as well as any combinations of

the above. Also, figure 17 contains some examples on texture synthesis. These were again produced by

utilizing our exemplar-based framework. For each of these examples, we placed the small input texture

into the upper left corner of a large empty area that should contain the output texture, and then let the

algorithm fill the rest of that area, thus synthesizing a larger texture. In addition, Figure 18 demonstrates

another possible application of Priority-BP. In this case, it has been used for accomplishing the task of

removing text from images, whereas, in Figure 19, Priority-BP has been employed as an image inpainting

tool for the restoration of a destroyed digital photograph. Our method had no problem of handling these

tasks as well. At this point, it is important to emphasize the fact that, in all of the above cases, exactly
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Fig. 15: Image completion results. From left to right: original images, masked images, visiting order at 1st forward

pass, Priority-BP results

the same algorithm has been used.

In Figure 20, we demonstrate an example of using the “incoherence penalty terms” in texture synthesis.

As one can observe, the output texture does contain large chunks of the input texture as desired. We

should also note that, for all of the presented examples (whether they are about image completion, texture

synthesis or image inpainting), the visiting order of the nodes during the first forward pass is shown as

well. This contributes to illustrating how the algorithm initially chooses to propagate information (i.e

messages) for each one of the input images. In our tests the patch size ranged between 7 × 7 and

27 × 27. The running time on a 2.4GHz CPU varied from a few seconds up to 2 minutes for 256×
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Fig. 16: Some more results on image completion, produced using the Priority-BP algorithm. From left to right:

original images, masked images, visiting order at 1st forward pass, Priority-BP results
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(a) Input

texture

(b) Visiting order during

1st forward pass
(c) Output texture

Fig. 17: Texture synthesis results produced with the Priority-BP algorithm

170 images, while the maximum number of labels Lmax was set between 10 and 50 (depending on the

input’s difficulty). For all of the examples, the belief thresholds were set equal to bconf =−SSD0 and

bprune=−2·SSD0, where SSD0 represents a predefined mediocre SSD score between w × h patches.

Composition of final patches: After the Priority-BP algorithm has converged and the final labels (i.e

patches) have been selected for each MRF node, we then need to compose them to produce the final

result. This can be achieved in many ways. One simple solution is the following: we visit again the nodes

of the MRF in the same order as they were visited during the last iteration of Priority-BP. Then, as we are

traversing the nodes, we compose the corresponding final patches by simply blending them with weights



26

(a) Input image with text (b) Visiting order at 1st forward pass (c) Priority-BP result

Fig. 18: An example of text removal

(a) Input image (b) Visiting order at 1st forward pass (c) Priority-BP result

Fig. 19: An image inpainting example

Fig. 20: Texture synthesis using the “incoherence penalty terms”. Notice that, in this case, the output texture has

been synthesized by copying large chunks from the input texture.

which are proportional to the nodes’ confidence (as estimated by the Priority-BP algorithm). This simple

technique has proved effective in practice and gave good results in most cases.

Another, more elaborate, way for performing the composition is to use an image blending technique

(as in [33]), or to apply a composition method similar to the one described in [20], [15]. Both of these

methods have been tested as well, and in both cases it was again important that the order by which
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R

C

xp p
xp

Fig. 21: Only region R ⊂ T has been filled so far by the composition of the final patches. We want to extend R
by seamlessly pasting the next selected patch xp onto the neighborhood of node p. One way for this is by finding

a curve C along which there is a seamless transition between the patch xp and the region R. In addition, one may

apply a smooth correction to the patch xp so that it matches seamlessly with the region R. The smooth correction

is obtained by solving a poisson equation over the neighborhood of node p, i.e over the blue rectangle.

the final patches were composed coincided with the visiting order of the nodes during the last iteration

of Priority-BP. Let us, for instance, assume that we want to seamlessly compose the patch xp (i.e the

final patch for node p) onto the region R, which is the region that has been constructed so far by the

composition of patches from all previously visited nodes (see Fig. 21). One way to achieve this is by

finding an optimal boundary C inside the region xp ∩R, so that the transition from R to xp along that

boundary is as seamless as possible. Depending on whether C is an open or closed curve, this problem

can be formulated either as a problem of dynamic programming [20], or as a minimum-cut problem [15]

respectively. Alternatively, another way for compositing xp with R is to apply a smooth correction to

patch xp so that a new patch x′
p is obtained, which seamlessly matches with region R. The image blending

technique in [33] can be used for this purpose, in which case the corrected patch x′
p is obtained merely

by solving a Poisson differential equation over the neighborhood region of node p. Other techniques,

such as multi-resolution splining [34], have been tried as well, and have also given good results.

Computing the MRF potential functions in the frequency domain: Finally, another point, that is

worth mentioning (as it brings a great reduction in the computational time), is the use of the Fast Fourier

Transform [35] for performing all the SSD calculations that are needed by the algorithm. More specifically,

the estimation of all label costs, as well as all pairwise potentials requires many SSD computations. E.g,

as indicated by equation (1), for estimating the label costs for a node p we need to calculate the SSD

between a local neighborhood around p, say I0(p + dp), and every other source patch, say I0(xp + dp),

with the result being multiplied by a mask M(p + dp), i.e:

Vp(xp) =
∑

dp

M(p + dp)
(

I0(p + dp) − I0(xp + dp)
)2

. (8)
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By defining, however, the following identities:

t , xp ,

I1(dp) , I0(p + dp),

M1(dp) , M(p + dp),

and substituting them into equation (8), that equation reduces to:

Vp(t) =
∑

dp

M1(dp)
(

I1(dp) − I0(t + dp)
)2

=
∑

dp

M1(dp)I1(dp)2 − 2
∑

dp

M1(dp)I1(dp)I0(t + dp) +
∑

dp

M1(dp)I0(t + dp)2,

which can be also written as an expression involving just correlations between functions, i.e:

Vp(t) = 〈M1,I
2
1 〉(0) − 2〈M1 · I1,I0〉(t) + 〈M1,I

2
0 〉(t).

In the above expression, the symbol 〈· , ·〉 denotes the correlation operation, which is defined as:

〈f, g〉(t) =
∑

x

f(x)g(x + t). (9)

Furthermore, the first term (i.e 〈M1,I
2
1 〉(0)) is independent of t, which means that it can be precomputed,

and so we can estimate all values of the function Vp(·) by using just two correlation operations. However,

the advantage we gain in this manner is that these correlations can now be computed very efficiently,

simply by moving to the frequency domain and using the Fast Fourier Transform (FFT) therein [36],

[37]. This way of performing the computations greatly accelerates the whole process and is applied for

estimating the pairwise potentials Vpq(·, ·) as well.

V. CONCLUSIONS

A novel approach unifying image completion, texture synthesis and image inpainting has been presented

in this paper. In order to prohibit visually inconsistent results, we try to avoid greedy patch assignments,

and instead pose all of these tasks as a discrete labeling problem with a well defined global objective

function. To solve this problem, a novel optimization scheme, Priority-BP, has been proposed, that carries

two very important extensions over standard BP: priority-based message scheduling and dynamic label

pruning. This optimization scheme does not rely on any image-specific prior knowledge and can thus be

applied to all kinds of images. Furthermore, it is generic (i.e applicable to any MRF energy) and thus
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copes with one of the main limitations of BP: its inefficiency to handle problems with a huge number

of labels. Also, experimental results on a wide variety of images have verified the effectiveness of our

method.

One interesting avenue of future work would be to extend our framework so that it can be used for

other types of completion problems as well. E.g it would be interesting to test our framework on problems

such as video completion or geometric completion. Also, in the future, we plan to allow the inclusion of

more “refinement terms” into our energy function. We believe that this will be a very elegant and easy-to-

apply way for allowing the user to impose either high-level or low-level constraints onto the completion

process. In this manner, the user could gain a finer control over the final result. Furthermore, this would

make our method suitable for problems such as, e.g, constrained texture synthesis. Finally, besides image

completion, we also plan to test our Priority-BP algorithm, which is a generic MRF optimization scheme,

to other labeling problems as well, for which the large cardinality of their state-space causes them to

have a very high computational cost.
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