- Ecole Centrale Paris

CENTRALE

P A R I S

LABORATOIRE MATHEMATIQUES APPLIQUEES AUX SYSTEMES

Fast Primal-Dual Strategiesfor MRF Optimization

Nikos Komodakis — Georgios Tziritas — Nikos Paragios

N° 0605
December 2006

Projet Orasis

RAPPORT DE RECHERCHE

TECHNICAL REPORT







Fast Primal-Dual Strategies for MRF Optimization

Nikos Komodakil, Georgios Tziritdb, Nikos Paragidk
Projet Orasis — Orasis

Rapport de recherche n° 0605 — December 200631 28 pages
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eralizesa-expansion. One of its main advantages is that it offers atanktial speedup over that
method, e.g. it can be at least 3-9 times faster thaxpansion. Its efficiency is a result of the fact
that Fast-PD exploits information coming not only from thiggmal MRF problem, but also from a
dual problem. Furthermore, besides static MRFs, it canla¢sosed for boosting the performance
of dynamic MRFs, i.e. MRFs varying over time. In additionsgiée being fast, Fast-PD makes
no compromise about the optimality of its solutions: it campute exactly the same answercas
expansion, but, unlike that method, it can also guarantednamst optimal solution for a much wider
class of NP-hard MRF problems. Results on static and dynMREs demonstrate the algorithm’s
efficiency and power. E.g. Fast-PD has been able to compspeardly for stereoscopic sequences in
real time, with the resulting disparity coinciding with thef a-expansion.
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Fast Primal-Dual Strategies for MRF Optimization

Résumé : Nous proposons un nouvel algorithme efficace d’optimisatiasé sur les champs de
Markov. Cet algorithme s’appelle Fast-PD, et généraliakgydrithme dex-expansion. Parmi ses
principaux avantages, nous notons sa grande rapiditéaonz la derniére méthode. Il peut étre de
3 a9 fois plus rapide que I'algorithme deexpansion. Il puise son efficacité dans I'exploitation des
informations qui émanent non seulement du champ de Markmaprmais aussi du probléme dual.
En outre, son utilisation pour accélérer les champs de Mestadiques s’étend aussi a I'amélioration
des performances des champs de Markov dynamiques, c’'est &alix qui varient au cours du
temps. En plus de sa rapidité, Fast-PD ne fait aucun comprguaint a I'optimalité de ses solutions

. il peut calculer les mémes solutions gaeexpansion, mais contrairement a cette méthode, il
peut aussi garantir une solution presque optimale pourlass&beaucoup plus large de problémes
NP-difficiles de champs de Markov. Les résultats obtenusiearchamps de Markov statiques et
dynamiques démontrent 'efficacité et la puissance de garihme. A titre d’exemple, Fast-PD
est utilisé pour calculer la disparité sur des séquencesagies stéréoscopiques en temps réel. La
disparité obtenue est la méme que celle qui résulte de fidhgoe dea-expansion.

Mots-clés : Fast-PD, Champs de Markov (Statiques et Dynamiques), anogiation linéaire,
optimisation.



Fast Primal-Dual Strategies for MRF Optimization 3

1 Introduction

Discrete MRFs are ubiquitous in computer vision, and thusriping them is a problem of funda-
mental importance. According to it, given a weighted grgpfwith nodesy, edges£ and weights
wpq), ONe seeks to assign a labg) (from a discrete set of labelS) to eachp € V, so that the
following cost is minimized:

Zpev cp(Tp) + Z(p,q)eg Wpad(Tp, Tq). (1)

In the above formulag,(-), d(-,-) determine the singleton and pairwise MRF potential fumstio
respectivelﬂ.

Up to now, graph-cut based methods, likeexpansion[[2], have been very effective in MRF
optimization, generating solutions with good optimalitpperties|[7]. However, besides solutions’
optimality, another importantissue is that of computagiagfficiency. In fact, this issue has recently
been looked at for the special case of dynamic MRF-§1[4, 3], M&Fs varying over time. Thus,
trying to concentrate on both of these issues here, we faés®liowing questions:

» Can there be a graph-cut based method, which will be moreieaffi but equally (or even
more) powerful, thamv-expansion, for the case of single MRFs?

» Furthermore, can that method also offer a computationedmtadge for the case of dynamic
MRFs?

With respect to the questions raised above, this work médieefotlowing contributions:

Efficiency for single MRFs: a-expansion works by solving a series of max-flow problems. It
efficiency is thus largely determined from the efficiencylwte max-flow problems, which,
in turn, depends on the number of augmenting paths per max+fiere, we build upon recent
work of [5], and propose a new primal-dual MRF optimizatioathod, called Fast-PD. This
method, like [[5] ora-expansion, also ends up solving a max-flow problem for aesesf
graphs. However, unlike these techniques, the graphsrootet by Fast-PD ensure that the
number of augmentations per max-flow decreases dramgtimadi time, thus boosting the
efficiency of MRF inference. To this end, we also prove a galimad relationship between
the number of augmentations and the so-cafigchal-dual gapassociated with the original
MRF problem and its dual. Furthermore, for fully exploititigs property two extensions are
also proposed: aadapted max-flow algorithpas well as afncremental graph construction
method.

Optimality properties: But, despite its efficiency, our method also makes no com®negard-
ing the optimality of its solutions. So, H(-,-) is a metric, Fast-PD is as powerful as
expansion, i.e. it computes exactly the same solution, litht avsubstantial speedup. More-
over, it applies to a much wider class of MIEFe.g. even with a non-metri&-, -), while still
guaranteeing an almost optimal solution.

IHereafterd(-, -) will be called simply a distance function
2Fast-PD requires onl§i(a, b) >0, d(a,b)=0<a=b

RR n° 0605



4 N. Komodakis, G. Tziritas, N. Paragios

Efficiency for dynamic MRFs: Furthermore, our method can also be used for boosting the effi
ciency of dynamic MRFs. We note here that many works have pegposed in this regard
recently [4[8]. These methods can be applied to dynamic MR&tsare binary or have convex
priors. On the contrary, Fast-PD naturally handles a mudemnélass of dynamic MRFs, and
can do so by also exploiting information from a problem, vhie dual to the original MRF
problem. Fast-PD can thus be thought of as a generalizatioreeious techniques.

The rest of the technical report is organized as follows. en B, we briefly review the work
of [§] about using the primal-dual schema for MRF optimiaati The Fast-PD algorithm is then
described in sed] 3. Its efficiency for optimizing single MRE further analyzed in seEl 4, where
related results and some important extensions of Fast-Bprasented as well. Sefl 5 explains
how Fast-PD can boost the performance of dynamic MRFs, awantains more experimental
results. Finally, we conclude in sectigh 6, while apperslig@and B contain technical proofs for the
theorems of this report.

2 Primal-dual MRF optimization algorithms

In this section, we review very briefly the work dfl [5]. Conerdthe primal-dual pair of linear
programs, given by:

PRIMAL : min ¢"x DUAL: max by
st Ax=b,x>0 st. ATy <c

One seeks an optimal primal solution, with the extra comdtaf x being integral. This makes for
an NP-hard problem, and so one can only hope for finding aroappate solution. To this end, the
following schema can be used:

Theorem 1(Primal-Dual schema)Keep generating pairs of integral-primal, dual solutigis, y'*),
until the elements of the last pair, sayy, are both feasible and have costs that are close enough,
e.g. theirratio is < fapp:

c'x < fapp - by 2)

Thenx is guaranteed to be aff,,,-approximate solution to the optimal integral solutief, i.e.
T T %
c'x < fapp- €' X",

The above schema has been usedlin [5], for deriving appraximalgorithms for a very wide
class of MRFs. To this end, MRF optimization was first castrae@uivalent integer program and
then, as required by the primal-dual schema, its linearnargiing relaxation and its dual were
derived. Based on these LPs (Linear Programs), the authemshow that, for Theorelth 1 to be true
with fapp=2 dnaxf] it suffices that the next (so-calleelaxed complementary slackngssnditions

dmin

3dmax =maXg£p d((l, b)7 dmin Emina#b d((l, b)

Laboratoire MAS
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[x,y] < INIT_DUALS_PRIMALS(); Xola<X
for each labet in £ do
y < PREEDIT_DUALS(¢,X,y);
[x',y'] <~ UPDATE_DUALS_PRIMALS(c,X,y);
y' «POSTEDIT_DUALS(c,x,y');
x—x; y—y'
end for
if x;éxold then
Xold+—X; (Oto2;
. endif

=
o

Fig. 1: The primal dual schema for MRF optimization.

hold true for the resulting primal and dual variables:

hp(xp) = mingeg hp(a), VpeV (3)
Ypa(Tp) + Yap(2q) = wped(p, 4),  VpgeEE (4)
Ypa(@) + Ygp(b) < 2Wpgdimax,  YpgEE,a€LbEL (5)

In these formulas, the primal variables, denoteckby{z, } ,cv, determine the labels assigned
to nodes (calledctive labeldhereafter), e.gr, is the active label of node Whereas, the dual vari-
ables are divided intbalanceandheightvariables. There exist 2 balance variables(a), yqp(a)
per edge(p, ¢) and labela, as well as 1 height variable,(a) per nodep and labela. Variables
Ypq(a), ygp(a) are also calledonjugateand, for the dual solution to be feasible, these are set oppo-

site to each other, i.e. y,,(-) = —ypq(-). Furthermore, the height variables are always defined in
terms of the balance variables as follows:
hp() = op(+) +Zq:qp€£ Ypa(")- (6)

Note that, due to[16), only the vectgr (of all balance variables) is needed for specifying a dual
solution. Furthermore, for simplifying conditiorld (£)){6ne can also define:
loadyg(a, b) = ypq(a) +ygp(b). (7)
Base on the above definition, conditioBk (4),(5) can be tewris:
loadpg (2p, q) = wped(zp, z4), Vpgel (8)
loadyq(a, b) < 2wpgdmax, Vpge€,aclL,bel 9)
and so, whenever we refer to conditiods (4),(5) hereaftervill implicitly refer to conditions[(B)[(P)
as well.
The main goal of a MRF primal-dual method is to satisfy allditions [3)-[5), and, to this end,

the primal-dual variables are iteratively updated untibthese conditions become true. The basic
structure of a primal-dual algorithm can be seen in Elg. 1rif@uan innerc-iteration (lines3-6 in

RR n° 0605



6 N. Komodakis, G. Tziritas, N. Paragios

(b) ©
hp(xp) . hp(C)--------.C.Q L.

Fig. 2: (a) Dual variables’ visualization for a simple MRF with 2 nodgs ¢} and 2 labels{a, c}. A copy
of labels{a, c} exists for every node, and all these labels are representédlls floating at certain heights.
The role of theheight variables,(-) is to specify exactly these heights. Furthermore, ballsatestatic, but
may move (i.e. change their heights) in pairs by updatingugatebalance variables E.g., here, balt atp
is pulled up by+6 (due to increasing,q(c) by +4d) and so balk at g moves down by-4 (due to decreasing
yqp(c) by —0). Active labels are drawn with a thicker circlgh) If label ¢ atp is belowz,, during ac-iteration,
then (due to[{B)) we want labelto raise and reach,. We thus connect nodeto the source with an edgesp
(i.e. pis ans-linked node), and flowfs,, represents the total raise ofwe also setap, , = hy(zp) — hp(c)).
(c) If label ¢ atp is abover,, during ac-iteration, then (due td13)) we want lahehot to go belowr,,. We thus
connect nodg to the sinkt with edgept (i.e. p is at-linked node), and flowf,. represents the total decrease in
the height ofc (we also setap,, = h,(c) —h, () S0 that labet will still remain abovez,,).

Fig. ), a labek is selected and a new primal-dual pair of soluti¢rS y’) is generated based on
the current paifx,y). To this end, among all balance variabigs(.), only the balance variables
of c-labels(i.e. y,4(c)) are updated during @&iteration. |£| such iterations (i.e. oneiteration per
label ¢ in £) make up an outer iteration (lin&s7 in Fig. [), and the algorithm terminates if no
change of label takes place at the current outer iteration.

The main update of the primal and dual variables takes plage DATE_DUALS_PRIMALS dur-
ing an inner iteration, and (as it was shownlih [5]) this updatiuces to solving a max-flow problem
in an appropriate grapf. Furthermore, the routin®REEDIT_DUALS andPOSTEDIT DUALS Sim-
ply apply corrections to the dual variables before and dfiismain update, i.e. to variablgsandy’
respectivelﬂ Also, for simplicity’s sake, note that we will hereaftereeto only one of the methods
derived in [5], and this will be the so-called PD&ethod.

3 Fast primal-dual MRF optimization

The complexity of the PD3primal-dual method largely depends on the complexity ofredk-flow
instances (one instance per inner-iteration), which, iin,tdepends on the number of augmentations

4Throughout this technical report, we use the following @artion for the notation of the dual variables during an inner
iteration: before th@ PDATE_DUALS_PRIMALSroutine, all dual variables are denoted without an accegtygy(-), hp(-).
After UPDATE_DUALS_PRIMALS has updated the dual variables, we always use an accentrfofintg these variables, e.g.
we writey,,. (-), hy,(-) in this case.

Laboratoire MAS



Fast Primal-Dual Strategies for MRF Optimization 7

per max-flow. So, for designing faster primal-dual algarith we first need to understand how the
graphgGe¢, associated with the max-flow problem at-#eration of PD3, is constructed.

To this end, we also have to recall the following intuitivéeirpretation of the dual variables [5]:
for each node, a separate copy of all labels ihis considered, and all these labels are represented
as balls, which float at certain heights relative to a refeegriane. The role of the height variables
h,(-) is then to determine the balls’ height (see Fiddre 2(a)). Ehg height of labek at nodep is
given byh,(a). Also, expressions like “label at p is below/above labdl” imply h,(a) < hy(b).
Furthermore, balls are not static, but may move in pairsutpinaupdating pairs of conjugate balance
variables. E.qg. , in Figulld 2(a), lahetp is raised by+4§ (due to addingt-d to y,,(c)), and so label
c atq has to move down by-¢ (due to adding-¢ to y,,(c) so that conditiony,,(c) = —yg,(c) still
holds). Therefore, the role of balance variables is to raidewer labels. In particular, the value of
balance variablg,,(a) represents the partial raise of lalehtp due to edgeyq, while (by [@)) the
total raise ofa atp equals the sum of partial raises from all edge§ aficident top.

Hence, PD3 tries to iteratively move labels up or down, until all conalits [3)-[%) hold true.
To this end, it uses the following strategy: it ensures thwaditions [#){b) hold at each iteration
(which is always easy to do) and is just left with the main tasknaking the labels’ heights satisfy
condition [3) as well in the end (which is the most difficultipaequiring each active label, to be
the lowest label fop).

For this purpose, labels are moved in groups. In particdlaing ac-iteration, only the--labels
are allowed to move (see Fifll 3). Furthermore, the main mewemf all c-labels (i.e. the main
update of dual variableg,, (c) andh,,(c) for all p, ¢) takes place iWPDATE_DUALS_PRIMALS, and
this movement has been shown that it can be simulated by mysiée maximum flow through a
directed graplgZ© (which is constructed based on the current primal-dual(paiy) at ac-iteration).
The nodes ofj¢ consist of all nodes of grapéi (the internal nodes), plus Zxternalnodes, the

—

inner c-iteration

| PREEDIT_DUALS |

l

UPDATE_DUALS_PRIMALS
L>(run max-flow in graphg®)

l

| POSTEDIT_DUALS |

—

Fig. 3: The basic structure of an innesiteration is shown here. During such an iteration, only ¢Habels
are allowed to move (i.e. only them can change their heightis¢ main movement of thelabels takes place
inside theUPDATE_DUALS_PRIMALS routine, and this movement is simulated by pushing the maxirfiow
through an appropriate directed graggph However, besides the movement duris@DATE_DUALS_PRIMALS,
c-labels also move before and after that routine as well. fiafgens because routine8BEEDIT_DUALS and
POSTEDIT_DUALS also apply corrections to the dual variables, and thesections take place before and after
max-flow respectively.

RR n° 0605
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cap,,

Q-0 |-

uo14324402

P
h(%)H- T h, () C?..hp(c) hiy(%,) ?p o (Iap
" N — § Vo

(a) before max-flow (b) after max-flow (c) after correction by
PREEDIT DUALS or POSTEDIT DUALS

Fig. 4: (a)Labelcatp is belowz,, and thus labet is allowed to raise itself in order to reaah. This means
that p will be an s-linked node of graplg©, i.e. cap,, > 0, and thus a non-zero floy, (representing the
total raise of labet in UPDATE_DUALS_PRIMALS) may pass through edga. Therefore, in this case, edge
sp may become part of an augmenting path during max-figay.After UPDATE_DUALS_PRIMALS (i.e. after
max-flow), labelc has managed to raise lfy, and reachr,. Since it cannot go higher than that, no flow
can pass through edge, i.e. cap,, = 0, and so no augmenting path may traverse that edge there@fjer
However, due to some correction applied laterdabel’s height byPREEDIT_DUALS Or POSTEDIT_DUALS,
label c has dropped below, once more ang has become as-linked node again (i.ecap,,, > 0). Edgesp
can thus be part of an augmenting path again (as in (a)).

sources and the sink. In addition, all nodes of¢ are connected by two types of edgé&sterior
andexterior edges. Interior edges come in paikg gp (with one such pair for every 2 neighbors
p,q in G), and are responsible for updating the balance variableésgluPDATE_DUALS_PRIMALS.

In particular, the corresponding flows,/f,, represent the increase/decrease of balance variable
Ypq(C), 1.8, Yy, (c) = ype(c) + fpg — fop- AlsO, as we shall see, the capacities of these edges are
responsible to ensure (along WIHREEDIT DUALS, POSTEDIT DUALS) that conditions[{}),[[5)
hold true.

But for now, in order to understand how to make a faster priduall method, it is the exterior
edges (which are in charge of the update of height variahlaeglUPDATE_DUALS_PRIMALS), as
well as their capacities (which are left with ensuring coiodi (3) on their own), that are of interest
to us. The reason is that these edges determine the numbdinkéd nodes, which, in turn, affects
the number of augmenting paths per max-flow. In particulacheanternal node connects to either
the sources (i.e. it is ans-linked node) or to the sink (i.e. it is at-linked node) through one of
these exterior edges, and this is done (with the goal of amp|{d)) as follows: if labek at p is
abover, during ac-iteration(i.e. h,(c) > h,(x,)), then labek should not go below,, or else[[(B)
will be violated forp. Nodep thus connects tothrough directed edget (i.e. p becomeg-linked),
and flow f, represents the total decrease in the heightadiringUPDATE_DUALS_PRIMALS, i.e.
hi,(c) = hp(c) — fp (see Fig.[R(c)). Furthermore, the capacitypofs set so that label will still
remain above,, i.e.cap,; = hy(c) —hy(z,). Onthe other hand, if labelatp is below active label
zp (i.e. hy(c) < hyp(zp)), then (due to[{B)) label should raise so as to reaeh, and sop connects
to s through edgep (i.e. p becomes-linked), while flow f,, represents the total raise of balli.e.
hi,(c)=hyp(c)+ fsp (se€ FigLR(b)). In this case, we also &b, =y () —hy(c).

Laboratoire MAS
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[x,y]<—INIT _DUALS_PRIMALS (): X<+ random labels; y < O0;
g, adjust Ypq(Tp) o Ygp(T4) so that loadpq(Tp, Tq) =wped(Tp, T4)

y<—PREEDIT_DUALS(¢,X,y):
Vg, if loadpg(c, zq) >wped(c, xq) or loadpq(zp, ) > wped(zp, )
adjust ypq(c) so that loadpq(c, 4) =wped(c, z4)

[x',¥']<—UPDATE_DUALS_PRIMALS (¢,X,y): X «xX; ¥y «¥;
Construct G° and apply max-flow to compute all flows fop/fpt, fpq

D4, Ypa(€) < Ypa(€)+ fog— fap
VW , if an unsaturated path from s to p exists, then $;<—c

y'<POSTEDIT_DUALS(c,x’,y’): {We denote load,(-,-) =vpe(")+¥4p(-)}
Vg, if loady, (z),, Ty) > wped(xy, ©y) {This implies zj,=c or z;=c}

adjust y,,(c) so that load,, (xy, £4) =wped(xy, T7)

Fig. 5: Fast-PD’s pseudocode.

This way, by pushing flow through the exterior edgegtfall c-labels that are strictly below an
active label try to raise and reach that label dunian)ATE_DUALS_PRIMALSﬂ. Not only that, but
the fewer are the-labels below an active label (i.e. the fewer aredlimked nodes), the fewer will
be the edges connected to the source, and thus the less whk mimber of possible augmenting
paths. In fact, the algorithm terminates when, for any lapgklere are no morelabels strictly below
an active label (i.e. ne-linked nodes exist and thus no augmenting paths may be joimahich
case condition[{3) will finally hold true, as desired. Puttfeo way,UPDATE DUALS_PRIMALS
tries to pushe-labels (which are at a low height) up, so that the numberlotked nodes is reduced
and thus fewer augmenting paths may be possible for the teeation.

However, althougluPDATE_DUALS_PRIMALS tries to reduce the number eflinked nodes (by
pushing the maximum amount of flowpREEDIT_DUALS or POSTEDIT DUALS very often spoil
that progress. As we shall see later, this occurs becausedar to restore conditiofl(4) (which
is their main goal), these routines are forced to apply otioes to the dual variables (i.e. to the
labels’ height). This is abstractly illustrated in Figlitewhere, due ta/PDATE_DUALS_PRIMALS
(i.e. due to max-flow), a-label has initially managed to reach an active labglbut it has again
dropped below:,,, due to some correction by these routines. In fact, as onstoam, the only point
where a nevg-linked node can be created is during eith@EEDIT_DUALS Or POSTEDIT DUALS.

To fix this problem, we will redefineREEDIT _DUALS, POSTEDIT_DUALS so that they can now
ensure conditior{4) by using just a minimum amount of cdioes for the dual variables, (e.g. by
touching these variables only rarely). To this end, howavebATE_DUALS_PRIMALS needs to be
modified as well. The resulting algorithm, called Fast-Pérries the following main differences
over PD3 during ac-iteration (its pseudocode appears in [Eig. 5):

SEquivalently, ifc-label atp cannot raise high enough to reaef, UPDATE_DUALS_PRIMALS then assigns thatlabel
as the new active label ¢f (i.e. 2;,=c), thus effectively making the active label go down. This@again helps condition
@) to become true, and forms the main rationale behind tlatepof the primal variables in UPDATE_DUALS_PRIMALS.

RR n° 0605



10 N. Komodakis, G. Tziritas, N. Paragios

- the newPREEDIT_DUALS modifies a paiy,,(c), yqp(c) of dual variables only when absolutely
necessary. So, whereas the previous version modified tlaesdles (thereby changing the height
of a c-label) whenevet+#x,, c#x, (which could happen extremely often), a modification is now
applied only ifload,q(c, 2q) >wpqd(c, z4) OF loadyg (2, ) >wped(zp, ¢) (Which, in practice, hap-
pens much more rarely). In this case, a modification is neésel code in Fig[d5), because the
above inequalities indicate that conditifh (4) will be wt&d if either(c, z,) or (z,, c) become the
new active labels fop, q. On the contrary, no modification is needed if the followingqualities
are true:

loadyq (¢, Tq)Swpgd(c, ), 1oadyg(wp, €)<wped(zyp, €),

because then, as we shall see below, the meBATE_DUALS_PRIMALS can always restorgl(4) (i.e.
even if(c, z,) or (z,, c) are the next active labels - e.g. , Sed (14)). In fact, the fivatiion toy,,(c)
that is occasionally applied by the n@REEDIT DUALS can be shown to be the minimal correction
that restores exactly the above inequalities (assumingpufse, this restoration is possible).

- Similarly, the balance variableg, (z;,) (with z;, = ¢) or y, (z7) (with 2}, = c) are modi-
fied much more rarely by the nemOSTEDIT DUALS. So, whereas the previous version modified
these variables (thereby changing the height eflabel) whenever they were negative (which, in
practice, happened most of the time), the new routine apalimodification only itoad;q(:c;,, T )>
Wpqd (), x;)ﬂ which may happen only in very seldom occasions (e.qg. if teadce functior(-, -)
is a metric, one may then show that this can never happerfe labove inequality does hold true,
thenPOSTEDIT DUALS simply needs to redudead;q (z,, ;) SO as to just restorgl(4).

- But, to allow for the above changes, we also need to mod#yctimstruction of grapf© in
UPDATE_DUALS_PRIMALS. In particular, forc#£z, andc#x,, the capacities of interior edgps, ¢p
must now be set as follovlk:

cap,, = [wped(c, 24) —loady,(c, xq)}+ ) (10)
+
CaPgp = [wmd(xpvC)_loadpq(xpvc)] ) (11)

where[z]T=max(z, 0). Besides ensuring conditidd (5) (by not letting the balarazébles increase
too much), the main rationale behind the above definitiomt&rior capacities is to also ensure that
(after max-flow) condition[{4) will be met by most pais, ¢), no matter if(c, z,) or (z,,c) are
the next labels assigned to them (which is good, since wethiid manage to avoid the need for a
correction byposTEDIT DUALS for all but a fewp, ¢). To see this, the crucial thing to observe is
that if, say,(c, z,) are the next labels fgrandg, then capacityap,,, can be shown to represent the
increase ofoad,,(c, z,) after max-flow, i.e. :

load),, (¢, z4) = loadyy(c, z4) + cap,,. (12)
Hence, if the following inequality is true as well:
loadyq (¢, z4) < wped(c, z4) , (13)

then condition[{) will do remain valid after max-flow, as flelowing trivial derivation shows:

®As in {@), we defindoad’,, (a, b) =}, (a)+ 1y, (b) for‘ variablley’.
If c=xp OF c=1gq, thencap,,,=cap,,,=0 as before, i.e. as in PR3
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exterior capacities interior capacities
cap,,=[h,(x,)-h, ()] pr cicap,=[w,d(c,x,)-load,(c,x)]* X7 Cican 0
cap,=[h,(c)-hy(x,)1" Xq# C cap,=[w,d(x,,c)-load,(x,,c)I* X, = CiCaRy™ 0

Fig. 6: Capacities of grapy©, as set by Fast-PD.

load), (¢, z) P load, (¢, 2g) + [wpgd(c, z4) — loadyg(c, 2]
© load,g(c, 24) + [wped(c, T4) — loadyy (¢, x4)] = wped(c, 24) (14)

But this means that a correction may need to be applieBd®TEDIT DUALS only for pairsp, ¢
violating (I3) (before max-flow). However, such pairs teade very rare in practice (e.g. , as one
can prove, no such pairs exist whéfy, -) is a metric), and thus very few corrections need to take
place.

Fig. [@ summarizes how Fast-PD sets the capacities for abedfc. As already mentioned,
based on the interior capacities, one may show HrIATE_DUALS_PRIMALS (with the help of
PREEDIT_DUALS, POSTEDIT DUALS in a few cases) ensurdd (d),(5), while, thanks to the exterio
capacitiesSUPDATE_DUALS_PRIMALS can ensurd{3). As a result, the next theorem holds (see ap-
pendix A for a complete proof):

Theorem 2. The last primal-dual pai(x,y) of Fast-PD satisfies conditiorf8)-(E), and sox is an
fapp-approximate solution.

In fact, Fast-PD maintains all good optimality propertiéthe PD3, method. E.g. , for a metric
d(-,-), Fast-PD proves to be as powerful@gxpansion (see appendix B for a proof):

Theorem 3. If d(-,-) is a metric, then the Fast-PD algorithm computes the bestpansion after
anyc-iteration.

4 Efficiency of Fast-PD for single MRFs

But, besides having all these good optimality propertiegrg important advantage of Fast-PD over
all previous primal-dual methods, as well@gxpansion, is that it proves to be much more efficient
in practice.

In fact, the computational efficiency for all methods of tkisd is largely determined from the
time taken by each max-flow problem, which, in turn, dependthe number of augmenting paths
that need to be computed. For the case of Fast-PD, the nurhbegmentations per inner-iteration
decreases dramatically, as the algorithm progresses.Fagy-PD has been applied to the problem
of image restoration, where, given a corrupted (by nois&)ge one seeks to restore the original
(uncorrupted) image back. In this case, labels correspmimdensities, while the singleton potential
functionc,(-) was defined as a truncated squared differepee = min{|,—a|?, 10*} betweenthe
label and the observed intensity at pixelp. Fig.[7{Bb) contains a related result about the denoising
of a corrupted (with gaussian noise) “penguin” image (25@laand a truncated quadratic distance
d(a,b) = min(|a — b|?, D) - whereD = 200 - were also used in this case). F[g-_P(a) shows the
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12 N. Komodakis, G. Tziritas, N. Paragios

[€) oisy ' (b) Restoration of the
“penguin”image “penguin’image by
the Fast-PD algorithm

(d) Corresponding disparity as
estimated by Fast-PD

(f) Corresponding disparity as
estimated by Fast-PD

(e) “SRI tree"image

Fig. 7: Image restoration and stereo matching results by the Hastdgorithm.

corresponding number of augmenting paths per outer-iteréite. per group of£| inner-iterations).
Notice that, for bothv-expansion, as well as PR3this number remains very high (i.e. almost over
2 - 10% paths) throughout all iterations. On the contrary, for theecof Fast-PD, it drops towards
zero very quickly, e.g. only 4905 and 7 paths had to be foumihgihe 8" and last outer-iteration
respectively (obviously, as also shown in Hig._IP(a), thisally affects the total time needed per
outer-iteration). In fact, for the case of Fast-PD, it ispgipical that, after very few inner-iterations,
no more than 10 or 20 augmenting paths need to be computedgefiow, which really boosts the
performance in this case.
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dual costs primal costs
———————————————————— \‘\’_ gapk—> o A ~

n n n n n n
dual, = dual, 7> dual, primal,«—primalg——primal,

(a) High-level view of the Fast-PD algorithm

fixed dual cost primal costs
9apy 4 - N

* n . n .l . .l
dual, primal, «—primalg——primal,

(b) High-level view of thex-expansion algorithm

Fig. 8: (a) Fast-PD generates pairs of primal-dual solutions iteggtiwvith the goal of always reducing the
primal-dual gap (i.e. the gap between the resulting primdl dual costs). But, for the case of Fast-PD, this
gap can be viewed as a rough estimate for the number of augtiser®t, and so this number is forced to reduce
over time as well(b) On the contraryx-expansion works only in the primal domain (i.e. itis as ifxefl dual
cost is used at the start of each new iteration) and thus thepdual gap can never become small enough.
Therefore, no significant reduction in the number of augiations takes place as the algorithm progresses.

This property can be explained by the fact that Fast-PD ramistboth a primal, as well as a
dual solution throughout its execution. Fast-PD then masag effectively use the dual solutions of
previous inner iterations, so as to reduce the number of anting paths for the next inner-iteration.
Intuitively, what happens is that Fast-PD ultimately waotslose the gap between the primal and
the dual cost (see Theordih 1), and, for this, it iterativelgeyates primal-dual pairs, with the goal
of decreasing the size of this gap (see I[Fig:]8(a)). But, fet-P®, the gap’s size can be thought of
as, roughly speaking, an upper-bound for the number of anginggpaths per inner-iteration. Since,
furthermore, Fast-PD manages to reduce this gap at any lirmaghout its execution, the number
of augmenting paths is forced to decrease over time as well.

On the contrary, a method like-expansion, that works only in the primal domain, ignorealdu
solutions completely. It is, roughly speaking, asi&xpansion is resetting the dual solution to zero
at the start of each inner-iteration, thus effectively fitipg that solution thereafter (see Hig. 8(b)).
For this reason, it fails to reduce the primal-dual gap and thso fails to achieve a reduction in
path augmentations over time, i.e. across inner-iteratibtowever, not only the-expansion, but
the PD3 algorithm as well fails to mimic Fast-PD’s behavior (desfieing a primal-dual method).
As explained in sed13, this happens because, in this e@&EDIT_DUAL andPOSTEDIT DUAL
temporarily destroy the gap just before the stattPDATE_DUALS_PRIMALS, i.e. just before max-
flow is about to begin computing the augmenting paths. (Niteourse, that this destruction is only
temporary, and the gap is restored again after the execoftioRDATE_DUALS_PRIMALS).

The above mentioned relationship between primal-dual gdmamber of augmenting paths is
formally described in the next theorem:

Theorem 4. For Fast-PD, the primal-dual gap at the current inner-itéian forms an approximate
upper bound for the number of augmenting paths at each itrdhereafter.
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14 N. Komodakis, G. Tziritas, N. Paragios

Proof. The same dual linear program aslih [5] has been used, and soshef a dual solution is
defined as:

dual cost = miILl hp(a) , (15)
aec
which implies that:
dual cost <Y " min(hy(c), hy(x,)) (16)

P

Furthermore, in the case of the Fast-PD algorithm, it carhlogva that the following equality will
hold before the start of max-flow at an inner-iteration (sFerhd B.1L):

primal cost = Z hp(xp) a7
P

Based on[(16)[{17), the following inequality then results:

primal dual gap = primal cost — dual cost > Z hyp(zp) — Z min(hy(c), hp(zp))
P P
= [hp(ap) = hp(e)]t =) cap,,.  (18)
P p

But the quantityzp cap,,, obviously forms an upper-bound on the maximum flow during a
iteration, which, in turn, upper-bounds the number of augting paths (assuming integral flows).
In addition to that, the upper bound definedm cap,,, Will not increase during any of the next
c-iterations (which means that the number of augmentatiolhkeep decreasing over time), and so
the current primal-dual gap will be an approximate uppemdor the number of augmentations of
the nexic-iterations as well.

The fact that the upper boud,, cap,, = > [hp(2p) — hp(c)] ™ will notincrease during any of
the next iterations may be justified by that any of the tefiméz,, ) — h,,(c)]* canincrease only dur-
ing eitherPREEDIT_DUALS Or POSTEDIT DUALS (itis easy to show thatPDATE_DUALS_PRIMALS
may only decrease the value of these terms). However AREEDIT DUALS andPOSTEDIT DUALS
modify the height variables,(-) only in very rare occasions during the execution of Fast-€D.(
if d(-,-) is a metric, one may prove that none of the height variablesl ne be altered bposTe
DIT_DUALS). Hence, the term:, (x,,) — h,(c)]™ will typically not be altered by these routines (or
they will be altered by a negligible amount at most), and sy @PDATE_DUALS_PRIMALS may
modify these terms, thus decreasing their values.

O

Due to the above mentioned property, the time per outestiter decreases dramatically over
time. This has been verified experimentally with virtuallymoblems that Fast-PD has been tested
on. E.g. Fast-PD has been also applied to the problem ofosteaéching. In this case, the conven-
tional measure of SSD (sum of squared differences) or SAB @uabsolute differences) has been
used for the singleton potentials(-). Fig.[7{d) contains the resulting disparity (of siz®t x 288
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Fig. 9: (a) Number of augmenting paths per outer iteration for the “pémigexample (similar results hold for
the other examples as well). Only in the case of Fast-PDniisber decreases dramatically over tin(le)
This property of Fast-PD is directly related to the decregsiumber ok-linked nodes per outer-iteration (this
number is shown here for the same example as in (a)).
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Fig. 10: Total time per outer iteration for th@) “penguin”, (b) “Tsukuba” and(c) “SRI tree” examples(d)
Resulting total running times for the same examples. (We tiwit for all experiments of this paper, a 1.6GHz
laptop has been used).
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with 16 labels) for the well-known “Tsukuba” stereo pair, iletfig. [/{T] contains the resulting dis-
parity (of size 256233 with 10 labels) for an image pair from the well-known “SRe” sequence
(in both cases, a truncated linear distari¢e b) = min(ja — b|, D) - with D =2 andD =5 - has
been used, while the weights,, were allowed to vary based on the image gradiep aFigures
[LO(B}[TI0(d) contain the corresponding running times pégrateration. Notice how much faster the
outer-iterations of Fast-PD become as the algorithm pesg® e.g. the last outer-iteration of Fast-
PD (for the “SRI-tree” example) lasted less than 1 msec ésias it turns out, only 4 augmenting
paths had to be found during that iteration). Contrast tliis the behavior of either the-expansion
or the PD3 algorithm, which both require an almost constant amouninoé tper outer-iteration,
e.g. the last outer-iteration afexpansion needed more than 0.4 secs to finishi{ieas more than
400 times slower than Fast-PD’s iteratign!Similarly, for the “Tsukuba” exampley-expansion’s
last outer-iteration was more than 2000 times slower that-PB's iteration.

4.1 Max-flow algorithm adaptation

However, for fully exploiting the decreasing number of patlymentations and reduce the running
time, we had to properly adapt the max-flow algorithm. To #isl, the crucial thing to observe
was that the decreasing number of augmentations was giretdted to the decreasing number of
s-linked nodes, as already explained in sEt. 3. E.g.[fig:] 9{b)vs how the number of-linked
nodes varies per outer-iteration for the “penguin” exanfpligh a similar behavior being observed
for the other examples as well). As can be seen, this numleeases drastically over time. In fact,
as implied by condition[{3), ne-linked nodes will finally exist upon the algorithm’s termaiion.
Any augmentation-based max-flow algorithm striving for gantational efficiency, should certainly
exploit this property when trying to extract its augmentoaghs.

The most efficient of these algorithni$ [1] maintains 2 se&esds for the fast extraction of these
paths, asourceand asinktree. Here, the source tree will start growing by exploriog+saturated
edges that are adjacentddinked nodes, whereas the sink tree will grow starting fralirt-linked
nodes. Of course, the algorithm terminates when no adjases#turated edges can be found any
more. However, in our case, maintaining the sink tree is detaly inefficient and does not exploit
the much smaller number eflinked nodes. We thus propose maintaining only the soure t
during max-flow, which will be a much cheaper thing to do hexg( , in many inner iterations,
there can be fewer than X8linked nodes, but many thousandstdinked nodes). Moreover, due
to the small size of the source tree, detecting the ternuinaif the max-flow procedure can now
be done a lot faster, i.e. without having to fully expand thegé sink tree (which is a very costly
operation), thus giving a substantial speedup. In addttiadhat, for efficiently building the source
tree, we keep track of adi-linked nodes and don'’t recompute them from scratch each. timour
case, this tracking can be done without cost, since, asiegglan sec[13, as-linked node can be
created only inside theREEDIT_DUALS or thePOSTEDIT_DUALS routine, and thus can be easily
detected. The above simple strategy has been extremettiedféor boosting the performance of
max-flow, especially when a small number of augmentationsweeded.
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300 suboptimality 9000 ___ suboptimality
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inner iteration inner iteration
(b) Suboptimality bounds for image

(a) Suboptimality bounds for stereo matching restoration

Fig. 11: Suboptimality bounds (per inner iteration) for a stereoahialg problem (“Tsukuba” example), as
well as for an image restoration problem (“penguin” examphes can be seen, in both cases the bounds drop
to 1 very fast, meaning that the corresponding solutiong limacome almost optimal very early (i.e. in very
few iterations).

4.2 Incremental graph construction

But besides the max-flow algorithm adaptation, we may alsdifythe way graplg¢ is constructed.
l.e. instead of constructing the capacitated grgptirom scratch each time, we also propose an
incremental way of setting its capacities. The followingntea turns out to be crucial in this regard:

Lemma 1. Let G°, G° be the graphs for the current and previousteration. Let alsop, ¢ be 2
neighboring MRF nodes. If, during the interval from the poexs to the current-iteration, no
change of label took place fgrandg, then the capacities of the interior edges ¢p in G¢ and of
the exterior edgesp, pt, sq, ¢t in G¢ equal the residual capacities of the corresponding edgéssin

The proof follows directly from the fact that if no change abkl took place fop, ¢, then none
of the height variables,, (z,), hy(z,) or the balance variableg, (x, ), y4»(z,) could have changed.
Due to the above lemma, for building gragh, we can simply reuse the residual graphgéfand
only recompute those capacities @f for which the above lemma does not hold. This way, an
additional speedup can be obtained in some cases.

4.3 Combining speed with optimality

Fig. [I0{d) contains the running times of Fast-PD for varibl®F problems. As can be seen from
that figure, Fast-PD proves to be much faster than eithem{e)q)ansioﬂ or the PD3 method, e.g.
Fast-PD has been more than 9 times faster th@xpansion for the case of the “penguin” image
(17.44 secs vs 173.1 secs). In fact, this behavior is a typiwa, since Fast-PD has consistently
provided at least a 3-9 times speedup for all the problemasdtieen tested on. However, besides
its efficiency, Fast-PD does not make any compromise regguttie optimality of its solutions. On
one hand, this is ensured by theordhEl 2, 3. On the other hastdPP, like any other primal-dual
method, can also tell for free how well it performed by alwpysviding a per-instance suboptimality

8We note that the publicly available implementation [Gf [75Hmeen used for the-expansion algorithm. Furthermore,
sincea-expansion cannot be applied whéf, -) is not a metric, the extension proposedLih [6] has been usetidacases
where a non-metric distance functidf, -) was needed.
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bound for its solution. This comes at no extra cost, sinceratig between the cost of a primal
solution and the cost of a dual solution can form such a bokmgl. fig.[T1 shows how these ratios
vary per inner-iteration for the “tsukuba” and “penguinbptems (with similar results holding for
the other problems as well). As one can notice, these ratigs th 1 very quickly, meaning that
an almost optimal solution has already been estimated dtenjast a few iterations (and despite
the problem being NP-hard). Before proceeding, we showdd ambte that no special tuning of
either the singleton or the pairwise potential functioraktplace for deriving the results in Figute 7.
Therefore, by properly adjusting these functions with mezaee, even better results may be obtained
by the Fast-PD algorithm. E.g. Figurel 12 displays the regytlisparity (for the “Tsukuba” image
pair), when a Potts function (instead of a truncated lineacfion) has been used as the distance
functiond(-, -).

5 Dynamic MRFs

But, besides single MRFs, Fast-PD can be easily adaptedadbalost the efficiency for dynamic
MRFs [4], i.e. MRFs varying over time, thus showing the gafigr and power of the proposed
method. In fact, Fast-PD fits perfectly to this task. The iaiphssumption here is that the change
between successive MRFs is small, and so, by initializiegcirrent MRF with the final (primal)
solution of the previous MRF, one expects to speed up interef significant advantage of Fast-PD
in this regard, however, is that it can exploit not only poesd MRF’s primal solution (say), but
also its dual solution (say). And this, for initializing current MRF’s both primal andidl solutions
(sayx,y).

Obviously, for initializingx, one can simply set=x. Regarding the initialization of, however,
things are slightly more complicated. For maintaining FRBts optimality properties, it turns out
that, after settingy =y, a slight correction still needs to be appliedyto In particular, Fast-PD
requires its initial solutiory to satisfy conditionll), i.eypq () +ygp(2q) =wped(zp, 24), Whereas
y satisfiesy,g(zp) + Yop(24) = Wped(zp, 4), i€, condition ) withw,,d(-,-) replaced by the
pairwise potentiao,,d(-, -) of the previous MRF. The solution for fixing that is very simpé.g. we

Fig. 12: Disparity for the “Tsukuba” image as estimated by the Fd3t@Ryorithm in the case where a Potts
function has been used for the distawe -).
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Fig. 13: Statistics for the “SRI tree” sequence.

can simply sely,q () +=wpqd(z), T4)—wWped(x,, z4). Finally, for taking into account the possibly
different singleton potentials between successive MRiesnew heights will obviously need to be
updated a&, (-)+=c,(-)—¢,(-), wherec, () are the singleton potentials of the previous MRF. These
are the only changes needed for the case of dynamic MRFshardtte new pseudocode appears
in Fig.[13.

As expected, for dynamic MRFs, the speedup provided by IFBsis even greater than single
MRFs. E.qg. Fig[I3(&) shows the running times per frame fer'8RI tree” image sequence. Fast-
PD proves to be be more than 10 times faster thh@xpansion in this case (requiring on average 0.22
secs per frame, whereasexpansion required 2.28 secs on average). Fast-PD caruthos about
5 frames/sec, i.e. it can do stereo matching almost in naal tor this example (in fact, if successive
MRFs bear greater similarity, even much bigger speedupbeachieved). Furthermore, f[g. 13(b)

[x,¥]<INIT _DUALS_PRIMALS (X,¥):
X=X Yy,
W4, Ypq(Tp) +=Wped(Tp, Tq) —Wped(Tp, Tq);
W, hp() +=cp(-) = (-);

Fig. 14: Fast-PD’s new pseudocode for dynamic MRFs.
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Fig. 15: The final costs primal, dual, of the previous MRF are slightly perturbed to give the initasts
primalk, dual, of the current MRF. Therefore, the initial primal-dual gdgtee current MRF will be close to
the final primal-dual gap of the previous MRF. Since the tagesmall, so will be the former, and thus few
augmenting paths will need to be computed for the current MRF
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Fig. 16: Fast-PD reduces the number of augmenting paths in 2 wayanaily, i.e. across iterations of the
same MRF (see red arrows), as well as externally, i.e. adifiesent MRFs (see blue arrow).

shows the corresponding number of augmenting paths peeffanthe “SRI tree” image sequence
(for both a-expansion and Fast-PD). As can be seen from that figure,sasulal reduction in the
number of augmenting paths is achieved by Fast-PD, whigishieat algorithm to reduce its running
time.

This same behavior has been observed in all other dynamibgns that Fast-PD has been tested
on as well. Intuitively, what happens is illustrated in FIg. Fast-PD has already managed to close
the gap between the costs prigaadua), of the final primal-dual solutions, y of the previous MRF.
However, due to the possibly different singlet@e. c,(-)) or pairwise(i.e. w,q,d(-, -)) potentials of
the current MRF, these costs need to be perturbed to gerleeatests primal, dual, for the initial
solutionsx, y of the current MRF. Nevertheless, as only slight pertudretitake place, the new
primal-dual gap (i.e. between primaldual;) will still be close to the previous gap (i.e. between
primalk, dual;) and will remain small. Few augmenting paths will therefbexe to be found for
the current MRF, and thus the algorithm’s performance istexh

Put otherwise, for the case of dynamic MRFs, Fast-PD mariade®st performance, i.e. reduce
number of augmenting paths, across two different “axesg firist axis lies along the differentinner-
iterations of the same MRF (e.g. see red arrows in[Ely. 16¢reds the second axis extends across
time, i.e. across different MRFs (e.g. see blue arrow in[[E§y.connecting last iteration of MRF!
to first iteration of MRF).
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6 Conclusions

In conclusion, a new graph-cut based method for MRF optitinindhas been proposed. It general-
izesa-expansion, while it also manages to be substantially fésée this state-of-the-art technique.
Hence, regarding optimization of static MRFs, this methoavijgles a significant speedup. In ad-
dition to that, however, it can also be used for boosting tbégomance of dynamic MRFs. In
both cases, its efficiency comes from the fact that it exploifformation not only from the “primal”
problem (i.e. the MRF optimization problem), but also frorfdaal” problem. Moreover, despite
its speed, the proposed method can nevertheless guarémtest aptimal solutions for a very wide
class of NP-hard MRFs. Due to all of the above, and given thguity of MRFs, we strongly be-
lieve that the Fast-PD algorithm can prove to be an extrewalyable tool for many problems in
computer vision in the years to come.
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Appendix A: Proof of Theorem [2 about the optimality of Fast-
PD’s solutions
The purpose of this section is to provide the proof for ThedBe which certifies that the solutions

estimated by the Fast-PD algorithm have guaranteed ojptynmabperties. But before that, the
following 3 lemmas need to proved first:

LemmaA.l
During a c-iteration, the following inequalities hold true exactly fter up-
DATE_DUALS_PRIMALS:

y;q (C) S Ypq (C) + Ca'ppq (19)
y;p(c) S yqp (C) + Ca’pqp (20)

Proof. An intuitive proof comes from the fact that flowfs, and f,, represent the increase of the
balance variableg,,(c) andy,,(c) respectively durinQyPDATE_DUALS_PRIMALS. Since it is al-
ways true that:

frg < capy,
fap < capgy,
the lemma then follows directly. O
Lemma A.2 During ac-iteration, the following entailments hold true:
load,, (¢, Ty) < wped(c, T4) = load’ py(c, Ty) < wped(c, Z,) , (21)
loadg (Zp, €) < wped(Tp, ¢) = load’ pg(Zp, €) < wped(Zp, ) , (22)
wherex can be any labeling which is@expansion of the primal soluticenat the start of the current

c-iteration. (In the above entailments, quantitiesd,(c, Z,), load,(Z,, ¢) are supposed to have
been estimated using the value of the balance variabledlgxater PREEDIT_DUALS).

Proof. If Z, = cthen [21) is trivial to prove. We may therefore assume ihat x, # c (sincex
is ac-expansion ok). So, in order to prove(21), let us then also assume that:

loadpg (¢, 24) < wped(c, zq) (23)
But then, by combining Lemn{aZA.1 with the definition of cagpchp,,, in (L), we get:

© @
y:;q(c) < Ypgle) + Cappg, = Ypq (¢) + [wpqd(c, 74) — loady,(c, xq)]Jr

(i)}
= Ypq(c) + wped(c, z4) — loadyy(c, 74)

TqFC
= wpqd(c,24) = Ygp(q) = wped(c,z4) — y;p(fq)

which thus proved121). The proof fdr{22) proceeds simjlarl O

Laboratoire MAS



Fast Primal-Dual Strategies for MRF Optimization 23

Lemma A.3 At the lastc-iteration of the Fast-PD algorithm, the following ineqitads hold (for
anyp, q):

load),, (¢, ) < wpgdmax (24)
10ad;q (m;, C) S wpqdmax (25)

Proof. The lemmaiis trivial if either = 27, or c = x;, and so we will hereafter assume that z;,
andc # ;. Furthermore, since this is the lasiteration, no label change takes place, and so:

T, =Ty, T, =, (26)
CAsE 1: If the following two inequalities hold true:

load,q(c, z4) < wped(c, x4) , (27)

load,q (xp, ¢) < wped(zp,c) , (28)

then the lemma follows directly from Lemrha?.2.

CAsE 2: It thus remains to consider the case where at least one afidgualities[(27) [128) is
violated. Then (and only therpREEDIT_DUALS (by definition) will adjusty,,(c) so that:

load,q(c, z4) = wped(c, z4) (29)

Hence, condition[[d7) will be restored after the adjustméfe may then assume th&f128) will
remain violated after the adjustment (or else we would fadlkto case 1), i.e. we may assume that:

loadpg (2p, ¢) > wped(zp, €) (30)

Based on[(29)[{30) and the definition of capacitie§ih (1) (it then results thatp,,, = cap,, =
0. This implies thaty;,, (c) = y,4(c), and itis then easy to show that:

load),, (¢, z4) = loadyg(c, z4) (31)
load,,, (p, ¢) = loady, (2, ¢) (32)

But then:
load,,, (¢, z) @ load,, (¢, z4) @ Wpqed(c, Tq) < Wpgdmax (33)

and also:

load;,q (xp,C) @ load,q(xp, ¢) = [loadpg(xp, €) + loady (¢, 24)] — loady, (¢, z4) (34)
= loadyq(wp, 74) — loadpg(c, z4) (35)

@,
= Wpqd(Tp, Tq) — Wped(c, Tq) < Wpgdmax, (36)

with equality [35) being true due to the identitynd,, (x,, ¢) +1load,g (¢, z4) = loadpg(xp, z4). O
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We may now proceed to prove TheorEm 2, which (as already oreed) forms the main goal of
this section.

Proof for Theoremdl To complete the proof of this theorem, we need to show thdt eae of the
complementary slackness conditiofils {3)-(5) will hold thyethe time Fast-PD terminates:

Condition @): As already explained in secti@h 3, th@DATE_DUALS_PRIMALS routine can
restore condition[{4) for most paifp, ¢) during any inner-iteration. However, even if there do
exist pairs that violate this condition aftePDATE_DUALS_PRIMALS, then thePOSTEDIT DUALS
routine can, by definition, always restore conditigh (4)tfem.

Condition (8): Based on LemmiaAl3, it follows that, given any lahethe following inequality
will hold true after the last-iteration:

load,q(a, z4) < Wpgdmax- (37)
Similarly, given any labeb, the following inequality will also hold true after the ldstteration:
loadpg(2p, b) < Wpgdmax- (38)
Combining these inequalities with the identity:
load,q(a, b) + loady, (zp, z4) = loady,(a, x4) + loady,(zp, b), (39)
we get that:
load,q(a, b) = [loadyq(a, b) + loadyy(zp, z4)] — loadpe(zp, z4)

@ [load,q(a, z4) + load,q(xp, b)] — loadyg (xp, 24)

@, @9
< 2Wpgdmax — loadpg(zp, z4),

and then conditior{5) follows trivially, sindead,,(z,, z4) = d(xp, z4) > 0 by @).

Condition @): It turns out that theJPDATE_DUALS_PRIMALS routine can finally ensure con-
dition @) due to the way that the exterior capacities of grép are defined. Since Fast-PD uses
the same definition as PR3or these capacities, the corresponding proof (that has beed for the
case of the PD3algorithm) in [5] applies here as well. O
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Appendix B: Proof of Theorem[3 about the equivalence of Fast-
PD and a-expansion in the case of a metric distance functiod(-, -)

In this section, we will provide the proof for Theoréln 3, winighows that when distandg¢, -) is a
metric, then Fast-PD can compute exactly the same solusidheax-expansion algorithm. To this
end, we will make use of the following two lemmas:

Lemma B.1 Let us define:
primal(x) = MRF energy of labeling x ,

and let alsax be any primal solution generated during an inner-iteratwfrthe Fast-PD algorithm.
It then holds that:

primal(x Zh (p) (40)
Proof.
primal(x @ Z Wped(Tp, Tq)
pge €
e Z Z load(zyp, 7q) 2 Z op(Tp) + Z (ypq(gcp) + yqp(xq))
pge € pge €
:Z (zp +Z Z Ypa(Tp) Z(%(%)"’ Z Ypq xp Zh p)
P P qpg€ & P ¢:pge €
O

Lemma B.2 Let the distance functiod(-, -) be a metric. Lek be the primal solution at the start of
the currentc-iteration, and let als& be any solution which coincides withceexpansion of solution
x. It will then hold that:

load;q(:ip, Zq) < Wpqd(Tp, Tq) (41)

Proof. If eitherz, = 2, = corz, = z,, T, = x4, the lemmais trivial to prove. So let us assume
thatz, = z,, 2, = c (the caser, = ¢, T, = x4, can be handled similarly). In this case, we need to
show that:

load,,, (zp, ¢) < wpqd(zp, ¢) (42)

Due to entailmen{{22) in LemnfiaA.2, it then suffices to shoat the following condition will hold
true afterPREEDIT_DUALS:
loadpg (zp, ¢) < wped(zp, €). (43)

Regarding inequalityi{43), this will always holdRREEDIT_DUALS has to apply no adjustment
to ypq(c) (this results from the definition GfREEDIT_DUALS). However, even iPREEDIT_DUALS
must adjust the value af,,(c), inequality [4B) will still hold true, provided thal(-, -) is a metric.
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To see that, it suffices to observe that after the adjustmaderhyPREEDIT_DUALS, it will then
hold:
loadpq (¢, z4) = wpqd(c, zq) (44)

and so:
load,q(xp, ¢) = [loadyq(xp, ¢) + loady, (¢, 24)] — loady, (¢, z4)
@.@a
= loadyg(7p, 74) —loadpg(c, 7q) "= wped(Tp, Tq) — wpad(c, Tq) < Wped(ap, C)

where the last inequality holds due to thét, ) is a metric and thus has to satisfy the triangle
inequality. O

We may now proceed to the main goal of this section, whicheésttoof of Theorerfil3.

Proof for Theorem[3. Let x be the primal solution at the start of the curreiteration, letx’
be the solution selected by Fast-PD at the end of the curfiértation, and let als& be any solution
which coincides with a-expansion of solutiot.

To prove the theorem, we need to show that:

primal(x’) < primal(X) (45)
To this end, it suffices to show that the following conditidrodd true:
primal(x Z hoy(2),) (46)
> hyay) < Z by () (47)
p p
> " hi(p) < primal(x) (48)

P

Regarding equatioli.{#6), this follows directly by applyltgmmdEB.l to the primal solutiog’
generated by the Fast-PD algorithm.

To prove inequality[{47), one can first show thgtz;,) = min{h;(z,), h,(c)}. In addition to
that, it will also hold eithett,, = z,, or z, = ¢ (sincex is ac-expansion ok). By combining these
facts, it then results thdt, (z,) < h;,(7,), and thusl{47) follows directly.

Finally, inequality [4B) will hold true because:

@
primal(x) = Z ¢p(Tp) Z Wped(Tp, Tg) > Zcp Tp) Z load'(z,, Z4)

pqe &£ pge &
= Z ¢p(Tp) + Z (ypq(xp) + yqp xq ZCP (Zp) + Z Z qu
P pge & P q:pg€ &
= Z(CP(@D) + Z ypq @ Z h/ (7p)
p q:pgE€ &€
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